101
|
Lauria I, van Üüm J, Mjumjunov-Crncevic E, Walrafen D, Spitta L, Thiele C, Lang T. GLTP mediated non-vesicular GM1 transport between native membranes. PLoS One 2013; 8:e59871. [PMID: 23555818 PMCID: PMC3610762 DOI: 10.1371/journal.pone.0059871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/19/2013] [Indexed: 11/24/2022] Open
Abstract
Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.
Collapse
Affiliation(s)
- Ines Lauria
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Jan van Üüm
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Esmina Mjumjunov-Crncevic
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - David Walrafen
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Luis Spitta
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Department of Biochemistry and Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
102
|
Allan CM, Hill S, Morvaridi S, Saiki R, Johnson JS, Liau WS, Hirano K, Kawashima T, Ji Z, Loo JA, Shepherd JN, Clarke CF. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:776-791. [PMID: 23270816 DOI: 10.1016/j.bbalip.2012.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 12/25/2022]
Abstract
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Christopher M Allan
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Shauna Hill
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Susan Morvaridi
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Ryoichi Saiki
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Jarrett S Johnson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Wei-Siang Liau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Kathleen Hirano
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Tadashi Kawashima
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Ziming Ji
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Joseph A Loo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
103
|
Abstract
Emerging experimental and human evidence has linked altered hepatic cholesterol homeostasis and free cholesterol (FC) accumulation to the pathogenesis of non-alcoholic steatohepatits (NASH). This review focuses on cellular mechanisms of cholesterol toxicity involved in liver injury and on alterations in cholesterol homeostasis promoting hepatic cholesterol overload in NASH. FC accumulation injures hepatocytes directly, by disrupting mitochondrial and endoplasmic reticulum (ER) membrane integrity, triggering mitochondrial oxidative injury and ER stress, and by promoting generation of toxic oxysterols, and indirectly, by inducing adipose tissue dysfunction. Accumulation of oxidized LDL particles may also activate Kupffer and hepatic stellate cells, promoting liver inflammation and fibrogenesis. Hepatic cholesterol accumulation is driven by a deeply deranged cellular cholesterol homeostasis, characterized by elevated cholesterol synthesis and uptake from circulating lipoproteins and by a reduced cholesterol excretion. Extensive dysregulation of cellular cholesterol homeostasis by nuclear transcription factors sterol regulatory binding protein (SREBP)-2, liver X-receptor (LXR)-α and farnesoid X receptor (FXR) plays a key role in hepatic cholesterol accumulation in NASH. The therapeutic implications and opportunities for normalizing cellular cholesterol homeostasis in these patients are also discussed.
Collapse
|
104
|
Abstract
Adrenal gonadal, placental and brain mitochondria contain several steroidogenic enzymes, notably the cholesterol side chain cleavage enzyme, P450scc, which is the enzymatic rate-limiting step in steroidogenesis which determines cellular steroidogenic capacity. Even before this step, the access of cholesterol to this enzyme system is both rate-limiting and the site of acute regulation via the steroidogenic acute regulatory protein (StAR) which interacts with a complex multi-component 'transduceosome' on the outer mitochondrial membrane (OMM). The components of the transduceosome include the 18 kDa translocator protein (TSPO), the voltage-dependent anion channel (VDAC-1), TSPO-associated protein 7 (PAP7, ACBD3 for acyl-CoA-binding-domain 3), and protein kinase A regulatory subunit 1α (PKAR1A). The precise fashion in which these proteins interact and move cholesterol from the OMM to P450scc, and the means by which cholesterol is loaded into the OMM, remain unclear. Human deficiency diseases have been described for StAR and for P450scc. Mitochondria also contain several 'downstream' steroidogenic enzymes.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada.
| | | |
Collapse
|
105
|
Létourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, LeHoux JG. StAR-related lipid transfer domain protein 5 binds primary bile acids. J Lipid Res 2012; 53:2677-89. [PMID: 23018617 DOI: 10.1194/jlr.m031245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4-6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [(1)H-(15)N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the (1)H-(15)N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10-(4) M(-1) and 6.3·10(4) M(-1) were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de lsanté, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Flores-Martín J, Rena V, Márquez S, Panzetta-Dutari GM, Genti-Raimondi S. StarD7 knockdown modulates ABCG2 expression, cell migration, proliferation, and differentiation of human choriocarcinoma JEG-3 cells. PLoS One 2012; 7:e44152. [PMID: 22952907 PMCID: PMC3430668 DOI: 10.1371/journal.pone.0044152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background StAR-related lipid transfer domain containing 7 (StarD7) is a member of the START-domain protein family whose function still remains unclear. Our data from an explorative microarray assay performed with mRNAs from StarD7 siRNA-transfected JEG-3 cells indicated that ABCG2 (ATP-binding cassette sub-family G member 2) was one of the most abundantly downregulated mRNAs. Methodology/Principal Findings Here, we have confirmed that knocking down StarD7 mRNA lead to a decrease in the xenobiotic/lipid transporter ABCG2 at both the mRNA and protein levels (−26.4% and −41%, p<0.05, at 48 h of culture, respectively). Also a concomitant reduction in phospholipid synthesis, bromodeoxyuridine (BrdU) uptake and 3H-thymidine incorporation was detected. Wound healing and transwell assays revealed that JEG-3 cell migration was significantly diminished (p<0.05). Conversely, biochemical differentiation markers such as human chorionic gonadotrophin β-subunit (βhCG) protein synthesis and secretion as well as βhCG and syncytin-1 mRNAs were increased approximately 2-fold. In addition, desmoplakin immunostaining suggested that there was a reduction of intercellular desmosomes between adjacent JEG-3 cells after knocking down StarD7. Conclusions/Significance Altogether these findings provide evidence for a role of StarD7 in cell physiology indicating that StarD7 modulates ABCG2 multidrug transporter level, cell migration, proliferation, and biochemical and morphological differentiation marker expression in a human trophoblast cell model.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Biomarkers/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation
- Choriocarcinoma/genetics
- Choriocarcinoma/pathology
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Silencing
- Giant Cells/metabolism
- Humans
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phospholipids/biosynthesis
- Pregnancy Proteins/genetics
- Pregnancy Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jésica Flores-Martín
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Rena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sebastián Márquez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Graciela M. Panzetta-Dutari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
107
|
Du X, Qian X, Papageorge A, Schetter AJ, Vass WC, Liu X, Braverman R, Robles AI, Lowy DR. Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. Cancer Res 2012; 72:4405-16. [PMID: 22693251 DOI: 10.1158/0008-5472.can-12-0777] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deleted in liver cancer 1 (DLC1), a tumor suppressor gene frequently inactivated in non-small cell lung cancer (NSCLC) and other malignancies, encodes a multidomain protein with a RhoGTPase-activating (RhoGAP) domain and a StAR-related lipid transfer (START) domain. However, no interacting macromolecule has been mapped to the DLC1 START domain. Caveolin-1 (CAV-1) functions as a tumor suppressor in most contexts and forms a complex with DLC1. Here, we have mapped the region of DLC1 required for interaction with CAV-1 to the DLC1 START domain. Mutation of the DLC1 START domain disrupted the interaction and colocalization with CAV-1. Moreover, DLC1 with a START domain mutation failed to suppress neoplastic growth, although it negatively regulated active Rho. CAV-1 and DLC1 expression levels were correlated in two public datasets of NSCLC lines and in two independent publicly available mRNA expression datasets of NSCLC tumors. Clinically, low DLC1 expression predicted a poor clinical outcome in patients with lung cancer. Together, our findings indicate that complex formation between the DLC1 START domain and CAV-1 contributes to DLC1 tumor suppression via a RhoGAP-independent mechanism, and suggest that DLC1 inactivation probably contributes to cancer progression.
Collapse
Affiliation(s)
- Xiaoli Du
- Laboratory of Cellular Oncology, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|