101
|
Ben-Or A, Rubinsky B. Experimental Studies on Irreversible Electroporation of Cells. IRREVERSIBLE ELECTROPORATION 2010. [DOI: 10.1007/978-3-642-05420-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
102
|
André FM, Rassokhin MA, Bowman AM, Pakhomov AG. Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death. Bioelectrochemistry 2009; 79:95-100. [PMID: 20097138 DOI: 10.1016/j.bioelechem.2009.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 11/27/2009] [Accepted: 12/07/2009] [Indexed: 01/04/2023]
Abstract
It has been widely accepted that nanosecond electric pulses (nsEP) are distinguished from micro- and millisecond duration pulses by their ability to cause intracellular effects and cell death with reduced effects on the cell plasma membrane. However, we found that nsEP-induced cell death is most likely mediated by the plasma membrane disruption. We showed that nsEP can cause long-lasting (minutes) increase in plasma membrane electrical conductance and disrupt electrolyte balance, followed by water uptake, cell swelling and blebbing. These effects of plasma membrane permeabilization could be blocked by Gd(3+) in a dose-dependent manner, with a threshold at sub-micromolar concentrations. Consequently, Gd(3+) protected cells from nsEP-induced cell death, thereby pointing to plasma membrane permeabilization as a likely primary mechanism of lethal cell damage.
Collapse
Affiliation(s)
- Franck M André
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | | | | | | |
Collapse
|
103
|
Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, Tieleman DP. Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 2009; 4:e7966. [PMID: 19956595 PMCID: PMC2779261 DOI: 10.1371/journal.pone.0007966] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/23/2009] [Indexed: 11/18/2022] Open
Abstract
Reversible electropermeabilization (electroporation) is widely used to facilitate the introduction of genetic material and pharmaceutical agents into living cells. Although considerable knowledge has been gained from the study of real and simulated model membranes in electric fields, efforts to optimize electroporation protocols are limited by a lack of detailed understanding of the molecular basis for the electropermeabilization of the complex biomolecular assembly that forms the plasma membrane. We show here, with results from both molecular dynamics simulations and experiments with living cells, that the oxidation of membrane components enhances the susceptibility of the membrane to electropermeabilization. Manipulation of the level of oxidative stress in cell suspensions and in tissues may lead to more efficient permeabilization procedures in the laboratory and in clinical applications such as electrochemotherapy and electrotransfection-mediated gene therapy.
Collapse
Affiliation(s)
- P Thomas Vernier
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
104
|
Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P. Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 2009; 387:590-5. [PMID: 19619510 DOI: 10.1016/j.bbrc.2009.07.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/14/2009] [Indexed: 01/25/2023]
Abstract
We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.
Collapse
Affiliation(s)
- Thomas Berghöfer
- Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | |
Collapse
|
105
|
Esser AT, Smith KC, Gowrishankar TR, Weaver JC. Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields. Technol Cancer Res Treat 2009; 8:289-306. [DOI: 10.1177/153303460900800406] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Local and drug-free solid tumor ablation by large nanosecond pulsed electric fields leads to supra-electroporation of all cellular membranes and has been observed to trigger nonthermal cell death by apoptosis. To establish pore-based effects as the underlying mechanism inducing apoptosis, we use a multicellular system model (spatial scale 100 μm) that has irregularly shaped liver cells and a multiscale liver tissue model (spatial scale 200 mm). Pore histograms for the multicellular model demonstrate the presence of only nanometer-sized pores due to nanosecond electric field pulses. The number of pores in the plasma membrane is such that the average tissue conductance during nanosecond electric field pulses is even higher than for longer irreversible electroporation pulses. It is shown, however, that these nanometer-sized pores, although numerous, only significantly change the permeability of the cellular membranes to small ions, but not to larger molecules. Tumor ablation by nanosecond pulsed electric fields causes small to moderate temperature increases. Thus, the underlying mechanism(s) that trigger cell death by apoptosis must be non-thermal electrical interactions, presumably leading to different ionic and molecular transport than for much longer irreversible electroporation pulses.
Collapse
Affiliation(s)
- Axel T. Esser
- Harvard-MIT Division of Health Sciences and Technology,
| | - Kyle C. Smith
- Harvard-MIT Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA, 02139, U.S.A
| | | | | |
Collapse
|
106
|
Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH. A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence. Int J Cancer 2009; 125:438-45. [PMID: 19408306 DOI: 10.1002/ijc.24345] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have discovered a new, ultrafast therapy for treating skin cancer that is extremely effective with a total electric field exposure time of only 180 microsec. The application of 300 high-voltage (40 kV/cm), ultrashort (300 nsec) electrical pulses to murine melanomas in vivo triggers both necrosis and apoptosis, resulting in complete tumor remission within an average of 47 days in the 17 animals treated. None of these melanomas recurred during a 4-month period after the initial melanoma had disappeared. These pulses generate small, long-lasting, rectifying nanopores in the plasma membrane of exposed cells, resulting in increased membrane permeability to small molecules and ions, as well as an increase in intracellular Ca(2+), DNA fragmentation, disruption of the tumor's blood supply and the initiation of apoptosis. Apoptosis was indicated by a 3-fold increase in Bad labeling and a 72% decrease in Bcl-2 labeling. In addition, microvessel density within the treated tumors fell by 93%. This new therapy utilizing nanosecond pulsed electric fields has the advantages of highly localized targeting of tumor cells and a total exposure time of only 180 microsec. These pulses penetrate into the interior of every tumor cell and initiate DNA fragmentation and apoptosis while at the same time reducing blood flow to the tumor. This new physical tumor therapy is drug free, highly localized, uses low energy, has no significant side effects and results in very little scarring.
Collapse
Affiliation(s)
- Richard Nuccitelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23510, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Hu Q, Joshi R. Analysis of Intense, Subnanosecond Electrical Pulse-Induced Transmembrane Voltage in Spheroidal Cells With Arbitrary Orientation. IEEE Trans Biomed Eng 2009; 56:1617-26. [DOI: 10.1109/tbme.2009.2015459] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
108
|
Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF. Regulation of intracellular calcium concentration by nanosecond pulsed electric fields. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1168-75. [DOI: 10.1016/j.bbamem.2009.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 01/14/2009] [Accepted: 02/02/2009] [Indexed: 11/16/2022]
|
109
|
Wang S, Chen J, Chen MT, Vernier PT, Gundersen MA, Valderrábano M. Cardiac myocyte excitation by ultrashort high-field pulses. Biophys J 2009; 96:1640-8. [PMID: 19217879 DOI: 10.1016/j.bpj.2008.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/05/2008] [Indexed: 02/03/2023] Open
Abstract
In unexcitable, noncardiac cells, ultrashort (nanosecond) high-voltage (megavolt-per-meter) pulsed electrical fields (nsPEF) can mobilize intracellular Ca2+ and create transient nanopores in the plasmalemma. We studied Ca2+ responses to nsPEF in cardiac cells. Fluorescent Ca2+ or voltage signals were recorded from isolated adult rat ventricular myocytes deposited in an electrode microchamber and stimulated with conventional pulses (CPs; 0.5-2.4 kV/cm, 1 ms) or nsPEF (10-80 kV/cm, 4 ns). nsPEF induced Ca2+ transients in 68/104 cells. Repeating nsPEF increased the likelihood of Ca2+ transient induction (61.8% for <10 nsPEF vs. 80.6% for > or =10 nsPEF). Repetitive Ca2+ waves arising at the anodal side and Ca2+ destabilization occurred after repeated nsPEF (12/29) or during steady-state single nsPEF delivery at 2 Hz. Removing extracellular Ca2+ abolished responses to nsPEF. Verapamil did not affect nsPEF-induced Ca2+ transients, but decreased responses to CP. Tetrodotoxin and KB-R7943 increased the repetition threshold in response to nsPEF: 1-20 nsPEF caused local anodal Ca2+ waves without Ca2+ transients, and > or =20 nsPEF caused normal transients. Ryanodine-thapsigargin and caffeine protected against nsPEF-induced Ca2+ waves and showed less recovery of diastolic Ca2+ levels than CP. Voltage recordings demonstrated action potentials triggered by nsPEF, even in the presence of tetrodotoxin. nsPEF can mobilize intracellular Ca2+ in cardiac myocytes by inducing action potentials. Anodal Ca2+ waves and resistance to Na+ and Ca2+ channel blockade suggest nonselective ion channel transport via sarcolemmal nanopores as a triggering mechanism.
Collapse
Affiliation(s)
- Sufen Wang
- Division of Cardiac Electrophysiology, Department of Cardiology, The Methodist Hospital, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
110
|
Vernier PT, Sun Y, Chen MT, Gundersen MA, Craviso GL. Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 2008; 73:1-4. [DOI: 10.1016/j.bioelechem.2008.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 02/18/2008] [Indexed: 11/26/2022]
|
111
|
Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J 2008; 95:1547-63. [PMID: 18408042 DOI: 10.1529/biophysj.107.121921] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular effects of submicrosecond, megavolt-per-meter pulses imply changes in a cell's plasma membrane (PM) and organelle membranes. The maximum reported PM transmembrane voltage is only 1.6 V and phosphatidylserine is translocated to the outer membrane leaflet of the PM. Passive membrane models involve only displacement currents and predict excessive PM voltages (approximately 25 V). Here we use a cell system model with nonconcentric circular PM and organelle membranes to demonstrate fundamental differences between active (nonlinear) and passive (linear) models. We assign active or passive interactions to local membrane regions. The resulting cell system model involves a large number of interconnected local models that individually represent the 1), passive conductive and dielectric properties of aqueous electrolytes and membranes; 2), resting potential source; and 3), asymptotic membrane electroporation model. Systems with passive interactions cannot account for key experimental observations. Our active models exhibit supra-electroporation of the PM and organelle membranes, some key features of the transmembrane voltage, high densities of small pores in the PM and organelle membranes, and a global postpulse perturbation in which cell membranes are depolarized on the timescale of pore lifetimes.
Collapse
|
112
|
de Angelis A, Kolb JF, Zeni L, Schoenbach KH. Kilovolt Blumlein pulse generator with variable pulse duration and polarity. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:044301. [PMID: 18447535 DOI: 10.1063/1.2901609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1 kV across a 100 Omega load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60 ns. The lower limit in pulse duration was determined by the switch closing time and the upper limit by the length of the pulse forming line. A further advantage of the concept is that pulse distortions caused by the non-negligible on-resistance of a line with a single switch can be eliminated by using switches with identical characteristics.
Collapse
Affiliation(s)
- Andrea de Angelis
- Department of Information Engineering, Second University of Naples, Via Roma 29, I-81031 Aversa, Italy
| | | | | | | |
Collapse
|
113
|
Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe SJ, Schoenbach KH. Nanosecond pulse electric field (nanopulse): A novel non-ligand agonist for platelet activation. Arch Biochem Biophys 2008; 471:240-8. [DOI: 10.1016/j.abb.2007.12.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 11/29/2022]
|
114
|
Li C, Hu LN, Dong XJ, Sun CX, Mi Y. High-intensity electric pulses induce mitochondria-dependent apoptosis in ovarian cancer xenograft mice. Int J Gynecol Cancer 2008; 18:1258-61. [PMID: 18217966 DOI: 10.1111/j.1525-1438.2007.01182.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human ovarian cancer models were established in nude mice by transplanting SKOV(3) cells, and then tumors were exposed to high-intensity electric pulses with a voltage 1000 V, frequency of 1000 Hz, and duration of 250 ns for 1 min. Mitochondria permeability transition pore (PTP) was inspected by cofocal microscope; cytochrome C (Cyt C) and apoptosis-induced factor (AIF) were determined by immunohistochemistry; and voltage-dependent anion channel (VDAC) was measured by immunofluorescence. High-intensity electric pulses exposure led to increases of PTP, Cyt C, and AIF and a decrease of VDAC. These findings revealed that high-intensity electric pulses activated mitochondria electroporation, apoptosis was realized via mitochondria pathway.
Collapse
Affiliation(s)
- C Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
115
|
Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications. Radiol Oncol 2008. [DOI: 10.2478/v10019-008-0016-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
116
|
Hall EH, Schoenbach KH, Beebe SJ. Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis 2007; 12:1721-31. [PMID: 17520193 DOI: 10.1007/s10495-007-0083-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53(+/+) and HCT116p53(-/-) colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53(+/+) and HCT116p53(-/-) cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax.
Collapse
Affiliation(s)
- Emily H Hall
- Center for Pediatric Research, Children's Hospital of the King's Daughters, Department of Physiological Sciences, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501-1980, USA
| | | | | |
Collapse
|
117
|
Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH. Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 2007; 465:109-18. [PMID: 17555703 DOI: 10.1016/j.abb.2007.05.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 01/04/2023]
Abstract
Mammalian cells exposed to electric field pulses of nanosecond duration (nsPEF; 60-ns, 12 kV/cm) experienced a profound and long-lasting increase in passive electrical conductance (G(m)) of the cell membrane, probably caused by opening of stable conductance pores (CPs). The CPs were permeable to Cl(-) and alkali metal cations, but not to larger molecules such as propidium iodide (PI). CPs gradually resealed; the process took minutes and could be observed even in dialyzed cells and in ATP- and glucose-free solutions. Cells subjected to long nsPEF trains (up to 200 pulses) underwent severe and immediate necrotic transformation (cell swelling, blebbing, cytoplasm granulation), but remained impermeable to PI for at least 30-60 min after the exposure. Both G(m) increase after short nsPEF trains and necrotic changes after long nsPEF trains were cell type-dependent: they were much weaker in HeLa than in GH3 cells. La(3+) and Gd(3+) ions significantly inhibited the nsPEF-induced G(m) increase (probably by blocking the CPs), and effectively protected intensely exposed cells from developing necrosis. We conclude that plasma membrane permeabilization is the principal cause of necrotic transformation in nsPEF-exposed cells and probably contributes to other known nsPEF bioeffects.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Pliquett U, Joshi RP, Sridhara V, Schoenbach KH. High electrical field effects on cell membranes. Bioelectrochemistry 2007; 70:275-82. [PMID: 17123870 DOI: 10.1016/j.bioelechem.2006.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/07/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
Electrical charging of lipid membranes causes electroporation with sharp membrane conductance increases. Several recent observations, especially at very high field strength, are not compatible with the simple electroporation picture. Here we present several relevant experiments on cell electrical responses to very high external voltages. We hypothesize that, not only are aqueous pores created within the lipid membranes, but that nanoscale membrane fragmentation occurs, possibly with micelle formation. This effect would produce conductivity increases beyond simple electroporation and display a relatively fast turn-off with external voltage. In addition, material loss can be expected at the anode side of cells, in agreement with published experimental reports at high fields. Our hypothesis is qualitatively supported by molecular dynamics simulations. Finally, such cellular responses might temporarily inactivate voltage-gated and ion-pump activity, while not necessarily causing cell death. This hypothesis also supports observations on electrofusion.
Collapse
Affiliation(s)
- U Pliquett
- Frank Reidy Research Center for Bioelectrics 830 Southampton Ave., Suite 5100, Norfolk, VA 23510, United States
| | | | | | | |
Collapse
|
119
|
Hall EH, Schoenbach KH, Beebe SJ. Nanosecond Pulsed Electric Fields Have Differential Effects on Cells in The S-Phase. DNA Cell Biol 2007; 26:160-71. [PMID: 17417944 DOI: 10.1089/dna.2006.0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a type of nonthermal, nonionizing radiation that exhibit intense electric fields with high power, but low energy. NsPEFs extend conventional electroporation (EP) to affect intracellular structures and functions and depending on the intensity, can induce lethal and nonlethal cell signaling. In this study, HCT116 human colon carcinoma cells were synchronized to the S-phase or remained unsynchronized, exposed to electric fields of 60 kV/cm with either 60-ns or 300-ns durations, and analyzed for apoptosis and proliferative markers. Several nsPEF structural and functional targets were identified. Unlike unsynchronized cells, S-phase cells under limiting conditions exhibited greater membrane integrity and caspase activation and maintained cytoskeletal structure. Regardless of synchronization, cells exposed to nsPEFs under these conditions primarily survived, but exhibited some turnover and delayed proliferation in cell populations, as well as reversible increases in phosphatidylserine externalization, membrane integrity, and nuclei size. These results show that nsPEFs can act as a nonligand agonist to modulate plasma membrane (PM) and intracellular structures and functions, as well as differentially affect cells in the S-phase, but without effect on cell survival. Furthermore, nsPEF effects on the nucleus and cytoskeleton may provide synergistic therapeutic actions with other agents, such as ionizing radiation or chemotherapeutics that affect these same structures.
Collapse
Affiliation(s)
- Emily H Hall
- Center for Pediatric Research, Eastern Virginia Medical School, Children's Hospital of the King's Daughters, Norfolk, Virginia 23510, USA
| | | | | |
Collapse
|
120
|
Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH. Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 2007; 28:655-63. [PMID: 17654532 DOI: 10.1002/bem.20354] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The barrier function of plasma membrane in nsPEF-exposed mammalian cells was examined using whole-cell patch-clamp techniques. A specialized setup for nsPEF exposure of individual cells in culture was developed and characterized for artifact-free compatibility with the patch-clamp method. For the first time, our study provides experimental evidence that even a single 60-ns pulse at 12 kV/cm can cause a profound and long-lasting (minutes) reduction of the cell membrane resistance (R(m)), accompanied by the loss of the membrane potential. R(m) measured in GH3, PC-12, and Jurkat cells (but not in HeLa cells) in 80-120 s after nsPEF exposure was decreased about threefold, and its gradual recovery could take 15 min. Multiple pulses enhanced permeabilization, for example, R(m) in GH3 cells fell about 10-fold after a train of five pulses. Within studied limits, permeabilization did not depend on the presence of Ca(2+), Mg(2+), K(+), Cs(+), Cd(2+), EGTA, tetraethylammonium, or 4-aminopyridine in the pipette or bath solutions. Our results supported theoretical model predictions of plasma membrane poration by nsPEF. However, the extended decrease in R(m), assumed to be related to the life span of the pores, and different nsPEF sensitivity of individual cell lines have yet to be explained. The phenomenon of long-lived membrane permeabilization provides new insights on the nature of nsPEF-opened conductance pores and on molecular mechanisms that underlie nsPEF bioeffects.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Affiliation(s)
- Chilman Bae
- The Pennsylvania State University, University Park, PA16802, USA
| | | |
Collapse
|
122
|
Sebastián JL, Muñoz S, Sancho M, Miranda JM. Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model. Phys Med Biol 2006; 51:6213-24. [PMID: 17110781 DOI: 10.1088/0031-9155/51/23/019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We calculate the induced electric stress forces on transient hydrophobic pores in the membrane of an erythrocyte exposed to an electric field. For this purpose, we use a finite element numerical technique and a realistic shape for the biconcave erythrocyte represented by a set of parametric equations in terms of Jacobi elliptic functions. The results clearly show that the electrical forces on the base and sidewalls of the pore favour the opening of the pore. A comparison of the force densities obtained for an unstretched flat membrane and for the realistic erythrocyte model shows that the thinning and curvature of the membrane cannot be neglected. We also show that the pore deformation depends strongly on the orientation of the pore with respect to the external field, and in particular is very small when the field is tangent to the membrane surface.
Collapse
Affiliation(s)
- J L Sebastián
- Department Física Aplicada III, Facultad de Físicas, Universidad Complutense de Madrid, Spain.
| | | | | | | |
Collapse
|
123
|
Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers--in cells and in silico. Phys Biol 2006; 3:233-47. [PMID: 17200599 DOI: 10.1088/1478-3975/3/4/001] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanosecond, megavolt-per-meter pulses--higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells--produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.
Collapse
Affiliation(s)
- P Thomas Vernier
- Department of Electrical Engineering-Electrophysics, Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089-0271, USA.
| | | | | | | | | |
Collapse
|
124
|
Gowrishankar TR, Weaver JC. Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 2006; 349:643-53. [PMID: 16959217 PMCID: PMC1698465 DOI: 10.1016/j.bbrc.2006.08.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 01/21/2023]
Abstract
Extremely large but very short (20 kV/cm, 300 ns) electric field pulses were reported recently to non-thermally destroy melanoma tumors. The stated mechanism for field penetration into cells is pulse characteristic times faster than charge redistribution (displacement currents). Here we use a multicellular model with irregularly shaped, closely spaced cells to show that instead overwhelming pore creation (supra-electroporation) is dominant, with field penetration due to pores (ionic conduction currents) during most of the pulse. Moreover, the model's maximum membrane potential (about 1.2 V) is consistent with recent experimental observations on isolated cells. We also use the model to show that conventional electroporation resulting from 100 microsecond, 1 kV/cm pulses yields a spatially heterogeneous electroporation distribution. In contrast, the melanoma-destroying pulses cause nearly homogeneous electroporation of cells and their nuclear membranes. Electropores can persist for times much longer than the pulses, and are likely to be an important mechanism contributing to cell death.
Collapse
Affiliation(s)
- T. R. Gowrishankar
- Harvard–M.I.T. Division of Health Sciences and Technology, Massachusetts Institute of Technology
| | - James C. Weaver
- Harvard–M.I.T. Division of Health Sciences and Technology, Massachusetts Institute of Technology
| |
Collapse
|
125
|
Vernier PT, Sun Y, Gundersen MA. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 2006; 7:37. [PMID: 17052354 PMCID: PMC1624827 DOI: 10.1186/1471-2121-7-37] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/19/2006] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS) externalization. RESULTS In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses). Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X7 receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. CONCLUSION Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose responses of cells to unipolar and bipolar pulses ranging from 3 ns to 30 ns duration support the hypothesis that a field-driven charging of the membrane dielectric causes the formation of pores on a nanosecond time scale, and that the anionic phospholipid PS migrates electrophoretically along the wall of these pores to the external face of the membrane.
Collapse
Affiliation(s)
- P Thomas Vernier
- Department of Electrical Engineering-Electrophysics, Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089-0271, USA
- MOSIS, Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90292-6695, USA
| | - Yinghua Sun
- Department of Materials Science and Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089-0271, USA
| | - Martin A Gundersen
- Department of Electrical Engineering-Electrophysics, Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089-0271, USA
| |
Collapse
|
126
|
Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021904. [PMID: 17025469 DOI: 10.1103/physreve.74.021904] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Indexed: 05/12/2023]
Abstract
The recent applications of nanosecond, megavolt-per-meter electric field pulses to biological systems show striking cellular and subcellular electric field induced effects and revive the interest in the biophysical mechanism of electroporation. We first show that the absolute rate theory, with experimentally based parameter input, is consistent with membrane pore creation on a nanosecond time scale. Secondly we use a Smoluchowski equation-based model to formulate a self-consistent theoretical approach. The analysis is carried out for a planar cell membrane patch exposed to a 10 ns trapezoidal pulse with 1.5 ns rise and fall times. Results demonstrate reversible supraelectroporation behavior in terms of transmembrane voltage, pore density, membrane conductance, fractional aqueous area, pore distribution, and average pore radius. We further motivate and justify the use of Krassowska's asymptotic electroporation model for analyzing nanosecond pulses, showing that pore creation dominates the electrical response and that pore expansion is a negligible effect on this time scale.
Collapse
Affiliation(s)
- Zlatko Vasilkoski
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|