101
|
Moore JA, Chlan CA. Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement. BIOLOGY 2013; 2:1224-41. [PMID: 24833222 PMCID: PMC4009799 DOI: 10.3390/biology2041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 11/16/2022]
Abstract
Plant genomes are larger and more complex than other eukaryotic organisms, due to small and large duplication events, recombination and subsequent reorganization of the genetic material. Commercially important cotton is the result of a polyploidization event between Old and New World cottons that occurred over one million years ago. Allotetraploid cotton has properties that are dramatically different from its progenitors-most notably, the presence of long, spinnable fibers. Recently, the complete genome of a New World cotton ancestral species, Gossypium raimondii, was completed. Future genome sequencing efforts are focusing on an Old World progenitor, G. arboreum. This sequence information will enable us to gain insights into the evolution of the cotton genome that may be used to understand the evolution of other plant species. The chloroplast genomes of multiple cotton species and races have been determined. This information has also been used to gain insight into the evolutionary history of cotton. Analysis of the database of nuclear and organellar sequences will facilitate the identification of potential genes of interest and subsequent development of strategies for improving cotton.
Collapse
Affiliation(s)
- Jocelyn A Moore
- Biology Department, the University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | - Caryl A Chlan
- Biology Department, the University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| |
Collapse
|
102
|
Combes MC, Dereeper A, Severac D, Bertrand B, Lashermes P. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. THE NEW PHYTOLOGIST 2013; 200:251-260. [PMID: 23790161 DOI: 10.1111/nph.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout the evolutionary history of plants and led to diversification and plant ecological adaptation. Functional plasticity of duplicate genes is believed to play a major role in the environmental adaptation of polyploids. In this context, we characterized genome-wide homoeologous gene expression in Coffea arabica, a recent allopolyploid combining two subgenomes that derive from two closely related diploid species, and investigated its variation in response to changing environment. The transcriptome of leaves of C. arabica cultivated at different growing temperatures suitable for one or the other parental species was examined using RNA-sequencing. The relative contribution of homoeologs to gene expression was estimated for 9959 and 10,628 genes in warm and cold conditions, respectively. Whatever the growing conditions, 65% of the genes showed equivalent levels of homoeologous gene expression. In 92% of the genes, relative homoeologous gene expression varied < 10% between growing temperatures. The subgenome contributions to the transcriptome appeared to be only marginally altered by the different conditions (involving intertwined regulations of homeologs) suggesting that C. arabica's ability to tolerate a broader range of growing temperatures than its diploid parents does not result from differential use of homoeologs.
Collapse
Affiliation(s)
- Marie-Christine Combes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Alexis Dereeper
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Dany Severac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cédex 5, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| |
Collapse
|
103
|
Mithani A, Belfield EJ, Brown C, Jiang C, Leach LJ, Harberd NP. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids. BMC Genomics 2013; 14:653. [PMID: 24063258 PMCID: PMC3849207 DOI: 10.1186/1471-2164-14-653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/18/2013] [Indexed: 01/16/2023] Open
Abstract
Background The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies. Results We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): ‘HSP base Assignment using NGS data through Diploid Similarity’ (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment. Conclusion We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.
Collapse
Affiliation(s)
- Aziz Mithani
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | | | | | | | |
Collapse
|
104
|
Phillips SM, Dubery IA, van Heerden H. Molecular characterisation of two homoeologous elicitor-responsive lipin genes in cotton. Mol Genet Genomics 2013; 288:519-33. [PMID: 23897433 DOI: 10.1007/s00438-013-0770-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/04/2013] [Indexed: 11/24/2022]
Abstract
The identification and molecular characterisation of two lipin-like gene copies (GhLIPN) in cotton, Gossypium hirsutum, an allotetraploid derived from two progenitor diploid Gossypium species, is described. Sequence analyses of the GhLIPN copies, designated GhLIPN-1 and -2, revealed that they contain 11 exons, separated by ten introns. They each have a 2,643 bp open reading frame that encodes 880 aa proteins, and share a 97.7 and 95.5 % sequence similarity at the translated nucleotide and amino acid level, respectively. The GhLIPN genes have a distinct domain architecture consisting of an archetypical N-terminal lipin domain, followed by a haloacid dehalogenase (HAD) domain towards the C-terminus. A Southern blot did not distinguish between the two gene copies, which suggests that they may be homoeologs rather than paralogs. GhLIPN-2 is more similar to a homoeologous sequence from G. raimondii, representing the ancestral D-genome, compared to GhLIPN-1 that matches G. herbaceum and that represents the A-genome. Our data indicate that GhLIPN-1 and GhLIPN-2 are homoeologs that derive from the A- and the D-diploid genomes, respectively. The promoter sequences of GhLIPN-1 and -2 differ by 56 %, as a result of multiple indels. In silico analysis of the promoter regions revealed that both genes contain numerous putative defence-related and elicitor-responsive cis-elements that support a role for GhLIPN in defence responses. Relative quantification real-time PCR confirmed the up-regulation in response to a cell-wall-derived V. dahliae elicitor, which supported the association of GhLIPN with defence signalling. The results add a new dimension to the proposed roles of lipins in plants by suggesting that lipins may have a role in defence signalling.
Collapse
Affiliation(s)
- Sonia M Phillips
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, P.O. Box 524, Auckland Park, 2006, South Africa
| | | | | |
Collapse
|
105
|
Zhao Q, Zou J, Meng J, Mei S, Wang J. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach. PLoS One 2013; 8:e68883. [PMID: 23874799 PMCID: PMC3708896 DOI: 10.1371/journal.pone.0068883] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the Brassica allohexaploid can generate extensive transcriptomic diversity compared with its parents. These changes may contribute to the normal growth and reproduction of allohexaploids.
Collapse
Affiliation(s)
- Qin Zhao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shiyong Mei
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Jianbo Wang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
106
|
Hegarty M, Coate J, Sherman-Broyles S, Abbott R, Hiscock S, Doyle J. Lessons from natural and artificial polyploids in higher plants. Cytogenet Genome Res 2013; 140:204-25. [PMID: 23816545 DOI: 10.1159/000353361] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyploidy in higher plants is a major source of genetic novelty upon which selection may act to drive evolution, as evidenced by the widespread success of polyploid species in the wild. However, research into the effects of polyploidy can be confounded by the entanglement of several processes: genome duplication, hybridisation (allopolyploidy is frequent in plants) and subsequent evolution. The discovery of the chemical agent colchicine, which can be used to produce artificial polyploids on demand, has enabled scientists to unravel these threads and understand the complex genomic changes involved in each. We present here an overview of lessons learnt from studies of natural and artificial polyploids, and from comparisons between the 2, covering basic cellular and metabolic consequences through to alterations in epigenetic gene regulation, together with 2 in-depth case studies in Senecio and Glycine. See also the sister article focusing on animals by Arai and Fujimoto in this themed issue.
Collapse
Affiliation(s)
- M Hegarty
- IBERS, Aberystwyth University, Aberystwyth, UK. ayh @ aber.ac.uk
| | | | | | | | | | | |
Collapse
|
107
|
Rowe HC, Rieseberg LH. Genome-scale transcriptional analyses of first-generation interspecific sunflower hybrids reveals broad regulatory compatibility. BMC Genomics 2013; 14:342. [PMID: 23701699 PMCID: PMC3679827 DOI: 10.1186/1471-2164-14-342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 12/26/2022] Open
Abstract
Background Interspecific hybridization creates individuals harboring diverged genomes. The interaction of these genomes can generate successful evolutionary novelty or disadvantageous genomic conflict. Annual sunflowers Helianthus annuus and H. petiolaris have a rich history of hybridization in natural populations. Although first-generation hybrids generally have low fertility, hybrid swarms that include later generation and fully fertile backcross plants have been identified, as well as at least three independently-originated stable hybrid taxa. We examine patterns of transcript accumulation in the earliest stages of hybridization of these species via analyses of transcriptome sequences from laboratory-derived F1 offspring of an inbred H. annuus cultivar and a wild H. petiolaris accession. Results While nearly 14% of the reference transcriptome showed significant accumulation differences between parental accessions, total F1 transcript levels showed little evidence of dominance, as midparent transcript levels were highly predictive of transcript accumulation in F1 plants. Allelic bias in F1 transcript accumulation was detected in 20% of transcripts containing sufficient polymorphism to distinguish parental alleles; however the magnitude of these biases were generally smaller than differences among parental accessions. Conclusions While analyses of allelic bias suggest that cis regulatory differences between H. annuus and H. petiolaris are common, their effect on transcript levels may be more subtle than trans-acting regulatory differences. Overall, these analyses found little evidence of regulatory incompatibility or dominance interactions between parental genomes within F1 hybrid individuals, although it is unclear whether this is a legacy or an enabler of introgression between species.
Collapse
Affiliation(s)
- Heather C Rowe
- Botany Department, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
108
|
Hu Z, Song N, Xing J, Chen Y, Han Z, Yao Y, Peng H, Ni Z, Sun Q. Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis. PLoS One 2013; 8:e63667. [PMID: 23696842 PMCID: PMC3656044 DOI: 10.1371/journal.pone.0063667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/05/2013] [Indexed: 12/21/2022] Open
Abstract
Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved) functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Na Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Zongfu Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
109
|
Abstract
The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed "revolutionary" changes), and (2) it facilitated sporadic genomic changes throughout the species' evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed.
Collapse
|
110
|
Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC, He J, Shen H, Srivastava AC, Pennacchio C, Lindquist E, Grimwood J, Schmutz J, Xu Y, Sharma M, Sharma R, Bartley LE, Ronald PC, Saha MC, Dixon RA, Tang Y, Udvardi MK. Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:160-73. [PMID: 23289674 DOI: 10.1111/tpj.12104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 05/04/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a perennial C4 grass with the potential to become a major bioenergy crop. To help realize this potential, a set of RNA-based resources were developed. Expressed sequence tags (ESTs) were generated from two tetraploid switchgrass genotypes, Alamo AP13 and Summer VS16. Over 11.5 million high-quality ESTs were generated with 454 sequencing technology, and an additional 169 079 Sanger sequences were obtained from the 5' and 3' ends of 93 312 clones from normalized, full-length-enriched cDNA libraries. AP13 and VS16 ESTs were assembled into 77 854 and 30 524 unique transcripts (unitranscripts), respectively, using the Newbler and pave programs. Published Sanger-ESTs (544 225) from Alamo, Kanlow, and 15 other cultivars were integrated with the AP13 and VS16 assemblies to create a universal switchgrass gene index (PviUT1.2) with 128 058 unitranscripts, which were annotated for function. An Affymetrix cDNA microarray chip (Pvi_cDNAa520831) containing 122 973 probe sets was designed from PviUT1.2 sequences, and used to develop a Gene Expression Atlas for switchgrass (PviGEA). The PviGEA contains quantitative transcript data for all major organ systems of switchgrass throughout development. We developed a web server that enables flexible, multifaceted analyses of PviGEA transcript data. The PviGEA was used to identify representatives of all known genes in the phenylpropanoid-monolignol biosynthesis pathway.
Collapse
Affiliation(s)
- Ji-Yi Zhang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Chaudhary B. Plant domestication and resistance to herbivory. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2013; 2013:572784. [PMID: 23589713 PMCID: PMC3621290 DOI: 10.1155/2013/572784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/06/2013] [Accepted: 02/24/2013] [Indexed: 05/05/2023]
Abstract
Transformation of wild species into elite cultivars through "domestication" entails evolutionary responses in which plant populations adapt to selection. Domestication is a process characterized by the occurrence of key mutations in morphological, phenological, or utility genes, which leads to the increased adaptation and use of the plant; however, this process followed by modern plant breeding practices has presumably narrowed the genetic diversity in crop plants. The reduction of genetic diversity could result in "broad susceptibility" to newly emerging herbivores and pathogens, thereby threatening long-term crop retention. Different QTLs influencing herbivore resistance have also been identified, which overlap with other genes of small effect regulating resistance indicating the presence of pleiotropism or linkage between such genes. However, this reduction in genetic variability could be remunerated by introgression of novel traits from wild perhaps with antifeedant and antinutritional toxic components. Thus it is strongly believed that transgenic technologies may provide a radical and promising solution to combat herbivory as these avoid linkage drag and also the antifeedant angle. Here, important questions related to the temporal dynamics of resistance to herbivory and intricate genetic phenomenon with their impact on crop evolution are addressed and at times hypothesized for future validation.
Collapse
Affiliation(s)
- Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida 201 308, India
| |
Collapse
|
112
|
Hu Z, Han Z, Song N, Chai L, Yao Y, Peng H, Ni Z, Sun Q. Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2013; 197:1344-1352. [PMID: 23360546 DOI: 10.1111/nph.12131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/25/2012] [Indexed: 05/22/2023]
Abstract
Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat, as well as in other polyploid plants. However, the mechanisms underlying this phenomenon are poorly understood. Expansin genes play important roles in the regulation of cell size, as well as organ size. We found that all three TaEXPA1 homoeologs were silenced in seedling roots. In seedling leaves, TaEXPA1-A and TaEXPA1-D were expressed, but TaEXPA1-B was silenced. Further analysis revealed that silencing of TaEXPA1-B in leaves occurred after the formation of the hexaploid. Chromatin immunoprecipitation assays revealed that the transcriptional silencing of three TaEXPA1 homoeologs in roots was correlated with an increased level of H3K9 dimethylation and decreased levels of H3K4 trimethylation and H3K9 acetylation. Reactivation of TaEXPA1-A and TaEXPA1-D expression in leaves was correlated with increased levels of H3K4 trimethylation and H3K9 acetylation, and decreased levels of H3K9 dimethylation in their promoters, respectively. Moreover, a higher level of cytosine methylation was detected in the promoter region of TaEXPA1-B, which may contribute to its silencing in leaves. We demonstrated that epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development.
Collapse
Affiliation(s)
- Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zongfu Han
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Na Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| |
Collapse
|
113
|
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity (Edinb) 2013; 110:99-104. [PMID: 23149459 PMCID: PMC3554449 DOI: 10.1038/hdy.2012.79] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/09/2022] Open
Abstract
Polyploidy, the condition of possessing more than two complete genomes in a cell, has intrigued biologists for almost a century. Polyploidy is found in many plants and some animal species and today we know that polyploidy has had a role in the evolution of all angiosperms. Despite its widespread occurrence, the direct effect of polyploidy on evolutionary success of a species is still largely unknown. Over the years many attractive hypotheses have been proposed in an attempt to assign functionality to the increased content of a duplicated genome. Among these hypotheses are the proposal that genome doubling confers distinct advantages to a polyploid and that these advantages allow polyploids to thrive in environments that pose challenges to the polyploid's diploid progenitors. This article revisits these long-standing questions and explores how the integration of recent genomic developments with ecological, physiological and evolutionary perspectives has contributed to addressing unresolved problems about the role of polyploidy. Although unsatisfactory, the current conclusion has to be that despite significant progress, there still isn't enough information to unequivocally answer many unresolved questions about cause and effect of polyploidy on evolutionary success of a species. There is, however, reason to believe that the increasingly integrative approaches discussed here should allow us in the future to make more direct connections between the effects of polyploidy on the genome and the responses this condition elicits from the organism living in its natural environment.
Collapse
Affiliation(s)
- A Madlung
- Department of Biology, University of Puget Sound, Tacoma, WA 98416, USA.
| |
Collapse
|
114
|
Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA. The fate of duplicated genes in a polyploid plant genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:143-53. [PMID: 22974547 DOI: 10.1111/tpj.12026] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 05/18/2023]
Abstract
Polyploidy is generally not tolerated in animals, but is widespread in plant genomes and may result in extensive genetic redundancy. The fate of duplicated genes is poorly understood, both functionally and evolutionarily. Soybean (Glycine max L.) has undergone two separate polyploidy events (13 and 59 million years ago) that have resulted in 75% of its genes being present in multiple copies. It therefore constitutes a good model to study the impact of whole-genome duplication on gene expression. Using RNA-seq, we tested the functional fate of a set of approximately 18 000 duplicated genes. Across seven tissues tested, approximately 50% of paralogs were differentially expressed and thus had undergone expression sub-functionalization. Based on gene ontology and expression data, our analysis also revealed that only a small proportion of the duplicated genes have been neo-functionalized or non-functionalized. In addition, duplicated genes were often found in collinear blocks, and several blocks of duplicated genes were co-regulated, suggesting some type of epigenetic or positional regulation. We also found that transcription factors and ribosomal protein genes were differentially expressed in many tissues, suggesting that the main consequence of polyploidy in soybean may be at the regulatory level.
Collapse
Affiliation(s)
- Anne Roulin
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Zoologisches Institut, Universität Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Paul L Auer
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jessica Schlueter
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Greg May
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Scott A Jackson
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| |
Collapse
|
115
|
Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploids. THE NEW PHYTOLOGIST 2012; 196:966-971. [PMID: 23033870 DOI: 10.1111/j.1469-8137.2012.04365.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - J P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - E P Szadkowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - M J Yoo
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - L E Flagel
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - J F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
116
|
Lu YH, Arnaud D, Belcram H, Falentin C, Rouault P, Piel N, Lucas MO, Just J, Renard M, Delourme R, Chalhoub B. A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. THE PLANT CELL 2012; 24:4875-91. [PMID: 23277363 PMCID: PMC3556963 DOI: 10.1105/tpc.112.104315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the allopolyploid Brassica napus, we obtained a petal-closed flower mutation by ethyl methanesulfonate mutagenesis. Here, we report cloning and characterization of the Bn-CLG1A (CLG for cleistogamy) gene and the Bn-clg1A-1D mutant allele responsible for the cleistogamy phenotype. Bn-CLG1A encodes a RINGv E3 ubiquitin ligase that is highly conserved across eukaryotes. In the Bn-clg1A-1D mutant allele, a C-to-T transition converts a Pro at position 325 to a Leu (P325L), causing a dominant mutation leading to cleistogamy. B. napus and Arabidopsis thaliana plants transformed with a Bn-clg1A-1D allele show cleistogamous flowers, and characterization of these flowers suggests that the Bn-clg1A-1D mutation causes a pronounced negative regulation of cutin biosynthesis or loading and affects elongation or differentiation of petal and sepal cells. This results in an inhibition or a delay of petal development, leading to folded petals. A homoeologous gene (Bn-CLG1C), which shows 99.5% amino acid identity and is also constitutively and equally expressed to the wild-type Bn-CLG1A gene, was also identified. We showed that P325L is not a loss-of-function mutation and did not affect expression of Bn-clg1A-1D or Bn-CLG1C. Our findings suggest that P325L is a gain-of-function semidominant mutation, which led to either hyper- or neofunctionalization of a redundant homoeologous gene.
Collapse
Affiliation(s)
- Yun-Hai Lu
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057 Evry cedex, France
| | - Dominique Arnaud
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057 Evry cedex, France
| | - Harry Belcram
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057 Evry cedex, France
| | - Cyril Falentin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1349 Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu, France
| | - Patricia Rouault
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1349 Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu, France
| | - Nathalie Piel
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1349 Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu, France
| | - Marie-Odile Lucas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1349 Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu, France
| | - Jérémy Just
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057 Evry cedex, France
| | - Michel Renard
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1349 Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu, France
| | - Régine Delourme
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1349 Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu, France
| | - Boulos Chalhoub
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057 Evry cedex, France
- Address correspondence to
| |
Collapse
|
117
|
|
118
|
Yoo MJ, Szadkowski E, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity (Edinb) 2012; 110:171-80. [PMID: 23169565 DOI: 10.1038/hdy.2012.94] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Allopolyploidy is an evolutionary and mechanistically intriguing process, in that it entails the reconciliation of two or more sets of diverged genomes and regulatory interactions. In this study, we explored gene expression patterns in interspecific hybrid F(1), and synthetic and natural allopolyploid cotton using RNA-Seq reads from leaf transcriptomes. We determined how the extent and direction of expression level dominance (total level of expression for both homoeologs) and homoeolog expression bias (relative contribution of homoeologs to the transcriptome) changed from hybridization through evolution at the polyploid level and following cotton domestication. Genome-wide expression level dominance was biased toward the A-genome in the diploid hybrid and natural allopolyploids, whereas the direction was reversed in the synthetic allopolyploid. This biased expression level dominance was mainly caused by up- or downregulation of the homoeolog from the 'non-dominant' parent. Extensive alterations in homoeolog expression bias and expression level dominance accompany the initial merger of two diverged diploid genomes, suggesting a combination of regulatory (cis or trans) and epigenetic interactions that may arise and propagate through the transcriptome network. The extent of homoeolog expression bias and expression level dominance increases over time, from genome merger through evolution at the polyploid level. Higher rates of transgressive and novel gene expression patterns as well as homoeolog silencing were observed in natural allopolyploids than in F(1) hybrid and synthetic allopolyploid cottons. These observations suggest that natural selection reconciles the regulatory mismatches caused by initial genomic merger, while new gene expression conditions are generated for evaluation by selection.
Collapse
Affiliation(s)
- M-J Yoo
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
119
|
Lacape JM, Claverie M, Vidal RO, Carazzolle MF, Guimarães Pereira GA, Ruiz M, Pré M, Llewellyn D, Al-Ghazi Y, Jacobs J, Dereeper A, Huguet S, Giband M, Lanaud C. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 2012; 7:e48855. [PMID: 23166598 PMCID: PMC3499527 DOI: 10.1371/journal.pone.0048855] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/17/2023] Open
Abstract
Cotton (Gossypium) fiber is the most prevalent natural product used in the textile industry. The two major cultivated species, G. hirsutum (Gh) and G. barbadense (Gb), are allotetraploids with contrasting fiber quality properties. To better understand the molecular basis for their fiber differences, EST pyrosequencing was used to document the fiber transcriptomes at two key development stages, 10 days post anthesis (dpa), representing the peak of fiber elongation, and 22 dpa, representing the transition to secondary cell wall synthesis. The 617,000 high quality reads (89% of the total 692,000 reads) from 4 libraries were assembled into 46,072 unigenes, comprising 38,297 contigs and 7,775 singletons. Functional annotation of the unigenes together with comparative digital gene expression (DGE) revealed a diverse set of functions and processes that were partly linked to specific fiber stages. Globally, 2,770 contigs (7%) showed differential expression (>2-fold) between 10 and 22 dpa (irrespective of genotype), with 70% more highly expressed at 10 dpa, while 2,248 (6%) were differentially expressed between the genotypes (irrespective of stage). The most significant genes with differential DGE at 10 dpa included expansins and lipid transfer proteins (higher in Gb), while at 22 dpa tubulins, cellulose, and sucrose synthases showed higher expression in Gb. DGE was compared with expression data of 10 dpa-old fibers from Affymetrix microarrays. Among 543 contigs showing differential expression on both platforms, 74% were consistent in being either over-expressed in Gh (242 genes) or in Gb (161 genes). Furthermore, the unigene set served to identify 339 new SSRs and close to 21,000 inter-genotypic SNPs. Subsets of 88 SSRs and 48 SNPs were validated through mapping and added 65 new loci to a RIL genetic map. The new set of fiber ESTs and the gene-based markers complement existing available resources useful in basic and applied research for crop improvement in cotton.
Collapse
|
120
|
Curtin SJ, Kantar MB, Yoon HW, Whaley AM, Schlueter JA, Stupar RM. Co-expression of soybean Dicer-like genes in response to stress and development. Funct Integr Genomics 2012; 12:671-82. [PMID: 22527487 DOI: 10.1007/s10142-012-0278-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 01/03/2023]
Abstract
Regulation of gene transcription and post-transcriptional processes is critical for proper development, genome integrity, and stress responses in plants. Many genes involved in the key processes of transcriptional and post-transcriptional regulation have been well studied in model diploid organisms. However, gene and genome duplication may alter the function of the genes involved in these processes. To address this question, we assayed the stress-induced transcription patterns of duplicated gene pairs involved in RNAi and DNA methylation processes in the paleopolyploid soybean. Real-time quantitative PCR and Sequenom MassARRAY expression assays were used to profile the relative expression ratios of eight gene pairs across eight different biotic and abiotic stress conditions. The transcriptional responses to stress for genes involved in DNA methylation, RNAi processing, and miRNA processing were compared. The strongest evidence for pairwise co-expression in response to stresses was exhibited by non-paralogous Dicer-like (DCL) genes GmDCL2a-GmDCL3a and GmDCL1b-GmDCL2b, most profoundly in root tissues. Among homoeologous or paralogous DCL genes, the Dicer-like 2 (DCL2) gene pair exhibited the strongest response to stress and most conserved co-expression pattern. This was surprising because the DCL2 duplication event is more ancient than the other DCL duplications. Possible mechanisms that may be driving the DCL2 co-expression are discussed.
Collapse
Affiliation(s)
- Shaun J Curtin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
121
|
Zhao L, Yuanda L, Caiping C, Xiangchao T, Xiangdong C, Wei Z, Hao D, Xiuhua G, Wangzhen G. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 2012; 13:539. [PMID: 23046547 PMCID: PMC3557173 DOI: 10.1186/1471-2164-13-539] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/23/2012] [Indexed: 01/02/2023] Open
Abstract
Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Koh J, Chen S, Zhu N, Yu F, Soltis PS, Soltis DE. Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents. THE NEW PHYTOLOGIST 2012; 196:292-305. [PMID: 22861377 DOI: 10.1111/j.1469-8137.2012.04251.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• We examined the proteomes of the recently formed natural allopolyploid Tragopogon mirus and its diploid parents (T. dubius, T. porrifolius), as well as a diploid F(1) hybrid and synthetic T. mirus. • Analyses using iTRAQ LC-MS/MS technology identified 476 proteins produced by all three species. Of these, 408 proteins showed quantitative additivity of the two parental profiles in T. mirus (both natural and synthetic); 68 proteins were quantitatively differentially expressed. • Comparison of F(1) hybrid, and synthetic and natural polyploid T. mirus with the parental diploid species revealed 32 protein expression changes associated with hybridization, 22 with genome doubling and 14 that had occurred since the origin of T. mirus c. 80 yr ago. We found six proteins with novel expression; this phenomenon appears to start in the F(1) hybrid and results from post-translational modifications. • Our results indicate that the impact of hybridization on the proteome is more important than is polyploidization. Furthermore, two cases of homeolog-specific expression in T. mirus suggest that silencing in T. mirus was not associated with hybridization itself, but occurred subsequent to both hybridization and polyploidization. This study has shown the utility of proteomics in the analysis of the evolutionary consequences of polyploidy.
Collapse
Affiliation(s)
- Jin Koh
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
123
|
Ho-Huu J, Ronfort J, De Mita S, Bataillon T, Hochu I, Weber A, Chantret N. Contrasted patterns of selective pressure in three recent paralogous gene pairs in the Medicago genus (L.). BMC Evol Biol 2012; 12:195. [PMID: 23025552 PMCID: PMC3517903 DOI: 10.1186/1471-2148-12-195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/20/2012] [Indexed: 01/01/2023] Open
Abstract
Background Gene duplications are a molecular mechanism potentially mediating generation of functional novelty. However, the probabilities of maintenance and functional divergence of duplicated genes are shaped by selective pressures acting on gene copies immediately after the duplication event. The ratio of non-synonymous to synonymous substitution rates in protein-coding sequences provides a means to investigate selective pressures based on genic sequences. Three molecular signatures can reveal early stages of functional divergence between gene copies: change in the level of purifying selection between paralogous genes, occurrence of positive selection, and transient relaxed purifying selection following gene duplication. We studied three pairs of genes that are known to be involved in an interaction with symbiotic bacteria and were recently duplicated in the history of the Medicago genus (Fabaceae). We sequenced two pairs of polygalacturonase genes (Pg11-Pg3 and Pg11a-Pg11c) and one pair of auxine transporter-like genes (Lax2-Lax4) in 17 species belonging to the Medicago genus, and sought for molecular signatures of differentiation between copies. Results Selective histories revealed by these three signatures of molecular differentiation were found to be markedly different between each pair of paralogs. We found sites under positive selection in the Pg11 paralogs while Pg3 has mainly evolved under purifying selection. The most recent paralogs examined Pg11a and Pg11c, are both undergoing positive selection and might be acquiring new functions. Lax2 and Lax4 paralogs are both under strong purifying selection, but still underwent a temporary relaxation of purifying selection immediately after duplication. Conclusions This study illustrates the variety of selective pressures undergone by duplicated genes and the effect of age of the duplication. We found that relaxation of selective constraints immediately after duplication might promote adaptive divergence.
Collapse
Affiliation(s)
- Joan Ho-Huu
- INRA - Institut National de la Recherche Agronomique, UMR AGAP, Montpellier, 34060, France
| | | | | | | | | | | | | |
Collapse
|
124
|
Charon C, Bruggeman Q, Thareau V, Henry Y. Gene duplication within the Green Lineage: the case of TEL genes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5061-5077. [PMID: 22865910 DOI: 10.1093/jxb/ers181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent years have witnessed a breathtaking increase in the availability of genome sequence data, providing evidence of the highly duplicate nature of eukaryotic genomes. Plants are exceptional among eukaryotic organisms in that duplicate loci compose a large fraction of their genomes, partly because of the frequent occurrence of polyploidy (or whole-genome duplication) events. Tandem gene duplication and transposition have also contributed to the large number of duplicated genes in plant genomes. Evolutionary analyses allowed the dynamics of duplicate gene evolution to be studied and several models were proposed. It seems that, over time, many duplicated genes were lost and some of those that were retained gained new functions and/or expression patterns (neofunctionalization) or subdivided their functions and/or expression patterns between them (subfunctionalization). Recent studies have provided examples of genes that originated by duplication with successive diversification within plants. In this review, we focused on the TEL (TERMINAL EAR1-like) genes to illustrate such mechanisms. Emerged from the mei2 gene family, these TEL genes are likely to be land plant-specific. Phylogenetic analyses revealed one or two TEL copies per diploid genome. TEL gene degeneration and loss in several Angiosperm species such as in poplar and maize seem to have occurred. In Arabidopsis thaliana, whose genome experienced at least three polyploidy events followed by massive gene loss and genomic reorganization, two TEL genes were retained and two new shorter TEL-like (MCT) genes emerged. Molecular and expression analyses suggest for these genes sub- and neofunctionalization events, but confirmation will come from their functional characterization.
Collapse
Affiliation(s)
- Céline Charon
- Institut de Biologie des Plantes-CNRS (UMR8618), Université Paris-Sud 11, Saclay Plant Sciences, F-91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
125
|
Flagel LE, Wendel JF, Udall JA. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics 2012. [PMID: 22768919 DOI: 10.1186/1471‐2164‐13‐302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Modern allotetraploid cotton contains an "A" and "D" genome from an ancestral polyploidy event that occurred approximately 1-2 million years ago. Diploid A- and D-genome species can be compared to the A- and D-genomes found within these allotetraploids to make evolutionary inferences about polyploidy. In this paper we present a comprehensive EST assembly derived from diploid and model allotetraploid cottons and demonstrate several evolutionary inferences regarding genic evolution that can be drawn from these data. RESULTS We generated a set of cotton expressed sequence tags (ESTs), comprising approximately 4.4 million Sanger and next-generation (454) transcripts supplemented by approximately 152 million Illumina reads from diploid and allotetraploid cottons. From the EST alignments we inferred 259,192 genome-specific single nucleotide polymorphisms (SNPs). Molecular evolutionary analyses of protein-coding regions demonstrate that the rate of nucleotide substitution has increased among both allotetraploid genomes relative to the diploids, and that the ratio of nonsynonymous to synonymous substitutions has increased in one of the two polyploid lineages we sampled. We also use these SNPs to show that a surprisingly high percentage of duplicate genes (~7 %) show a signature of non-independent evolution in the allotetraploid nucleus, having experienced one or more episodes of nonreciprocal homoeologous recombination (NRHR). CONCLUSIONS In this study we characterize the functional and mutational properties of the cotton transcriptome, produce a large genome-specific SNP database, and detect illegitimate genetic exchanges between duplicate genomes sharing a common allotetraploid nucleus. Our findings have important implications for our understanding of the consequences of polyploidy and duplicate gene evolution. We demonstrate that cotton genes have experienced an increased rate of molecular evolution following duplication by polyploidy, and that polyploidy has enabled considerable levels of nonreciprocal exchange between homoeologous genes.
Collapse
Affiliation(s)
- Lex E Flagel
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
126
|
Flagel LE, Wendel JF, Udall JA. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics 2012; 13:302. [PMID: 22768919 PMCID: PMC3427041 DOI: 10.1186/1471-2164-13-302] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern allotetraploid cotton contains an "A" and "D" genome from an ancestral polyploidy event that occurred approximately 1-2 million years ago. Diploid A- and D-genome species can be compared to the A- and D-genomes found within these allotetraploids to make evolutionary inferences about polyploidy. In this paper we present a comprehensive EST assembly derived from diploid and model allotetraploid cottons and demonstrate several evolutionary inferences regarding genic evolution that can be drawn from these data. RESULTS We generated a set of cotton expressed sequence tags (ESTs), comprising approximately 4.4 million Sanger and next-generation (454) transcripts supplemented by approximately 152 million Illumina reads from diploid and allotetraploid cottons. From the EST alignments we inferred 259,192 genome-specific single nucleotide polymorphisms (SNPs). Molecular evolutionary analyses of protein-coding regions demonstrate that the rate of nucleotide substitution has increased among both allotetraploid genomes relative to the diploids, and that the ratio of nonsynonymous to synonymous substitutions has increased in one of the two polyploid lineages we sampled. We also use these SNPs to show that a surprisingly high percentage of duplicate genes (~7 %) show a signature of non-independent evolution in the allotetraploid nucleus, having experienced one or more episodes of nonreciprocal homoeologous recombination (NRHR). CONCLUSIONS In this study we characterize the functional and mutational properties of the cotton transcriptome, produce a large genome-specific SNP database, and detect illegitimate genetic exchanges between duplicate genomes sharing a common allotetraploid nucleus. Our findings have important implications for our understanding of the consequences of polyploidy and duplicate gene evolution. We demonstrate that cotton genes have experienced an increased rate of molecular evolution following duplication by polyploidy, and that polyploidy has enabled considerable levels of nonreciprocal exchange between homoeologous genes.
Collapse
Affiliation(s)
- Lex E Flagel
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
127
|
Higgins J, Magusin A, Trick M, Fraser F, Bancroft I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics 2012; 13:247. [PMID: 22703051 PMCID: PMC3428664 DOI: 10.1186/1471-2164-13-247] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/29/2012] [Indexed: 11/22/2022] Open
Abstract
Background Polyploidy often results in considerable changes in gene expression, both immediately and over evolutionary time. New phenotypes often arise with polyploid formation and may contribute to the fitness of polyploids in nature or their selection for use in agriculture. Oilseed rape (Brassica napus) is widely used to study the process of polyploidy both in artificially resynthesised and natural forms. mRNA-Seq, a recently developed approach to transcriptome profiling using deep-sequencing technologies is an alternative to microarrays for the study of gene expression in a polyploid. Results Illumina mRNA-Seq is comparable to microarray analysis for transcript quantification but has increased sensitivity and, very importantly, the potential to distinguish between homoeologous genes in polyploids. Using a novel curing process, we adapted a reference sequence that was a consensus derived from ESTs from both Brassica A and C genomes to one containing separate A and C genome versions for each of the 94,558 original unigenes. We aligned reads from B. napus to this cured reference, finding 38% more reads mapping from resynthesised lines and 28% more reads mapping from natural lines. Where the A and C versions differed at single nucleotide positions, termed inter-homoeologue polymorphisms (IHPs), we were able to apportion expression in the polyploid between the A and C genome homoeologues. 43,761 unigenes contained at least one IHP, with a mean frequency of 10.5 per kb unigene sequence. 6,350 of the unigenes with IHPs were differentially expressed between homoeologous gene pairs in resynthesised B. napus. 3,212 unigenes showed a similar pattern of differential expression across a range of natural B. napus crop varieties and, of these, 995 were in common with resynthesised B. napus. Functional classification showed over-representation in gene ontology categories not associated with dosage-sensitivity. Conclusion mRNA-Seq is the method of choice for measuring transcript abundance in polyploids due to its ability to measure the contributions of homoeologues to gene expression. The identification of large numbers of differentially expressed genes in both a newly resynthesised polyploid and natural B. napus confirms that there are both immediate and long-term alterations in the expression of homoeologous gene pairs following polyploidy.
Collapse
Affiliation(s)
- Janet Higgins
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | |
Collapse
|
128
|
Molecular evolution and phylogenetic analysis of genes related to cotton fibers development from wild and domesticated cotton species in Gossypium. Mol Phylogenet Evol 2012; 63:589-97. [PMID: 22381639 DOI: 10.1016/j.ympev.2012.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
Abstract
The domestication of both diploid and tetraploid cotton species was carried out for fiber utilization. To understand the origin and domestication of fibers, 18 genes related to fiber development were individually cloned and sequenced from 22 different cotton species. Their structures, phylogenetic relationship and molecular evolution were further studied. In the orthologous and homeologous loci of the 18 genes, the sequence and structure of 72.22% were conserved and 27.78% were diverse. Tree topologies constructed based on the combined sequences showed that all 13 D-genome species were congruent with Fryxell's subsection taxonomy, the A- and D-subgenomes independently evolved in the allopolyploid after polyploid formation, and Gossypium raimondii had the closest relationship with all allotetraploids of D-subgenomes. The molecular evolutionary rates revealed approximately equivalent rates among different D-genome species, and purifying selection acted on all genes in the wild D-genome species. Among orthologs and homeologs, the D-subgenomes had higher evolutionary rates than the A-subgenomes in tetraploid cotton species, and the cultivars had higher evolutionary rates than either the semi-domesticated or wild species. Our study revealed that human domestication altered the molecular evolutionary pattern of genes related to fiber development, and Gossypium hirsutum endured greater selective pressures than Gossypium barbadense during the domestication process.
Collapse
|
129
|
Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC PLANT BIOLOGY 2012; 12:26. [PMID: 22340522 PMCID: PMC3312858 DOI: 10.1186/1471-2229-12-26] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/17/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication. RESULTS A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication. CONCLUSION In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.
Collapse
Affiliation(s)
- Daniel Fonceka
- Cirad, UMR AGAP, TA A108/3, Avenue Agropolis, Montpellier F-34398, France
| | | | - Ronan Rivallan
- Cirad, UMR AGAP, TA A108/3, Avenue Agropolis, Montpellier F-34398, France
| | - Hélène Vignes
- Cirad, UMR AGAP, TA A108/3, Avenue Agropolis, Montpellier F-34398, France
| | - Issa Faye
- ISRA/Ceraas, Route de Khombole, BP 3320, Thiès Escale, Senegal
| | - Ousmane Ndoye
- ISRA/Ceraas, Route de Khombole, BP 3320, Thiès Escale, Senegal
| | - Márcio C Moretzsohn
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, CEP 70.770-900 Brasilia, DF, Brazil
| | - David J Bertioli
- Universidade de Brasília, Campus Universitário, CEP 70.910-900 Brasília, DF, Brazil
| | | | - Brigitte Courtois
- Cirad, UMR AGAP, TA A108/3, Avenue Agropolis, Montpellier F-34398, France
| | - Jean-François Rami
- Cirad, UMR AGAP, TA A108/3, Avenue Agropolis, Montpellier F-34398, France
| |
Collapse
|
130
|
Qi B, Huang W, Zhu B, Zhong X, Guo J, Zhao N, Xu C, Zhang H, Pang J, Han F, Liu B. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol 2012; 10:3. [PMID: 22277161 PMCID: PMC3313882 DOI: 10.1186/1741-7007-10-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/26/2012] [Indexed: 12/30/2022] Open
Abstract
Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA) and Aegilops tauschii (2n = 2x = 14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function. Conclusions Our results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum.
Collapse
Affiliation(s)
- Bao Qi
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Kim HJ, Triplett BA, Zhang HB, Lee MK, Hinchliffe DJ, Li P, Fang DD. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.). Gene 2011; 494:181-9. [PMID: 22200568 DOI: 10.1016/j.gene.2011.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/25/2022]
Abstract
Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton species producing over 90% of the world's cotton fibers. Although G. hirsutum CesAs (GhCesAs) are responsible for cellulose production in cotton fiber, very limited numbers of GhCesA genes have been identified. Here, we report isolating and characterizing a pair of homeologous CesA2 genes and their full-length cDNAs from allotetraploid cotton. The GhCesA2-A(T) gene from the A-subgenome and GhCesA2-D(T) gene from the D-subgenome were screened from a G. hirsutum BAC library. These genes shared 92% sequence similarity throughout the entire sequence. The coding sequences were nearly identical, and the deduced amino acid sequences from GhCesA2-A(T) (1,039 amino acids) and GhCesA2-D(T) (1,040 amino acids) were identical except four amino acids, whereas the noncoding sequences showed divergence. Sequence analyses showed that all exons of GhCesA2-A(T) contained consensus splice donor dinucleotides, but one exon in GhCesA2-D(T) contained nonconsensus splice donor dinucleotides. Although the nonconsensus splice donor dinucleotides were previously suggested to be involved in alternative splice or pseudogenization, our results showed that a majority of GhCesA2-A(T) and GhCesA2-D(T) transcripts consisted of functional and full-length transcripts with little evidence for alternative mRNA isoforms in developing cotton fibers. Expression analyses showed that GhCesA2-A(T) and GhCesA2-D(T) shared common temporal and spatial expression patterns, and they were highly and preferentially expressed during the cellulose biosynthesis stage in developing cotton fibers. The observations of higher expression levels of both GhCesA2-A(T) and GhCesA2-D(T) in developing fibers of one near-isogenic line (NIL) with higher fiber bundle strength over the other NIL with lower fiber bundle strength suggested that the differential expression of genes associated with secondary cell wall cellulose biosynthesis in developing fiber might affect cotton fiber properties.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Liu SL, Baute GJ, Adams KL. Organ and cell type-specific complementary expression patterns and regulatory neofunctionalization between duplicated genes in Arabidopsis thaliana. Genome Biol Evol 2011; 3:1419-36. [PMID: 22058183 PMCID: PMC3243486 DOI: 10.1093/gbe/evr114] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Duplicated genes can contribute to the evolution of new functions and they are common in eukaryotic genomes. After duplication, genes can show divergence in their sequence and/or expression patterns. Qualitative complementary expression, or reciprocal expression, is when only one copy is expressed in some organ or tissue types and only the other copy is expressed in others, indicative of regulatory subfunctionalization or neofunctionalization. From analyses of two microarray data sets with 83 different organ types, developmental stages, and cell types in Arabidopsis thaliana, we determined that 30% of whole-genome duplicate pairs and 38% of tandem duplicate pairs show reciprocal expression patterns. We reconstructed the ancestral state of expression patterns to infer that considerably more cases of reciprocal expression resulted from gain of a new expression pattern (regulatory neofunctionalization) than from partitioning of ancestral expression patterns (regulatory subfunctionalization). Pollen was an especially common organ type for expression gain, resulting in contrasting expression of some duplicates in pollen. Many of the gene pairs with reciprocal expression showed asymmetric sequence rate evolution, consistent with neofunctionalization, and the more rapidly evolving copy often showed a more restricted expression pattern. A gene with reciprocal expression in pollen, involved in brassinosteroid signal transduction, has evolved more rapidly than its paralog, and it shows evidence for a new function in pollen. This study indicates the evolutionary importance of reciprocal expression patterns between gene duplicates, showing that they are common, often associated with regulatory neofunctionalization, and may be a factor allowing for retention and divergence of duplicated genes.
Collapse
Affiliation(s)
- Shao-Lun Liu
- Department of Botany, UBC Botanical Garden and Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
133
|
Bardil A, de Almeida JD, Combes MC, Lashermes P, Bertrand B. Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. THE NEW PHYTOLOGIST 2011; 192:760-74. [PMID: 21797880 DOI: 10.1111/j.1469-8137.2011.03833.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Polyploidy occurs throughout the evolutionary history of many plants and considerably impacts species diversity, giving rise to novel phenotypes and leading to ecological diversification and colonization of new niches. Recent studies have documented dynamic changes in plant polyploid gene expression, which reflect the genomic and functional plasticity of duplicate genes and genomes. • The aim of the present study was to describe genomic expression dominance between a relatively recently formed natural allopolyploid (Coffea arabica) and its ancestral parents (Coffea canephora and Coffea eugenioides) and to determine if the divergence was environment-dependent. Employing a microarray platform designed against 15,522 unigenes, we assayed unigene expression levels in the allopolyploid and its two parental diploids. For each unigene, we measured expression variations among the three species grown under two temperature conditions (26-22°C (day-night temperatures) and 30-26°C (day-night temperatures)). • More than 35% of unigenes were differentially expressed in each comparison at both temperatures, except for C. arabica vs C. canephora in the 30-26°C range, where an unexpectedly low unigene expression divergence (< 9%) was observed. • Our data revealed evidence of transcription profile divergence between the allopolyploid and its parental species, greatly affected by environmental conditions, and provide clues to the plasticity phenomenon in allopolyploids.
Collapse
|
134
|
Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci U S A 2011; 108:18737-42. [PMID: 22042872 DOI: 10.1073/pnas.1110552108] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.
Collapse
|
135
|
Combes MC, Cenci A, Baraille H, Bertrand B, Lashermes P. Homeologous gene expression in response to growing temperature in a recent Allopolyploid (Coffea arabica L.). ACTA ACUST UNITED AC 2011; 103:36-46. [PMID: 22039298 DOI: 10.1093/jhered/esr120] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Allopolyploidy is considered as a major factor contributing to speciation, diversification, and plant ecological adaptation. In particular, the expression of duplicate genes (homeologs) can be altered leading to functional plasticity and to phenotypic novelty. This study investigated the influence of growing temperatures on homeologous gene expression in Coffea arabica L., a recent allopolyploid involving 2 closely related diploid parental species. The relative expression of homeologs of 13 genes all located in the same genomic region was analyzed using an SNP ratio quantification method based on dideoxy-terminated sequences of cDNA amplicons. The relative expression of homeologous genes varied depending on the gene, the organ, and the growing condition. Nevertheless, expression of both homeologs was always detected (i.e., no silencing). Although the growing conditions were suitable for one or other of the parental species, neither subgenome appeared preferentially expressed. Furthermore, relative homeologous expression showed moderate variations across organs and conditions and appeared uncorrelated between adjacent genes. These results indicate the absence of signs of subfunctionalization suggesting C. arabica has not undergone noticeable diploidization. Furthermore, these results suggest that the expression of homeologous genes in C. arabica is regulated by a shared trans-regulation mechanism acting similarly on the 2 subgenomes and that the observed biases in the relative homeolog expression may result from cis fine-scale factors.
Collapse
|
136
|
Saintenac C, Jiang D, Akhunov ED. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 2011; 12:R88. [PMID: 21917144 PMCID: PMC3308051 DOI: 10.1186/gb-2011-12-9-r88] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/01/2011] [Accepted: 09/14/2011] [Indexed: 11/30/2022] Open
Abstract
Background The ability of grass species to adapt to various habitats is attributed to the dynamic nature of their genomes, which have been shaped by multiple rounds of ancient and recent polyploidization. To gain a better understanding of the nature and extent of variation in functionally relevant regions of a polyploid genome, we developed a sequence capture assay to compare exonic sequences of allotetraploid wheat accessions. Results A sequence capture assay was designed for the targeted re-sequencing of 3.5 Mb exon regions that surveyed a total of 3,497 genes from allotetraploid wheat. These data were used to describe SNPs, copy number variation and homoeologous sequence divergence in coding regions. A procedure for variant discovery in the polyploid genome was developed and experimentally validated. About 1% and 24% of discovered SNPs were loss-of-function and non-synonymous mutations, respectively. Under-representation of replacement mutations was identified in several groups of genes involved in translation and metabolism. Gene duplications were predominant in a cultivated wheat accession, while more gene deletions than duplications were identified in wild wheat. Conclusions We demonstrate that, even though the level of sequence similarity between targeted polyploid genomes and capture baits can bias enrichment efficiency, exon capture is a powerful approach for variant discovery in polyploids. Our results suggest that allopolyploid wheat can accumulate new variation in coding regions at a high rate. This process has the potential to broaden functional diversity and generate new phenotypic variation that eventually can play a critical role in the origin of new adaptations and important agronomic traits.
Collapse
Affiliation(s)
- Cyrille Saintenac
- Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
137
|
Saintenac C, Jiang D, Akhunov ED. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 2011. [PMID: 21917144 DOI: 10.1186/gb‐2011‐12‐9‐r88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ability of grass species to adapt to various habitats is attributed to the dynamic nature of their genomes, which have been shaped by multiple rounds of ancient and recent polyploidization. To gain a better understanding of the nature and extent of variation in functionally relevant regions of a polyploid genome, we developed a sequence capture assay to compare exonic sequences of allotetraploid wheat accessions. RESULTS A sequence capture assay was designed for the targeted re-sequencing of 3.5 Mb exon regions that surveyed a total of 3,497 genes from allotetraploid wheat. These data were used to describe SNPs, copy number variation and homoeologous sequence divergence in coding regions. A procedure for variant discovery in the polyploid genome was developed and experimentally validated. About 1% and 24% of discovered SNPs were loss-of-function and non-synonymous mutations, respectively. Under-representation of replacement mutations was identified in several groups of genes involved in translation and metabolism. Gene duplications were predominant in a cultivated wheat accession, while more gene deletions than duplications were identified in wild wheat. CONCLUSIONS We demonstrate that, even though the level of sequence similarity between targeted polyploid genomes and capture baits can bias enrichment efficiency, exon capture is a powerful approach for variant discovery in polyploids. Our results suggest that allopolyploid wheat can accumulate new variation in coding regions at a high rate. This process has the potential to broaden functional diversity and generate new phenotypic variation that eventually can play a critical role in the origin of new adaptations and important agronomic traits.
Collapse
Affiliation(s)
- Cyrille Saintenac
- Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
138
|
Abstract
Allopolyploidy is an important process during plant evolution that results in the reunion of two divergent genomes into a common nucleus. Many of the immediate as well as longer-term genomic and epigenetic responses to polyploidy have become appreciated. To investigate the modifications of gene expression at the proteome level caused by allopolyploid formation, we conducted a comparative analysis of cotton seed proteomes from the allopolyploid Gossypium hirsutum (AD genome) and its model A-genome and D-genome diploid progenitors. An unexpectedly high level of divergence among the three proteomes was found, with about one-third of all protein forms being genome specific. Comparative analysis showed that there is a higher degree of proteomic similarity between the allopolyploid and its D-genome donor than its A-genome donor, reflecting a biased accumulation of seed proteins in the allopolyploid. Protein identification and genetic characterization of high-abundance proteins revealed that two classes of seed storage proteins, vicilins and legumins, compose the major component of cotton seed proteomes. Analyses further indicate differential regulation or modification of homoeologous gene products, as well as novel patterns in the polyploid proteome that may result from the interaction between homoeologous gene products. Our findings demonstrate that genomic merger and doubling have consequences that extend beyond the transcriptome into the realm of the proteome and that unequal expression of proteins from diploid parental genomes may occur in allopolyploids.
Collapse
|
139
|
Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chèvre AM. Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. THE NEW PHYTOLOGIST 2011; 191:884-894. [PMID: 21517871 DOI: 10.1111/j.1469-8137.2011.03729.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Polyploids can be produced by the union of unreduced gametes or through somatic doubling of F(1) interspecific hybrids. The first route is suspected to produce allopolyploid species under natural conditions, whereas experimental data have only been thoroughly gathered for the latter. • We analyzed the meiotic behavior of an F(1) interspecific hybrid (by crossing Brassica oleracea and B.rapa, progenitors of B.napus) and the extent to which recombined homoeologous chromosomes were transmitted to its progeny. These results were then compared with results obtained for a plant generated by somatic doubling of this F₁ hybrid (CD.S₀) and an amphidiploid (UG.S₀) formed via a pathway involving unreduced gametes; we studied the impact of this method of polyploid formation on subsequent generations. • This study revealed that meiosis of the F₁ interspecific hybrid generated more gametes with recombined chromosomes than did meiosis of the plant produced by somatic doubling, although the size of these translocations was smaller. In the progeny of the UG.S₀ plant, there was an unexpected increase in the frequency at which the C1 chromosome was replaced by the A1 chromosome. • We conclude that polyploid formation pathways differ in their genetic outcome. Our study opens up perspectives for the understanding of polyploid origins.
Collapse
Affiliation(s)
- E Szadkowski
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - F Eber
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - V Huteau
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - M Lodé
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - O Coriton
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - E Jenczewski
- INRA Institut Jean-Pierre Bourgin, Station Génétique et d'Amélioration des Plantes, F-78026 Versailles, France
| | - A M Chèvre
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| |
Collapse
|
140
|
Dong S, Adams KL. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. THE NEW PHYTOLOGIST 2011; 190:1045-1057. [PMID: 21361962 DOI: 10.1111/j.1469-8137.2011.03650.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout plant evolution and can result in considerable changes to gene expression when it takes place and over evolutionary time. Little is known about the effects of abiotic stress conditions on duplicate gene expression patterns in polyploid plants. We examined the expression patterns of 60 duplicated genes in leaves, roots and cotyledons of allotetraploid Gossypium hirsutum in response to five abiotic stress treatments (heat, cold, drought, high salt and water submersion) using single-strand conformation polymorphism assays, and 20 genes in a synthetic allotetraploid. Over 70% of the genes showed stress-induced changes in the relative expression levels of the duplicates under one or more stress treatments with frequent variability among treatments. Twelve pairs showed opposite changes in expression levels in response to different abiotic stress treatments. Stress-induced expression changes occurred in the synthetic allopolyploid, but there was little correspondence in patterns between the natural and synthetic polyploids. Our results indicate that abiotic stress conditions can have considerable effects on duplicate gene expression in a polyploid, with the effects varying by gene, stress and organ type. Differential expression in response to environmental stresses may be a factor in the preservation of some duplicated genes in polyploids.
Collapse
Affiliation(s)
- Shaowei Dong
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Plant Science Graduate Program, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Keith L Adams
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Plant Science Graduate Program, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
141
|
|
142
|
Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol 2011; 21:551-6. [PMID: 21419627 DOI: 10.1016/j.cub.2011.02.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 01/03/2023]
Abstract
New hybrid species might be expected to show patterns of gene expression intermediate to those shown by parental species. "Transcriptomic shock" may also occur, in which gene expression is disrupted; this may be further modified by whole genome duplication (causing allopolyploidy). "Shock" can include instantaneous partitioning of gene expression between parental copies of genes among tissues. These effects have not previously been studied at a population level in a natural allopolyploid plant species. Here, we survey tissue-specific expression of 144 duplicated gene pairs derived from different parental species (homeologs) in two natural populations of 40-generation-old allotetraploid Tragopogon miscellus (Asteraceae) plants. We compare these results with patterns of allelic expression in both in vitro "hybrids" and hand-crossed F(1) hybrids between the parental diploids T. dubius and T. pratensis, and with patterns of homeolog expression in synthetic (S(1)) allotetraploids. Partitioning of expression was frequent in natural allopolyploids, but F(1) hybrids and S(1) allopolyploids showed less partitioning of expression than the natural allopolyploids and the in vitro "hybrids" of diploid parents. Our results suggest that regulation of gene expression is relaxed in a concerted manner upon hybridization, and new patterns of partitioned expression subsequently emerge over the generations following allopolyploidization.
Collapse
|
143
|
Zhu H, Han X, Lv J, Zhao L, Xu X, Zhang T, Guo W. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum. BMC PLANT BIOLOGY 2011; 11:40. [PMID: 21349199 PMCID: PMC3050799 DOI: 10.1186/1471-2229-11-40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/25/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND Both Gossypium hirsutum and G. barbadense probably originated from a common ancestor, but they have very different agronomic and fiber quality characters. Here we selected 17 fiber development-related genes to study their structures, tree topologies, chromosomal location and expression patterns to better understand the interspecific divergence of fiber development genes in the two cultivated tetraploid species. RESULTS The sequence and structure of 70.59% genes were conserved with the same exon length and numbers in different species, while 29.41% genes showed diversity. There were 15 genes showing independent evolution between the A- and D-subgenomes after polyploid formation, while two evolved via different degrees of colonization. Chromosomal location showed that 22 duplicate genes were located in which at least one fiber quality QTL was detected. The molecular evolutionary rates suggested that the D-subgenome of the allotetraploid underwent rapid evolutionary differentiation, and selection had acted at the tetraploid level. Expression profiles at fiber initiation and early elongation showed that the transcripts levels of most genes were higher in Hai7124 than in TM-1. During the primary-secondary transition period, expression of most genes peaked earlier in TM-1 than in Hai7124. Homeolog expression profile showed that A-subgenome, or the combination of A- and D-subgenomes, played critical roles in fiber quality divergence of G. hirsutum and G. barbadense. However, the expression of D-subgenome alone also played an important role. CONCLUSION Integrating analysis of the structure and expression to fiber development genes, suggests selective breeding for certain desirable fiber qualities played an important role in divergence of G. hirsutum and G. barbadense.
Collapse
Affiliation(s)
- Huayu Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyong Han
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhong Lv
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
144
|
Chang PL, Dilkes BP, McMahon M, Comai L, Nuzhdin SV. Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 2010; 11:R125. [PMID: 21182768 PMCID: PMC3046485 DOI: 10.1186/gb-2010-11-12-r125] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/06/2010] [Accepted: 12/23/2010] [Indexed: 01/17/2023] Open
Abstract
Background Allotetraploids carry pairs of diverged homoeologs for most genes. With the genome doubled in size, the number of putative interactions is enormous. This poses challenges on how to coordinate the two disparate genomes, and creates opportunities by enhancing the phenotypic variation. New combinations of alleles co-adapt and respond to new environmental pressures. Three stages of the allopolyploidization process - parental species divergence, hybridization, and genome duplication - have been well analyzed. The last stage of evolutionary adjustments remains mysterious. Results Homoeolog-specific retention and use were analyzed in Arabidopsis suecica (As), a species derived from A. thaliana (At) and A. arenosa (Aa) in a single event 12,000 to 300,000 years ago. We used 405,466 diagnostic features on tiling microarrays to recognize At and Aa contributions to the As genome and transcriptome: 324 genes lacked Aa contributions and 614 genes lacked At contributions within As. In leaf tissues, 3,458 genes preferentially expressed At homoeologs while 4,150 favored Aa homoeologs. These patterns were validated with resequencing. Genes with preferential use of Aa homoeologs were enriched for expression functions, consistent with the dominance of Aa transcription. Heterologous networks - mixed from At and Aa transcripts - were underrepresented. Conclusions Thousands of deleted and silenced homoeologs in the genome of As were identified. Since heterologous networks may be compromised by interspecies incompatibilities, these networks evolve co-biases, expressing either only Aa or only At homoeologs. This progressive change towards predominantly pure parental networks might contribute to phenotypic variability and plasticity, and enable the species to exploit a larger range of environments.
Collapse
Affiliation(s)
- Peter L Chang
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910, USA.
| | | | | | | | | |
Collapse
|
145
|
Brown AHD. Variation under domestication in plants: 1859 and today. Philos Trans R Soc Lond B Biol Sci 2010; 365:2523-30. [PMID: 20643742 DOI: 10.1098/rstb.2010.0006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Charles Darwin began The Origin of Species with a chapter entitled variation under domestication, which encapsulated decades of his research on a diverse array of animal and plant domesticated species. Variation in these species compared with that in their wild relatives, their origins and their selection by humans, formed a paradigm for his theory of the evolutionary origin of species by means of natural selection. This chapter, its subsequent expansion into a two-volume monograph, together with the rediscovery of Mendel's laws, later became the foundation of scientific plant breeding. In the period up to the present, several advances in genetics (such as artificial mutation, polyploidy, adaptation and genetic markers) have amplified the discipline with concepts and questions, the seeds of which are in Darwin's original words. Today, we are witnessing a flowering of genomic research into the process of domestication itself, particularly the specific major and minor genes involved. In one striking way, our view of domestic diversity contrasts with that in Darwin's writing. He stressed the abundance of diversity and the diversifying power of artificial selection, whereas we are concerned about dwindling genetic diversity that attends modern agriculture and development. In this context, it is paramount to strive for a deeper understanding of how farmer selection including both deliberate selection and unconscious selection, might generate and retain diversity. This knowledge is essential for devising in situ conservation measures.
Collapse
|
146
|
Akhunova AR, Matniyazov RT, Liang H, Akhunov ED. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 2010; 11:505. [PMID: 20849627 PMCID: PMC2997001 DOI: 10.1186/1471-2164-11-505] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/17/2010] [Indexed: 12/18/2022] Open
Abstract
Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role in growth vigor, development, and fertility of allopolyploid species.
Collapse
Affiliation(s)
- Alina R Akhunova
- Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
147
|
Chagué V, Just J, Mestiri I, Balzergue S, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. THE NEW PHYTOLOGIST 2010; 187:1181-1194. [PMID: 20591055 DOI: 10.1111/j.1469-8137.2010.03339.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
*The present study aims to understand regulation of gene expression in synthetic and natural wheat (Triticum aestivum) allohexaploids, that combines the AB genome of Triticum turgidum and the D genome of Aegilops tauschii; and which we have recently characterized as genetically stable. *We conducted a comprehensive genome-wide analysis of gene expression that allowed characterization of the effect of variability of the D genome progenitor, the intergenerational stability as well as the comparison with natural wheat allohexaploid. We used the Affymetrix GeneChip Wheat Genome Array, on which 55 049 transcripts are represented. *Additive expression was shown to represent the majority of expression regulation in the synthetic allohexaploids, where expression for more than c. 93% of transcripts was equal to the mid-parent value measured from a mixture of parental RNA. This leaves c. 2000 (c. 7%) transcripts, in which expression was nonadditive. No global gene expression bias or dominance towards any of the progenitor genomes was observed whereas high intergenerational stability and low effect of the D genome progenitor variability were revealed. *Our study suggests that gene expression regulation in wheat allohexaploids is established early upon allohexaploidization and highly conserved over generations, as demonstrated by the high similarity of expression with natural wheat allohexaploids.
Collapse
Affiliation(s)
- Véronique Chagué
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| | - Jérémy Just
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| | - Imen Mestiri
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| | - Sandrine Balzergue
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| | - Anne-Marie Tanguy
- Unité Mixte de Recherches INRA - Agrocampus Rennes, Amélioration des Plantes & Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Cecile Huneau
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| | - Virginie Huteau
- Unité Mixte de Recherches INRA - Agrocampus Rennes, Amélioration des Plantes & Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Harry Belcram
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| | - Olivier Coriton
- Unité Mixte de Recherches INRA - Agrocampus Rennes, Amélioration des Plantes & Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Joseph Jahier
- Unité Mixte de Recherches INRA - Agrocampus Rennes, Amélioration des Plantes & Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Boulos Chalhoub
- Organization and Evolution of Plant Genomes (OEPG), Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, F-91057 Evry Cedex, France
| |
Collapse
|
148
|
Lin JY, Stupar RM, Hans C, Hyten DL, Jackson SA. Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. THE PLANT CELL 2010; 22:2545-61. [PMID: 20729383 PMCID: PMC2947175 DOI: 10.1105/tpc.110.074229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) has undergone at least two rounds of polyploidization, resulting in a paleopolyploid genome that is a mosaic of homoeologous regions. To determine the structural and functional impact of these duplications, we sequenced two ~1-Mb homoeologous regions of soybean, Gm8 and Gm15, derived from the most recent ~13 million year duplication event and the orthologous region from common bean (Phaseolus vulgaris), Pv5. We observed inversions leading to major structural variation and a bias between the two chromosome segments as Gm15 experienced more gene movement (gene retention rate of 81% in Gm15 versus 91% in Gm8) and a nearly twofold increase in the deletion of long terminal repeat (LTR) retrotransposons via solo LTR formation. Functional analyses of Gm15 and Gm8 revealed decreases in gene expression and synonymous substitution rates for Gm15, for instance, a 38% increase in transcript levels from Gm8 relative to Gm15. Transcriptional divergence of homoeologs was found based on expression patterns among seven tissues and developmental stages. Our results indicate asymmetric evolution between homoeologous regions of soybean as evidenced by structural changes and expression variances of homoeologous genes.
Collapse
Affiliation(s)
- Jer-Young Lin
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Christian Hans
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - David L. Hyten
- Soybean Genomics and Improvement Lab, U.S. Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705
| | - Scott A. Jackson
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
149
|
Wang Y, Jha AK, Chen R, Doonan JH, Yang M. Polyploidy-associated genomic instability in Arabidopsis thaliana. Genesis 2010; 48:254-63. [PMID: 20143347 DOI: 10.1002/dvg.20610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2-2 (also named tardy asynchronous meiosis-2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy-associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution.
Collapse
Affiliation(s)
- Yixing Wang
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | |
Collapse
|
150
|
Liu SL, Adams KL. Dramatic change in function and expression pattern of a gene duplicated by polyploidy created a paternal effect gene in the Brassicaceae. Mol Biol Evol 2010; 27:2817-28. [PMID: 20616146 DOI: 10.1093/molbev/msq169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
New gene formation by polyploidy has been an ongoing process during the evolution of various eukaryotes that has contributed greatly to the large number of genes in their genomes. After duplication, some genes that are retained can acquire new functions or expression patterns, or subdivide their functions or expression patterns between duplicates. Here, we show that SHORT SUSPENSOR (SSP) and Brassinosteroid Kinase 1 (BSK1) are paralogs duplicated by a polyploidy event that occurred in the Brassicaceae family about 23 Ma. SSP is involved in paternal control of zygote elongation in Arabidopsis thaliana by transcription in the sperm cells of pollen and then translation in the zygote, whereas BSK1 is involved in brassinosteroid signal transduction. Comparative analysis of expression in 63 different organs and developmental stages revealed that BSK1 and SSP have opposite expression patterns in pollen compared with all other parts of the plant. We determined that BSK1 retains the ancestral expression pattern and function. Thus, SSP has diverged in function after duplication from a component of the brassinosteroid signaling pathway to a paternal regulator of the timing of zygote elongation. The ancestral function of SSP was lost by deletions in the kinase domain. Our sequence rate analysis revealed that SSP but not BSK1 has experienced a greatly accelerated rate of amino acid sequence changes and relaxation of purifying selection. In addition, SSP has been duplicated to create a new gene (SSP-like1) with a completely different expression pattern, a shorter coding sequence that has lost a critical functional domain, and a greatly accelerated rate of amino acid sequence evolution along with evidence for positive selection, together indicative of neofunctionalization. This study illustrates two dramatic examples of neofunctionalization following gene duplication by complete changes in expression pattern and function. In addition, our findings indicate that paternal control of zygote elongation by SSP is an evolutionarily recent innovation in the Brassicaceae family.
Collapse
Affiliation(s)
- Shao-Lun Liu
- UBC Botanical Garden and Centre for Plant Research, Vancouver, British Columbia, Canada
| | | |
Collapse
|