101
|
The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life. Catalysts 2021. [DOI: 10.3390/catal11010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence and evolution of prebiotic biomolecules on the early Earth remain a question that is considered crucial to understanding the chemistry of the origin of life. Amongst prebiotic molecules, glycerol is significant due to its ubiquity in biochemistry. In this review, we discuss the significance of glycerol and its various derivatives in biochemistry, their plausible roles in the origin and evolution of early cell membranes, and significance in the biochemistry of extremophiles, followed by their prebiotic origin on the early Earth and associated catalytic processes that led to the origin of these compounds. We also discuss various scenarios for the prebiotic syntheses of glycerol and its derivates and evaluate these to determine their relevance to early Earth biochemistry and geochemistry, and recapitulate the utilization of various minerals (including clays), condensation agents, and solvents that could have led to the successful prebiotic genesis of these biomolecules. Furthermore, important prebiotic events such as meteoritic delivery and prebiotic synthesis reactions under astrophysical conditions are also discussed. Finally, we have also highlighted some novel features of glycerol, including glycerol nucleic acid (GNA), in the origin and evolution of the life.
Collapse
|
102
|
Hong S, Huh WK. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative life span by enhancing rDNA stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100258. [PMID: 33837734 PMCID: PMC7948926 DOI: 10.1016/j.jbc.2021.100258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
In Saccharomyces cerevisiae, replicative life span (RLS) is primarily affected by the stability of ribosomal DNA (rDNA). The stability of the highly repetitive rDNA array is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2. Recently, the loss of Smi1, a protein of unknown molecular function that has been proposed to be involved in cell wall synthesis, has been demonstrated to extend RLS in S. cerevisiae, but the mechanism by which Smi1 regulates RLS has not been elucidated. In this study, we determined that the loss of Smi1 extends RLS in a Sir2-dependent manner. We observed that the smi1Δ mutation enhances transcriptional silencing at the rDNA locus and promotes rDNA stability. In the absence of Smi1, the stress-responsive transcription factor Msn2 translocates from the cytoplasm to the nucleus, and nuclear-accumulated Msn2 stimulates the expression of nicotinamidase Pnc1, which serves as an activator of Sir2. In addition, we observed that the MAP kinase Hog1 is activated in smi1Δ cells and that the activation of Hog1 induces the translocation of Msn2 into the nucleus. Taken together, our findings suggest that the loss of Smi1 leads to the nuclear accumulation of Msn2 and stimulates the expression of Pnc1, thereby enhancing Sir2-mediated rDNA stability and extending RLS in S. cerevisiae.
Collapse
Affiliation(s)
- Sujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
103
|
From the vineyard to the cellar: new insights of Starmerella bacillaris (synonym Candida zemplinina) technological properties and genomic perspective. Appl Microbiol Biotechnol 2021; 105:493-501. [PMID: 33394145 DOI: 10.1007/s00253-020-11041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
A large diversity of yeasts can be involved in alcoholic fermentation; however, Starmerella bacillaris strains have gained great attention due to their relevant and particular characteristics. S. bacillaris is commonly known as an osmotolerant, acidogenic, psychrotolerant, and fructophilic yeast. Most strains of this species are high producers of glycerol and show low ethanol production rates, being highlighted as promising alternatives to the manufacture of low-alcohol beverages. The increased production of high alcohols, such as benzyl alcohol that has antifungal and antibacterial properties, highlights S. bacillaris potential as a biocontrol agent. After harvest, antifungal yeasts become part of the must microbiota and may also improve the fermentation process. Moreover, during the fermentation, S. bacillaris releases important molecules with biotechnological properties, such as mannoproteins and glutathione. Considering the potential biotechnological properties of S. bacillaris strains, this review presents an overview of recent trends concerning the application of S. bacillaris in fermented beverages. KEY POINTS: •S. bacillaris as an alternative to the production of low-alcohol beverages. •S. bacillaris strains present biocontrol potential. •Molecules released by S. bacillaris may be of great biotechnological interest.
Collapse
|
104
|
Herrero-de-Dios C, Román E, Pla J, Alonso-Monge R. Hog1 Controls Lipids Homeostasis Upon Osmotic Stress in Candida albicans. J Fungi (Basel) 2020; 6:jof6040355. [PMID: 33321998 PMCID: PMC7770603 DOI: 10.3390/jof6040355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
As opportunistic pathogen, Candida albicans adapts to different environmental conditions and its corresponding stress. The Hog1 MAPK (Mitogen Activated Protein Kinase) was identified as the main MAPK involved in the response to osmotic stress. It was later shown that this MAPK is also involved in the response to a variety of stresses and therefore, its role in virulence, survival to phagocytes and establishment as commensal in the mouse gastrointestinal tract was reported. In this work, the role of Hog1 in osmotic stress is further analyzed, showing that this MAPK is involved in lipid homeostasis. The hog1 mutant accumulates lipid droplets when exposed to osmotic stress, leading to an increase in cell permeability and delaying the endocytic trafficking routes. Cek1, a MAPK also implicated in the response to osmotic challenge, did not play a role in lipid homeostasis indicating that Hog1 is the main MAP kinase in this response. The alteration on lipid metabolism observed in hog1 mutants is proposed to contribute to the sensitivity to osmotic stress.
Collapse
Affiliation(s)
- Carmen Herrero-de-Dios
- Servicio de Bioquímica, Hospital Universitario Ramón y Cajal, Ctra. Colmenar Km 9, 28034 Madrid, Spain;
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (E.R.); (J.P.)
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (E.R.); (J.P.)
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (E.R.); (J.P.)
- Correspondence: ; Tel.: +34-91-394-1888
| |
Collapse
|
105
|
García-Martínez J, Pérez-Martínez ME, Pérez-Ortín JE, Alepuz P. Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 2020; 18:1458-1474. [PMID: 33258404 DOI: 10.1080/15476286.2020.1857521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5'-3' RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel mRNA stabilization. Unexpectedly, lower transcription in xrn1 occurs with a higher accumulation of RNA polymerase II (RNAPII) at stress-inducible genes, suggesting that this polymerase remains inactive backtracked. Xrn1 seems to be directly implicated in the formation of a competent elongation complex because Xrn1 is recruited to the osmotic stress-upregulated genes in parallel with the RNAPII complex, and both are dependent on the mitogen-activated protein kinase Hog1. Our findings extend the role of Xrn1 in preventing the accumulation of inactive RNAPII at highly induced genes to other situations of rapid and strong transcriptional upregulation.
Collapse
Affiliation(s)
- José García-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Genética, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - María E Pérez-Martínez
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - José E Pérez-Ortín
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| | - Paula Alepuz
- ERI Biotecmed, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain.,Departamento De Bioquímica Y Biología Molecular, Facultad De Ciencias Biológicas, Universitat De València, Burjassot, Spain
| |
Collapse
|
106
|
Transcriptomic analysis of the orchestrated molecular mechanisms underlying fruiting body initiation in Chinese cordyceps. Gene 2020; 763:145061. [DOI: 10.1016/j.gene.2020.145061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023]
|
107
|
Menon AM, Dakal TC. Genomic scanning of the promoter sequence in osmo/halo-tolerance related QTLs in Zygosaccharomyces rouxii. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
108
|
HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia lipolytica. Genes (Basel) 2020; 11:genes11121424. [PMID: 33261148 PMCID: PMC7761004 DOI: 10.3390/genes11121424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Erythritol is a polyol produced by Yarrowia lipolytica under hyperosmotic stress. In this study, the osmo-sensitive strain Y. lipolytica yl-hog1Δ was subjected to stress, triggered by a high concentration of carbon sources. The strain thrived on 0.75 M erythritol medium, while the same concentrations of glucose and glycerol proved to be lethal. The addition of 0.1 M erythritol to the medium containing 0.75 M glucose or glycerol allowed the growth of yl-hog1Δ. Supplementation with other potential osmolytes such as mannitol or L-proline did not have a similar effect. To examine whether the osmoprotective effect might be related to erythritol accumulation, we deleted two genes involved in erythritol utilization, the transcription factor Euf1 and the enzyme erythritol dehydrogenase Eyd1. The strain eyd1Δ yl hog1Δ, which lacked the erythritol utilization enzyme, reacted to the erythritol supplementation significantly better than yl-hog1Δ. On the other hand, the strain euf1Δ yl-hog1Δ became insensitive to supplementation, and the addition of erythritol could no longer improve the growth of this strain in hyperosmotic conditions. This indicates that Euf1 regulates additional, still unknown genes involved in erythritol metabolism.
Collapse
|
109
|
Qin L, Li D, Zhao J, Yang G, Wang Y, Yang K, Tumukunde E, Wang S, Yuan J. The membrane mucin Msb2 regulates aflatoxin biosynthesis and pathogenicity in fungus Aspergillus flavus. Microb Biotechnol 2020; 14:628-642. [PMID: 33159717 PMCID: PMC7936294 DOI: 10.1111/1751-7915.13701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
As a pathogenic fungus, Aspergillus flavus can produce carcinogenic aflatoxins (AFs), which poses a great threat to crops and animals. Msb2, the signalling mucin protein, is a part of mitogen‐activated protein kinase (MAPK) pathway which contributes to a range of physiological processes. In this study, the roles of membrane mucin Msb2 were explored in A. flavus by the application of gene disruption. The deletion of msb2 gene (Δmsb2) caused defects in vegetative growth, sporulation and sclerotia formation when compared to WT and complement strain (Δmsb2C) in A. flavus. Using thin‐layer chromatography (TLC) and high‐performance liquid chromatography (HPLC) analysis, it was found that deletion of msb2 down‐regulated aflatoxin B1 (AFB1) synthesis and decreased the infection capacity of A. flavus. Consistently, Msb2 responds to cell wall stress and osmotic stress by positively regulating the phosphorylation of MAP kinase. Notably, Δmsb2 mutant exhibited cell wall defect, and it was more sensitive to inhibitor caspofungin when compared to WT and Δmsb2C. Taking together, these results revealed that Msb2 plays key roles in morphological development process, stresses adaptation, secondary metabolism and pathogenicity in fungus A. flavus.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ding Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaru Zhao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinchun Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunlong Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
110
|
Jashnsaz H, Fox ZR, Hughes JJ, Li G, Munsky B, Neuert G. Diverse Cell Stimulation Kinetics Identify Predictive Signal Transduction Models. iScience 2020; 23:101565. [PMID: 33083733 PMCID: PMC7549069 DOI: 10.1016/j.isci.2020.101565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022] Open
Abstract
Computationally understanding the molecular mechanisms that give rise to cell signaling responses upon different environmental, chemical, and genetic perturbations is a long-standing challenge that requires models that fit and predict quantitative responses for new biological conditions. Overcoming this challenge depends not only on good models and detailed experimental data but also on the rigorous integration of both. We propose a quantitative framework to perturb and model generic signaling networks using multiple and diverse changing environments (hereafter "kinetic stimulations") resulting in distinct pathway activation dynamics. We demonstrate that utilizing multiple diverse kinetic stimulations better constrains model parameters and enables predictions of signaling dynamics that would be impossible using traditional dose-response or individual kinetic stimulations. To demonstrate our approach, we use experimentally identified models to predict signaling dynamics in normal, mutated, and drug-treated conditions upon multitudes of kinetic stimulations and quantify which proteins and reaction rates are most sensitive to which extracellular stimulations.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary R. Fox
- Inria Saclay Ile-de-France, Palaiseau 91120, France
- Institut Pasteur, USR 3756 IP CNRS, Paris 75015, France
- Keck Scholars, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jason J. Hughes
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Guoliang Li
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Munsky
- Keck Scholars, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
111
|
Moreno-Ruiz D, Fuchs A, Missbach K, Schuhmacher R, Zeilinger S. Influence of Different Light Regimes on the Mycoparasitic Activity and 6-Pentyl-α-pyrone Biosynthesis in Two Strains of Trichoderma atroviride. Pathogens 2020; 9:E860. [PMID: 33096850 PMCID: PMC7589932 DOI: 10.3390/pathogens9100860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
The ascomycete Trichoderma atroviride is well known for its mycoparasitic lifestyle. Similar to other organisms, light is an important cue for T. atroviride. However, besides triggering of conidiation, little is known on the physiological responses of T. atroviride to light. In this study, we analyzed how cultivation under different light wavelengths and regimes impacted the behavior of two T. atroviride wild-type strains: IMI206040 and P1. While colony extension of both strains was slightly affected by light, massive differences in their photoconidation responses became evident. T. atroviride P1 colonies conidiated under all conditions tested including growth in complete darkness, while IMI206040 required white, blue or green light to trigger asexual reproduction. Interestingly, deletion of the stress-activated MAP kinase-encoding gene tmk3 abolished the ability of strain P1 to conidiate in red and yellow light as well as in darkness. Furthermore, light-dependent differences in the mycoparasitic activity and in the biosynthesis of the secondary metabolite 6-pentyl-α-pyrone (6-PP) became evident. 6-PP production was highest upon dark incubation, while light, especially exposure to white light as light/dark cycles, had an inhibitory effect on its biosynthesis. We conclude that the response of T. atroviride to light is strain-dependent and impacts differentiation, mycoparasitism, and 6-PP production; hence, this should be considered in experiments testing the mycoparasitic activity of these fungi.
Collapse
Affiliation(s)
- Dubraska Moreno-Ruiz
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (A.F.)
| | - Alessandro Fuchs
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (A.F.)
| | - Kristina Missbach
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Tulln, Austria; (K.M.); (R.S.)
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Tulln, Austria; (K.M.); (R.S.)
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (A.F.)
| |
Collapse
|
112
|
Dai M, Liu J, Zhang L, Tan Y, Yan J, Wang J, Nian H. Transcriptome analysis of Cryptococcus humicola under aluminum stress revealed the potential role of the cell wall in aluminum tolerance. Metallomics 2020; 12:1370-1379. [PMID: 32608423 DOI: 10.1039/d0mt00042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum (Al) toxicity is one of the most important limiting factors for crop yield in acidic soils. Bound Al gets converted into a toxic ionic state (Al3+) in acidic soil. Recent studies have shown that Al can act on the cell walls, cell membranes, organelles, and nuclei of microorganisms and affect substance and energy metabolism. To explore the gene expression at the transcriptional level under Al stress, we sequenced the transcriptome of Cryptococcus humicola, which is a highly Al-resistant yeast strain isolated from acidic soil and tolerates up to 200 mM Al3+. The screening conditions for genes from the control and experimental group were a false discovery rate (FDR) <0.05 and log 2|FC| > 1. A total of 4760 genes were differentially expressed, among which 3066 were upregulated and 1694 were downregulated. These genes control glycometabolism, protein synthesis, lipid metabolism and signalling pathways. Eleven selected differentially expressed genes were further validated using qRT-PCR. The results suggested that Al stress leads to complex responses in C. humicola. The effects of Al on the β-d-glucan and mannose contents and Al accumulation in the cell wall were determined. With an increase in the Al treatment time and concentration, the contents of β-d-glucan and mannose showed a trend of first increasing and then decreasing. Under Al treatment, the Al content of the cell wall also showed a trend of first increasing and then decreasing. These results suggested that Al accumulates in the cell wall and the cell wall plays a vital role in the Al resistance of C. humicola. The differentially expressed genes provide a foundation for the further study of Al tolerance in C. humicola.
Collapse
Affiliation(s)
- Mengyao Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yong Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Juyuan Wang
- Liaocheng University, Liaocheng, 252000, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
113
|
Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources. mSphere 2020; 5:5/5/e00818-20. [PMID: 32938702 PMCID: PMC7494837 DOI: 10.1128/msphere.00818-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen.IMPORTANCE Aspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.
Collapse
|
114
|
Zhang B, Ren L, Wang H, Xu D, Zeng X, Li F. Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme Microb Technol 2020; 140:109641. [PMID: 32912693 DOI: 10.1016/j.enzmictec.2020.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of glycerol is essential for yeast viability upon hyperosmotic stress. In this study, the STL1 homolog KmSTL1, encoding a putative glycerol transporter contributing to cell osmo-tolerance, was identified in Kluyveromyces marxianus NBRC1777. We constructed the KmSTL1, KmGPD1, and KmFPS1 single-deletion mutants and the KmSTL1/KmGPD1 and KmSTL1/KmFPS1 double-deletion mutants of K. marxianus. Deletion of KmSTL1 or KmGPD1 resulted in K. marxianus cell sensitization to hyperosmotic stress, whereas deletion of KmFPS1 improved stress tolerance. The expression of KmSTL1 was osmotically induced, whereas that of KmFPS1 was osmotically inhibited. The expression of KmGPD1 was constitutive and continuous in the ΔKmSTL1 mutant strain but inhibited in the ΔKmFPS1 mutant strain due to feedback suppression by glycerol. In summary, our findings indicated that K. marxianus would increase glycerol synthesis by increasing GPD1 expression, increase glycerol import from the extracellular environment by increasing STL1 expression, and reduce glycerol efflux by reducing FPS1 expression under hyperosmotic stress.
Collapse
Affiliation(s)
- Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Haonan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
115
|
Transcriptional regulation of the caspofungin-induced cell wall damage response in Candida albicans. Curr Genet 2020; 66:1059-1068. [PMID: 32876716 DOI: 10.1007/s00294-020-01105-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The human fungal pathogen Candida albicans maintains pathogenic and commensal states primarily through cell wall functions. The echinocandin antifungal drug caspofungin inhibits cell wall synthesis and is widely used in treating disseminated candidiasis. Signaling pathways are critical in coordinating the adaptive response to cell wall damage (CWD). C. albicans executes a robust transcriptional program following caspofungin-induced CWD. A comprehensive analysis of signaling pathways at the transcriptional level facilitates the identification of prospective genes for functional characterization and propels the development of novel antifungal interventions. This review article focuses on the molecular functions and signaling crosstalk of the C. albicans transcription factors Sko1, Rlm1, and Cas5 in caspofungin-induced CWD signaling.
Collapse
|
116
|
Tondini F, Onetto CA, Jiranek V. Early adaptation strategies of Saccharomyces cerevisiae and Torulaspora delbrueckii to co-inoculation in high sugar grape must-like media. Food Microbiol 2020; 90:103463. [DOI: 10.1016/j.fm.2020.103463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
|
117
|
Bai C, Tesker M, Melamed-Kadosh D, Engelberg D, Admon A. Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One 2020; 15:e0237540. [PMID: 32804965 PMCID: PMC7430751 DOI: 10.1371/journal.pone.0237540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.
Collapse
Affiliation(s)
- Chen Bai
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masha Tesker
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - David Engelberg
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (DE)
| | - Arie Admon
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail: (AA); (DE)
| |
Collapse
|
118
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
119
|
Chelius C, Huso W, Reese S, Doan A, Lincoln S, Lawson K, Tran B, Purohit R, Glaros T, Srivastava R, Harris SD, Marten MR. Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans. Mol Cell Proteomics 2020; 19:1310-1329. [PMID: 32430394 PMCID: PMC8014999 DOI: 10.1074/mcp.ra119.001769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a β-glucan synthase inhibitor (micafungin) was added to a growing A. nidulans shake-flask culture. From this flask, transcriptomic and phosphoproteomic data were acquired over 10 and 120 min, respectively. To differentiate statistically-significant dynamic behavior from noise, a multivariate adaptive regression splines (MARS) model was applied to both data sets. Over 1800 genes were dynamically expressed and over 700 phosphorylation sites had changing phosphorylation levels upon micafungin exposure. Twelve kinases had altered phosphorylation and phenotypic profiling of all non-essential kinase deletion mutants revealed putative connections between PrkA, Hk-8-4, and Stk19 and the CWIS pathway. Our collective data implicate actin regulation, endocytosis, and septum formation as critical cellular processes responding to activation of the CWIS pathway, and connections between CWIS and calcium, HOG, and SIN signaling pathways.
Collapse
Affiliation(s)
- Cynthia Chelius
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Walker Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Samantha Reese
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexander Doan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen Lincoln
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Kelsi Lawson
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Bao Tran
- BioScience Mass Spectrometry Facility, The U.S. Army CCDC Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Maryland, USA
| | - Raj Purohit
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Trevor Glaros
- BioSciences Division, B11 Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Steven D Harris
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
120
|
Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr Genet 2020; 66:1135-1153. [PMID: 32719935 DOI: 10.1007/s00294-020-01099-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Halotolerant species are adapted to dealing continually with hyperosmotic environments, having evolved strategies that are uncommon in other organisms. The HOG pathway is the master system that regulates the cellular adaptation under these conditions; nevertheless, apart from the importance of Debaryomyces hansenii as an organism representative of the halotolerant class, its HOG1 pathway has been poorly studied, due to the difficulty of applying conventional recombinant DNA technology. Here we describe for the first time the phenotypic characterisation of a null HOG1 mutant of D. hansenii. Dhhog1Δ strain was found moderately resistant to 1 M NaCl and sensitive to higher concentrations. Under hyperosmotic shock, DhHog1 fully upregulated transcription of DhSTL1 and partially upregulated that of DhGPD1. High osmotic stress lead to long-term inner glycerol accumulation that was partially dependent on DhHog1. These observations indicated that the HOG pathway is required for survival under high external osmolarity but dispensable under low and mid-osmotic conditions. It was also found that DhHog1 can regulate response to alkali stress during hyperosmotic conditions and that it plays a role in oxidative and endoplasmic reticulum stress. Taken together, these results provide new insight into the contribution of this MAPK in halotolerance of this yeast.
Collapse
|
121
|
Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 2020; 11:genes11070795. [PMID: 32679672 PMCID: PMC7397035 DOI: 10.3390/genes11070795] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Ergosterol is an essential component of fungal cell membranes that determines the fluidity, permeability and activity of membrane-associated proteins. Ergosterol biosynthesis is a complex and highly energy-consuming pathway that involves the participation of many enzymes. Deficiencies in sterol biosynthesis cause pleiotropic defects that limit cellular proliferation and adaptation to stress. Thereby, fungal ergosterol levels are tightly controlled by the bioavailability of particular metabolites (e.g., sterols, oxygen and iron) and environmental conditions. The regulation of ergosterol synthesis is achieved by overlapping mechanisms that include transcriptional expression, feedback inhibition of enzymes and changes in their subcellular localization. In the budding yeast Saccharomyces cerevisiae, the sterol regulatory element (SRE)-binding proteins Upc2 and Ecm22, the heme-binding protein Hap1 and the repressor factors Rox1 and Mot3 coordinate ergosterol biosynthesis (ERG) gene expression. Here, we summarize the sterol biosynthesis, transport and detoxification systems of S. cerevisiae, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency. Because of the large number of ERG genes and the crosstalk between different environmental signals and pathways, many aspects of ergosterol regulation are still unknown. The study of sterol metabolism and its regulation is highly relevant due to its wide applications in antifungal treatments, as well as in food and pharmaceutical industries.
Collapse
|
122
|
Wosika V, Pelet S. Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nat Commun 2020; 11:3171. [PMID: 32576833 PMCID: PMC7311541 DOI: 10.1038/s41467-020-16943-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2020] [Indexed: 01/25/2023] Open
Abstract
Precise regulation of gene expression in response to environmental changes is crucial for cell survival, adaptation and proliferation. In eukaryotic cells, extracellular signal integration is often carried out by Mitogen-Activated Protein Kinases (MAPK). Despite a robust MAPK signaling activity, downstream gene expression can display a great variability between single cells. Using a live mRNA reporter, here we monitor the dynamics of transcription in Saccharomyces cerevisiae upon hyper-osmotic shock. We find that the transient activity of the MAPK Hog1 opens a temporal window where stress-response genes can be activated. We show that the first minutes of Hog1 activity are essential to control the activation of a promoter. Chromatin repression on a locus slows down this transition and contributes to the variability in gene expression, while binding of transcription factors increases the level of transcription. However, soon after Hog1 activity peaks, negative regulators promote chromatin closure of the locus and transcription progressively stops.
Collapse
Affiliation(s)
- Victoria Wosika
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
123
|
Vázquez-Ibarra A, Rodríguez-Martínez G, Guerrero-Serrano G, Kawasaki L, Ongay-Larios L, Coria R. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast. Curr Genet 2020; 66:867-880. [PMID: 32564133 DOI: 10.1007/s00294-020-01089-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
The pheromone response and the high osmolarity glycerol (HOG) pathways are considered the prototypical MAPK signaling systems. They are the best-understood pathways in eukaryotic cells, yet they continue to provide insights in how cells relate with the environment. These systems are subjected to tight regulatory circuits to prevent hyperactivation in length and intensity. Failure to do this may be a matter of life or death specially for unicellular organisms such as Saccharomyces cerevisiae. The signaling pathways are fine-tuned by positive and negative feedback loops exerted by pivotal control elements that allow precise responses to specific stimuli, despite the fact that some elements of the systems are common to different signaling pathways. Here we describe the experimentally proven negative feedback loops that modulate the pheromone response and the HOG pathways. As described in this review, MAP kinases are central mechanistic components of these feedback loops. They have the capacity to modulate basal signaling activity, a fast extranuclear response, and a longer-lasting transcriptional process.
Collapse
Affiliation(s)
- Araceli Vázquez-Ibarra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Griselda Rodríguez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | | | - Laura Kawasaki
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México.
| |
Collapse
|
124
|
Fox ZR, Neuert G, Munsky B. Optimal Design of Single-Cell Experiments within Temporally Fluctuating Environments. COMPLEXITY 2020; 2020:8536365. [PMID: 32982137 PMCID: PMC7515449 DOI: 10.1155/2020/8536365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modern biological experiments are becoming increasingly complex, and designing these experiments to yield the greatest possible quantitative insight is an open challenge. Increasingly, computational models of complex stochastic biological systems are being used to understand and predict biological behaviors or to infer biological parameters. Such quantitative analyses can also help to improve experiment designs for particular goals, such as to learn more about specific model mechanisms or to reduce prediction errors in certain situations. A classic approach to experiment design is to use the Fisher information matrix (FIM), which quantifies the expected information a particular experiment will reveal about model parameters. The Finite State Projection based FIM (FSP-FIM) was recently developed to compute the FIM for discrete stochastic gene regulatory systems, whose complex response distributions do not satisfy standard assumptions of Gaussian variations. In this work, we develop the FSP-FIM analysis for a stochastic model of stress response genes in S. cerevisae under time-varying MAPK induction. We verify this FSP-FIM analysis and use it to optimize the number of cells that should be quantified at particular times to learn as much as possible about the model parameters. We then extend the FSP-FIM approach to explore how different measurement times or genetic modifications help to minimize uncertainty in the sensing of extracellular environments, and we experimentally validate the FSP-FIM to rank single-cell experiments for their abilities to minimize estimation uncertainty of NaCl concentrations during yeast osmotic shock. This work demonstrates the potential of quantitative models to not only make sense of modern biological data sets, but to close the loop between quantitative modeling and experimental data collection.
Collapse
Affiliation(s)
- Zachary R Fox
- Inria Saclay Ile-de-France, Palaiseau 91120, France Institut Pasteur, USR 3756 IP CNRS Paris, 75015, France School of Biomedical Engineering, Colorado State University Fort Collins, CO 80523, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University Fort Collins, CO 80523, USA School of Biomedical Engineering, Colorado State University Fort Collins, CO 80523, USA
| |
Collapse
|
125
|
Abstract
Proper chromosome segregation is critical for the maintenance of genomic information in every cell division, which is required for cell survival. Cells have orchestrated a myriad of control mechanisms to guarantee proper chromosome segregation. Upon stress, cells induce a number of adaptive responses to maximize survival that range from regulation of gene expression to control of cell-cycle progression. We have found here that in response to osmostress, cells also regulate mitosis to ensure proper telomeric and rDNA segregation during adaptation. Osmostress induces a Hog1-dependent delay of cell-cycle progression in early mitosis by phosphorylating Net1, thereby impairing timely nucleolar release and activation of Cdc14, core elements of mitosis regulation. Thus, Hog1 activation prevents segregation defects to maximize survival. Adaptation to environmental changes is crucial for cell fitness. In Saccharomyces cerevisiae, variations in external osmolarity trigger the activation of the stress-activated protein kinase Hog1 (high-osmolarity glycerol 1), which regulates gene expression, metabolism, and cell-cycle progression. The activation of this kinase leads to the regulation of G1, S, and G2 phases of the cell cycle to prevent genome instability and promote cell survival. Here we show that Hog1 delays mitotic exit when cells are stressed during metaphase. Hog1 phosphorylates the nucleolar protein Net1, altering its affinity for the phosphatase Cdc14, whose activity is essential for mitotic exit and completion of the cell cycle. The untimely release of Cdc14 from the nucleolus upon activation of Hog1 is linked to a defect in ribosomal DNA (rDNA) and telomere segregation, and it ultimately delays cell division. A mutant of Net1 that cannot be phosphorylated by Hog1 displays reduced viability upon osmostress. Thus, Hog1 contributes to maximizing cell survival upon stress by regulating mitotic exit.
Collapse
|
126
|
Viéitez C, Martínez-Cebrián G, Solé C, Böttcher R, Potel CM, Savitski MM, Onnebo S, Fabregat M, Shilatifard A, Posas F, de Nadal E. A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Res 2020; 48:3455-3475. [PMID: 32064518 PMCID: PMC7144942 DOI: 10.1093/nar/gkaa081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cells have the ability to sense, respond and adapt to environmental fluctuations. Stress causes a massive reorganization of the transcriptional program. Many examples of histone post-translational modifications (PTMs) have been associated with transcriptional activation or repression under steady-state growth conditions. Comparatively less is known about the role of histone PTMs in the cellular adaptive response to stress. Here, we performed high-throughput genetic screenings that provide a novel global map of the histone residues required for transcriptional reprogramming in response to heat and osmotic stress. Of note, we observed that the histone residues needed depend on the type of gene and/or stress, thereby suggesting a 'personalized', rather than general, subset of histone requirements for each chromatin context. In addition, we identified a number of new residues that unexpectedly serve to regulate transcription. As a proof of concept, we characterized the function of the histone residues H4-S47 and H4-T30 in response to osmotic and heat stress, respectively. Our results uncover novel roles for the kinases Cla4 and Ste20, yeast homologs of the mammalian PAK2 family, and the Ste11 MAPK as regulators of H4-S47 and H4-T30, respectively. This study provides new insights into the role of histone residues in transcriptional regulation under stress conditions.
Collapse
Affiliation(s)
- Cristina Viéitez
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Gerard Martínez-Cebrián
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Clement M Potel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sara Onnebo
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Marc Fabregat
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
127
|
Kong Y, Wang Q, Cao F, Zhang X, Fang Z, Shi P, Wang H, Shen Y, Huang Z. BSC2 enhances cell resistance to AmB by inhibiting oxidative damage in Saccharomyces cerevisiae. Free Radic Res 2020; 54:231-243. [DOI: 10.1080/10715762.2020.1751151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yingying Kong
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Qiao Wang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhijia Fang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Handong Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Yuhu Shen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
128
|
Jiménez‐Gutiérrez E, Alegría‐Carrasco E, Alonso‐Rodríguez E, Fernández‐Acero T, Molina M, Martín H. Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS J 2020; 287:4881-4901. [DOI: 10.1111/febs.15288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Elena Jiménez‐Gutiérrez
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Estíbaliz Alegría‐Carrasco
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Esmeralda Alonso‐Rodríguez
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Teresa Fernández‐Acero
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - María Molina
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| |
Collapse
|
129
|
Zhao T, Wen Z, Xia Y, Jin K. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum. Appl Microbiol Biotechnol 2020; 104:4005-4015. [PMID: 32170386 DOI: 10.1007/s00253-020-10523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sho1 is an important membrane sensor upstream of the HOG-MAPK signaling pathway, which plays critical roles in osmotic pressure response, growth, and virulence in fungi. Here, a Sho1 homolog (MaSho1), containing four transmembrane domains and one Src homology (SH3) domain, was characterized in Metarhizium acridum, a fungal pathogen of locusts. Targeted gene disruption of MaSho1 impaired cell wall integrity, virulence, and tolerances to UV-B and oxidative stresses, while none of them was affected when the SH3 domain was deleted. Intriguingly, disruption of MaSho1 significantly increased conidial yield, which was not affected in the SH3 domain mutant. Furthermore, it was found that deletion of MaSho1 led to microcycle conidiation of M. acridum on the normal conidiation medium. Deletion of MaSho1 significantly shortened the hyphal cells but had no effect on conidial germination. Digital gene expression profiling during conidiation indicated that differential expression of genes was associated with mycelial development, cell division, and differentiation between the wild type and the MaSho1 mutant. These data suggested that disruption of MaSho1 shifted the conidiation pattern by altering the transcription of genes to inhibit mycelial growth, thereby promoting the conidiation of M. acridum.
Collapse
Affiliation(s)
- Tingting Zhao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 401331, People's Republic of China
| | - Zhiqiong Wen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 401331, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 401331, People's Republic of China.
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
130
|
Multi-kinase control of environmental stress responsive transcription. PLoS One 2020; 15:e0230246. [PMID: 32160258 PMCID: PMC7065805 DOI: 10.1371/journal.pone.0230246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022] Open
Abstract
Cells respond to changes in environmental conditions by activating signal transduction pathways and gene expression programs. Here we present a dataset to explore the relationship between environmental stresses, kinases, and global gene expression in yeast. We subjected 28 drug-sensitive kinase mutants to 10 environmental conditions in the presence of inhibitor and performed mRNA deep sequencing. With these data, we reconstructed canonical stress pathways and identified examples of crosstalk among pathways. The data also implicated numerous kinases in novel environment-specific roles. However, rather than regulating dedicated sets of target genes, individual kinases tuned the magnitude of induction of the environmental stress response (ESR)–a gene expression signature shared across the set of perturbations–in environment-specific ways. This suggests that the ESR integrates inputs from multiple sensory kinases to modulate gene expression and growth control. As an example, we provide experimental evidence that the high osmolarity glycerol pathway is an upstream negative regulator of protein kinase A, a known inhibitor of the ESR. These results elaborate the central axis of cellular stress response signaling.
Collapse
|
131
|
Zhang X, Zhang Y, Li H. Regulation of trehalose, a typical stress protectant, on central metabolisms, cell growth and division of Saccharomyces cerevisiae CEN.PK113-7D. Food Microbiol 2020; 89:103459. [PMID: 32138981 DOI: 10.1016/j.fm.2020.103459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Trehalose could protect the typical food microorganism Saccharomyces cerevisiae cell against environmental stresses; however, the other regulation effects of trehalose on yeast cells during the fermentation are still poorly understood. In this manuscript, different concentrations (i.e., 0, 2 and 5% g/v) of trehalose were respectively added into the medium to evaluate the effect of trehalose on growth, central metabolisms and division of S. cerevisiae CEN.PK113-7D strain that could uptake exogenous trehalose. Results indicated that addition of trehalose could inhibit yeast cell growth in the presence or absence of 8% v/v ethanol stress. Exogenous trehalose inhibited the glucose transporting efficiency and reduced intracellular glucose content. Simultaneously, increased intracellular trehalose content destroyed the steady state of trehalose cycle and caused the imbalance between the upper glycolysis part and the lower part, thereby leading to the dysfunction of glycolysis and further inhibiting the normal yeast cell growth. Moreover, energy metabolisms were impaired and the ATP production was reduced by addition of trehalose. Finally, exogenous trehalose-associated inhibition on yeast cell growth and metabolisms delayed cell cycle. These results also highlighted our knowledge about relationship between trehalose and growth, metabolisms and division of S. cerevisiae cells during fermentation.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaxian Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
132
|
Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J 2020; 39:e103444. [PMID: 32011004 PMCID: PMC7049814 DOI: 10.15252/embj.2019103444] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. When cells are exposed to high osmolarity, the functionally redundant Sho1 and Sln1 osmosensors, respectively, activate the Ste11‐Pbs2‐Hog1 MAPK cascade and the Ssk2/Ssk22‐Pbs2‐Hog1 MAPK cascade. In a canonical MAPK cascade, a MAPK kinase kinase (MAP3K) activates a MAPK kinase (MAP2K) by phosphorylating two conserved Ser/Thr residues in the activation loop. Here, we report that the MAP3K Ste11 phosphorylates only one activating phosphorylation site (Thr‐518) in Pbs2, whereas the MAP3Ks Ssk2/Ssk22 can phosphorylate both Ser‐514 and Thr‐518 under optimal osmostress conditions. Mono‐phosphorylated Pbs2 cannot phosphorylate Hog1 unless the reaction between Pbs2 and Hog1 is enhanced by osmostress. The lack of the osmotic enhancement of the Pbs2‐Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone‐to‐Hog1 crosstalk in the absence of osmostress. We also report that the rapid‐and‐transient Hog1 activation kinetics at mildly high osmolarities and the slow and prolonged activation kinetics at severely high osmolarities are both caused by a common feedback mechanism.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuji Tokunaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
133
|
Kessi-Pérez EI, Molinet J, Martínez C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol Res 2020; 53:2. [PMID: 31918759 PMCID: PMC6950849 DOI: 10.1186/s40659-019-0270-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae, with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
134
|
Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I. Squalene lipotoxicity in a lipid droplet‐less yeast mutant is linked to plasma membrane dysfunction. Yeast 2020; 37:45-62. [DOI: 10.1002/yea.3454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zsófia Csáky
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Martina Garaiová
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Marie Kodedová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ivan Hapala
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
135
|
Tang Z, Cao X, Zhang Y, Jiang J, Qiao D, Xu H, Cao Y. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:147. [PMID: 32843896 PMCID: PMC7439689 DOI: 10.1186/s13068-020-01786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dunaliella salina can produce glycerol under salt stress, and this production can quickly adapt to changes in external salt concentration. Notably, glycerol is an ideal energy source. In recent years, it has been reported that the mitogen-activated protein kinase cascade pathway plays an important role in regulating salt stress, and in Dunaliella tertiolecta DtMAPK can regulate glycerol synthesis under salt stress. Therefore, it is highly important to study the relationship between the MAPK cascade pathway and salt stress in D. salina and modify it to increase the production of glycerol. RESULTS In our study, we identified and analysed the alternative splicing of DsMEK1 (DsMEK1-X1, DsMEK1-X2) from the unicellular green alga D. salina. DsMEK1-X1 and DsMEK1-X2 were both localized in the cytoplasm. qRT-PCR assays showed that DsMEK1-X2 was induced by salt stress. Overexpression of DsMEK1-X2 revealed a higher increase rate of glycerol production compared to the control and DsMEK1-X1-oe under salt stress. Under salt stress, the expression of DsGPDH2/3/5/6 increased in DsMEK1-X2-oe strains compared to the control. This finding indicated that DsMEK1-X2 was involved in the regulation of DsGPDH expression and glycerol overexpression under salt stress. Overexpression of DsMEK1-X1 increased the proline content and reduced the MDA content under salt stress, and DsMEK1-X1 was able to regulate oxidative stress; thus, we hypothesized that DsMEK1-X1 could reduce oxidative damage under salt stress. Yeast two-hybrid analysis showed that DsMEK1-X2 could interact with DsMAPKKK1/2/3/9/10/17 and DsMAPK1; however, DsMEK1-X1 interacted with neither upstream MAPKKK nor downstream MAPK. DsMEK1-X2-oe transgenic lines increased the expression of DsMAPKKK1/3/10/17 and DsMAPK1, and DsMEK1-X2-RNAi lines decreased the expression of DsMAPKKK2/10/17. DsMEK1-X1-oe transgenic lines did not exhibit increased gene expression, except for DsMAPKKK9. CONCLUSION Our findings demonstrate that DsMEK1-X1 and DsMEK1-X2 can respond to salt stress by two different pathways. The DsMEK1-X1 response to salt stress reduces oxidative damage; however, the DsMAPKKK1/2/3/9/10/17-DsMEK1-X2-DsMAPK1 cascade is involved in the regulation of DsGPDH expression and thus glycerol synthesis under salt stress.
Collapse
Affiliation(s)
- Ziyi Tang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Yiping Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Jia Jiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| |
Collapse
|
136
|
Bioprospection of Enzymes and Microorganisms in Insects to Improve Second-Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
137
|
Kalman-like Self-Tuned Sensitivity in Biophysical Sensing. Cell Syst 2019; 9:459-465.e6. [PMID: 31563474 PMCID: PMC10170658 DOI: 10.1016/j.cels.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Living organisms need to be sensitive to a changing environment while also ignoring uninformative environmental fluctuations. Here, we argue that living cells can navigate these conflicting demands by dynamically tuning their environmental sensitivity. We analyze the circadian clock in Synechococcus elongatus, showing that clock-metabolism coupling can detect mismatch between clock predictions and the day-night light cycle, temporarily raise the clock's sensitivity to light changes, and thus re-entraining faster. We find analogous behavior in recent experiments on switching between slow and fast osmotic-stress-response pathways in yeast. In both cases, cells can raise their sensitivity to new external information in epochs of frequent challenging stress, much like a Kalman filter with adaptive gain in signal processing. Our work suggests a new class of experiments that probe the history dependence of environmental sensitivity in biophysical sensing mechanisms.
Collapse
|
138
|
Guerra-Moreno A, Prado MA, Ang J, Schnell HM, Micoogullari Y, Paulo JA, Finley D, Gygi SP, Hanna J. Thiol-based direct threat sensing by the stress-activated protein kinase Hog1. Sci Signal 2019; 12:12/609/eaaw4956. [PMID: 31772124 DOI: 10.1126/scisignal.aaw4956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The yeast stress-activated protein kinase Hog1 is best known for its role in mediating the response to osmotic stress, but it is also activated by various mechanistically distinct environmental stressors, including heat shock, endoplasmic reticulum stress, and arsenic. In the osmotic stress response, the signal is sensed upstream and relayed to Hog1 through a kinase cascade. Here, we identified a mode of Hog1 function whereby Hog1 senses arsenic through a direct physical interaction that requires three conserved cysteine residues located adjacent to the catalytic loop. These residues were essential for Hog1-mediated protection against arsenic, were dispensable for the response to osmotic stress, and promoted the nuclear localization of Hog1 upon exposure of cells to arsenic. Hog1 promoted arsenic detoxification by stimulating phosphorylation of the transcription factor Yap8, promoting Yap8 nuclear localization, and stimulating the transcription of the only known Yap8 targets, ARR2 and ARR3, both of which encode proteins that promote arsenic efflux. The related human kinases ERK1 and ERK2 also bound to arsenic in vitro, suggesting that this may be a conserved feature of some members of the mitogen-activated protein kinase (MAPK) family. These data provide a mechanistic basis for understanding how stress-activated kinases can sense distinct threats and perform highly specific adaptive responses.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jessie Ang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Helena M Schnell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yagmur Micoogullari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
139
|
Early integration of Design of Experiment (DOE) and multivariate statistics identifies feeding regimens suitable for CHO cell line development and screening. Cytotechnology 2019; 71:1137-1153. [PMID: 31705334 DOI: 10.1007/s10616-019-00350-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
In Chinese Hamster Ovary (CHO) cell lines, the establishment of the ideal fed-batch regimen promotes metabolic conditions advantageous for the bioproduction of therapeutic molecules. A tailored, cell line-specific feeding scheme is typically defined during process development (PD) activities, through the incorporation of Design of Experiment (DOE) and late stage cell culture approaches. The feeding during early stage cell line development (CLD) was a simplified "one-fits-all" design, inherited from PD lab, that didn't account for CLD needs of throughput and streamlined workflow. The "one-fits-all" efficiency was not routinely verified when novel technologies were incorporated in CLD and sub-optimal feeding carried the risk of not selecting the most desirable cell lines amenable to late stage PD. In our work we developed the DOE-feed method; a streamlined, three-stages framework for identifying efficient feeding schemes as the CLD technologies evolved. We combined early stage cell culture input data with late-stage techniques, such as statistical modelling, principal component analysis (PCA), DOE and Prediction Profiler. Novel in our DOE-feed work, we deliberately anticipated the application of statistics and approached the method development as an early-stage, continuously updated process, by building iterative datasets and statistically interpreting their responses. We capitalized on the statistical models defined by the DOE-feed methodology to study the influence of feeds on daily productivity and growth and to extrapolate feeding-schemes that improved the cell line screening. The DOE-feed became a methodology suited for CLD needs at AbbVie, and optimized the early stage screening, reduced the operational hands-on time and improved the overall workstream efficiency.
Collapse
|
140
|
Branscum KM, Menon SK, Foster CA, West AH. Insights revealed by the co-crystal structure of the Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1. Protein Sci 2019; 28:2099-2111. [PMID: 31642125 PMCID: PMC6863705 DOI: 10.1002/pro.3755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
Abstract
Two‐component signaling systems are the primary means by which bacteria, archaea, and certain plants and fungi react to their environments. The model yeast, Saccharomyces cerevisiae, uses the Sln1 signaling pathway to respond to hyperosmotic stress. This pathway contains a hybrid histidine kinase (Sln1) that autophosphorylates and transfers a phosphoryl group to its own receiver domain (R1). The phosphoryl group is then transferred to a histidine phosphotransfer protein (Ypd1) that finally passes it to the receiver domain (R2) of a downstream response regulator (Ssk1). Under normal conditions, Ssk1 is constitutively and preferentially phosphorylated in the phosphorelay. Upon detecting hyperosmotic stress, Ssk1 rapidly dephosphorylates and activates the high‐osmolarity glycerol (HOG) pathway, initiating a response. Despite their distinct physiological roles, both Sln1 and Ssk1 bind to Ypd1 at a common docking site. Co‐crystal structures of response regulators in complex with their phosphorelay partners are scarce, leaving many mechanistic and structural details uncharacterized for systems like the Sln1 pathway. In this work, we present the co‐crystal structure of Ypd1 and a near wild‐type variant of the receiver domain of Ssk1 (Ssk1‐R2‐W638A) at a resolution of 2.80 Å. Our structural analyses of Ypd1‐receiver domain complexes, biochemical determination of binding affinities for Ssk1‐R2 variants, in silico free energy estimates, and sequence comparisons reveal distinctive electrostatic properties of the Ypd1/Ssk1‐R2‐W638A complex that may provide insight into the regulation of the Sln1 pathway as a function of dynamic osmolyte concentration.
Collapse
Affiliation(s)
- Katie M Branscum
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Smita K Menon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
141
|
Sipiczki M. Yeast two- and three-species hybrids and high-sugar fermentation. Microb Biotechnol 2019; 12:1101-1108. [PMID: 30838806 PMCID: PMC6801140 DOI: 10.1111/1751-7915.13390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
The dominating strains of most sugar-based natural and industrial fermentations either belong to Saccharomyces cerevisiae and Saccharomyces uvarum or are their chimeric derivatives. Osmotolerance is an essential trait of these strains for industrial applications in which typically high concentrations of sugars are used. As the ability of the cells to cope with the hyperosmotic stress is under polygenic control, significant improvement can be expected from concerted modification of the activity of multiple genes or from creating new genomes harbouring positive alleles of strains of two or more species. In this review, the application of the methods of intergeneric and interspecies hybridization to fitness improvement of strains used under high-sugar fermentation conditions is discussed. By protoplast fusion and heterospecific mating, hybrids can be obtained that outperform the parental strains in certain technological parameters including osmotolerance. Spontaneous postzygotic genome evolution during mitotic propagation (GARMi) and meiosis after the breakdown of the sterility barrier by loss of MAT heterozygosity (GARMe) can be exploited for further improvement. Both processes result in derivatives of chimeric genomes, some of which can be superior both to the parental strains and to the hybrid. Three-species hybridization represents further perspectives.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied MicrobiologyUniversity of DebrecenDebrecenHungary
| |
Collapse
|
142
|
Dafre AL, Schmitz AE, Maher P. Rapid and persistent loss of TXNIP in HT22 neuronal cells under carbonyl and hyperosmotic stress. Neurochem Int 2019; 132:104585. [PMID: 31678323 DOI: 10.1016/j.neuint.2019.104585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Thioredoxin interacting protein (TXNIP) binds to thioredoxin thereby limiting its activity, but it also promotes internalization of glucose transporters, participates in inflammasome activation, and controls autophagy. Published data and this work demonstrate that TXNIP responds to a number of apparently unrelated stresses, such as serum deprivation, pH change, and oxidative, osmotic and carbonyl stress. Interestingly, we noticed that hyperosmotic (NaCl) and carbonyl (methylglyoxal, MGO) stresses in HT22 neuronal cells produced a rapid loss of TXNIP (half-life ∼12 min), prompting us to search for possible mechanisms controlling this TXNIP loss, including pH change, serum deprivation, calcium metabolism and inhibition of the proteasome and other proteases, autophagy and MAPKs. None of these routes stopped the TXNIP loss induced by hyperosmotic and carbonyl stress. Besides transcriptional, translational and microRNA regulation, there is evidence indicating that mTOR and AMPK also control TXNIP expression. Indeed, AMPK-deficient mouse embryonic fibroblasts failed to respond to phenformin (AMPK activator) and compound C (AMPK inhibitor), while rapamycin induced a marked increase in TXNIP levels, confirming the known AMPK/mTOR control over TXNIP. However, the TXNIP loss induced by NaCl or MGO were observed even in AMPK deficient MEFs or after mTOR inhibition, indicating AMPK/mTOR does not participate in this rapid TXNIP loss. These results suggest that rapid TXNIP loss is a general and immediate response to stress that can improve energy availability and antioxidant protection, eventually culminating in better cell survival.
Collapse
Affiliation(s)
- Alcir Luiz Dafre
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Ariana Ern Schmitz
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, CA, 92037, La Jolla, United States.
| |
Collapse
|
143
|
Ramos-Moreno L, Ramos J, Michán C. Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World J Microbiol Biotechnol 2019; 35:170. [PMID: 31673816 DOI: 10.1007/s11274-019-2753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
Abstract
Debaryomyces hansenii is a halotolerant yeast of importance in basic and applied research. Previous reports hinted about possible links between saline and oxidative stress responses in this yeast. The aim of this work was to study that hypothesis at different molecular levels, investigating after oxidative and saline stress: (i) transcription of seven genes related to oxidative and/or saline responses, (ii) activity of two main anti-oxidative enzymes, (iii) existence of common metabolic intermediates, and (iv) generation of damages to biomolecules as lipids and proteins. Our results showed how expression of genes related to oxidative stress was induced by exposure to NaCl and KCl, and, vice versa, transcription of some genes related to osmotic/salt stress responses was regulated by H2O2. Moreover, and contrary to S. cerevisiae, in D. hansenii HOG1 and MSN2 genes were modulated by stress at their transcriptional level. At the enzymatic level, saline stress also induced antioxidative enzymatic defenses as catalase and glutathione reductase. Furthermore, we demonstrated that both stresses are connected by the generation of intracellular ROS, and that hydrogen peroxide can affect the accumulation of in-cell sodium. On the other hand, no significant alterations in lipid oxidation or total glutathione content were observed upon exposure to both stresses tested. The results described in this work could help to understand the responses to both stressors, and to improve the biotechnological potential of D. hansenni.
Collapse
Affiliation(s)
- Laura Ramos-Moreno
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain.
| |
Collapse
|
144
|
Crosstalk between Saccharomycescerevisiae SAPKs Hog1 and Mpk1 is mediated by glycerol accumulation. Fungal Biol 2019; 124:361-367. [PMID: 32389298 DOI: 10.1016/j.funbio.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022]
Abstract
Two stress-activated MAP kinase (SAPK) pathways in Saccharomyces cerevisiae respond to osmotic imbalances. The High Osmolarity Glycerol (HOG) pathway is activated in response to hyper-osmotic stress, whereas the Cell Wall Integrity (CWI) pathway is activated in response to hypo-osmotic stress. However, there is also evidence of complex interplay and crosstalk between the two pathways. For example, treatment with zymolyase, a mixture of cell wall degrading enzymes, is known to activate the SAPK Hog1 of the HOG pathway and the SAPK Mpk1 of the CWI pathway sequentially, with Mpk1 activation dependent upon Hog1. Additionally, the PTP2- and PTP3-encoded tyrosine-specific protein phosphatases play a key role in down-regulation of Hog1, but may also down-regulate Mpk1. In this study, we show that hyperactivation of Mpk1 in a ptp2 ptp3 null mutant is an indirect consequence of Hog1 hyperactivation, which induces accumulation of intracellular glycerol and an attendant hypo-osmotic stress. Mpk1 hyperactivity in the absence of PTP2 and PTP3 was suppressed by a hog1 null mutation, or by restoration of osmotic balance with a constitutive form of the glycerol channel Fps1. We found similarly that activation of Mpk1 in response to zymolyase treatment is partly a consequence of Hog1-driven glycerol accumulation. Thus, we have identified two conditions in which glycerol serves as a mediator of crosstalk between the HOG and CWI pathways.
Collapse
|
145
|
Király A, Hámori C, Gyémánt G, Kövér KE, Pócsi I, Leiter É. Characterization of gfdB, putatively encoding a glycerol 3-phosphate dehydrogenase in Aspergillus nidulans. Fungal Biol 2019; 124:352-360. [PMID: 32389297 DOI: 10.1016/j.funbio.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022]
Abstract
The genome of Aspergillus nidulans accommodates two glycerol 3-phosphate dehydrogenase genes, gfdA and gfdB. Previous studies confirmed that GfdA is involved in the osmotic stress defence of the fungus. In this work, the physiological role of GfdB was characterized via the construction and functional characterization of the gene deletion mutant ΔgfdB. Unexpectedly, ΔgfdB strains showed oxidative stress sensitivity in the presence of a series of well-known oxidants including tert-butyl-hydroperoxide (tBOOH), diamide as well as hydrogen peroxide. Moderate sensitivity of the mutant towards the cell wall stress inducing agent CongoRed was also observed. Hence, both Gfd isoenzymes contributed to the environmental stress defence of the fungus but their functions were stress-type-specific. Furthermore, the specific activities of certain antioxidant enzymes, like catalase and glutathione peroxidase, were lower in ΔgfdB hyphae than those recorded in the control strain. As a consequence, mycelia from ΔgfdB cultures accumulated reactive species at higher levels than the control. On the other hand, the specific glutathione reductase activity was higher in the mutant, most likely to compensate for the elevated intracellular oxidative species concentrations. Nevertheless, the efficient control of reactive species failed in ΔgfdB cultures, which resulted in reduced viability and, concomitantly, early onset of programmed cell death in mutant hyphae. Inactivation of gfdB brought about higher mannitol accumulation in mycelia meanwhile the erythritol production was not disturbed in unstressed cultures. After oxidative stress treatment with tBOOH, only mannitol was detected in both mutant and control mycelia and the accumulation of mannitol even intensified in the ΔgfdB strain.
Collapse
Affiliation(s)
- Anita Király
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; University of Debrecen, Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, Hungary
| | - Csaba Hámori
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
146
|
Joshua IM, Höfken T. Ste20 and Cla4 modulate the expression of the glycerol biosynthesis enzyme Gpd1 by a novel MAPK-independent pathway. Biochem Biophys Res Commun 2019; 517:611-616. [PMID: 31395335 DOI: 10.1016/j.bbrc.2019.07.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
Abstract
p21-activated kinases (PAKs) are important signalling molecules with a wide range of functions. In budding yeast, the main PAKs Ste20 and Cla4 regulate the response to hyperosmotic stress, which is an excellent model for the adaptation to changing environmental conditions. In this pathway, the only known function of Ste20 and Cla4 is the activation of a mitogen-activated protein kinase (MAPK) cascade through Ste11. This eventually leads to increased transcription of glycerol biosynthesis genes, the most important response to hyperosmotic shock. Here, we show that Ste20 and Cla4 not only stimulate transcription, they also bind to the glycerol biosynthesis enzymes Gpd1, Gpp1 and Gpp2. Protein levels of Gpd1, the enzyme that catalyzes the rate limiting step in glycerol synthesis, positively correlate with glucose availability. Using a chemical genetics approach, we find that simultaneous inactivation of STE20 and CLA4 reduces the glucose-induced increase of Gpd1 levels, whereas the deletion of either STE20 or CLA4 alone has no effect. This is also observed for the hyperosmotic stress-induced increase of Gpd1 levels. Importantly, under both conditions the deletion of STE11 has no effect on Gpd1 induction. These observations suggest that Ste20 and Cla4 not only have a role in the transcriptional regulation of GPD1 through Ste11. They also seem to modulate GPD1 expression at another level such as translation or protein degradation.
Collapse
Affiliation(s)
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, UK.
| |
Collapse
|
147
|
Masumura K, Matsukami S, Yonekita K, Kanai M, Kume K, Hirata D, Mizunuma M. SKO1 deficiency extends chronological lifespan in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2019; 83:1473-1476. [DOI: 10.1080/09168451.2019.1571901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Sko1 plays a key role in the control of gene expression by osmotic and oxidative stress in yeast. We demonstrate that the decrease in chronological lifespan (CLS) of hog1Δ cells was suppressed by SKO1 deletion. sko1Δ single mutant cells were shown to have a longer CLS, thus implicating Sko1 in the regulation of their CLS.
Collapse
Affiliation(s)
- Koji Masumura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sachi Matsukami
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kumiko Yonekita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
- Research and Development Department, Asahi Sake Brewing Co. Ltd., Nagaoka, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
148
|
Hayashi N, Oki M. Altered metabolic regulation owing to gsp1 mutations encoding the nuclear small G protein in Saccharomyces cerevisiae. Curr Genet 2019; 66:335-344. [PMID: 31372715 DOI: 10.1007/s00294-019-01022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
Abstract
Nutrient metabolism is regulated for adaptation to, for example, environmental alterations, cellular stress, cell cycle, and cellular ageing. This regulatory network consists of cross-talk between cytoplasmic organelles and the nucleus. The ras-like nuclear small G protein, Ran, functions in nuclear-cytosolic transport and regulatory signal transmission. In yeast, some genes involved in the Ran system in yeast are required for growth on glycerol medium. Growth deficiency, due to mutations in the GSP1 gene, which encodes Ran, is allele specific. Specifically in this study, the gsp1-1894 cells lost mitochondria, and could not grow on media containing glycerol, galactose or maltose. However, the gsp1-1894 cells grew better on a high salt medium (1 M NaCl) and had increased expression levels of GPD1-lacZ. Furthermore, disruption of the HOG1 gene suppressed their growth deficiency on glycerol medium. These findings suggest that altered activation of Hog1 in the gsp1-1894 cells resulted in the loss of mitochondria and inhibition of glycerol metabolism. Growth deficiency of the gsp1-1894 cells on galactose medium was further suppressed by high dosage of the SIP2 DNA, which encodes the cytosolic β subunit of AMPK. This suggests that higher cytosolic activity of AMPK is required for the utilization of an alternative carbon source in gsp1-1894 cells.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Department of Health and Nutrition, Faculty of Human Health Science, Kanazawa Gakuin University, 10 Sue-machi, Kanazawa, Ishikawa, 920-1392, Japan.
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
149
|
Day AM, Quinn J. Stress-Activated Protein Kinases in Human Fungal Pathogens. Front Cell Infect Microbiol 2019; 9:261. [PMID: 31380304 PMCID: PMC6652806 DOI: 10.3389/fcimb.2019.00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022] Open
Abstract
The ability of fungal pathogens to survive hostile environments within the host depends on rapid and robust stress responses. Stress-activated protein kinase (SAPK) pathways are conserved MAPK signaling modules that promote stress adaptation in all eukaryotic cells, including pathogenic fungi. Activation of the SAPK occurs via the dual phosphorylation of conserved threonine and tyrosine residues within a TGY motif located in the catalytic domain. This induces the activation and nuclear accumulation of the kinase and the phosphorylation of diverse substrates, thus eliciting appropriate cellular responses. The Hog1 SAPK has been extensively characterized in the model yeast Saccharomyces cerevisiae. Here, we use this a platform from which to compare SAPK signaling mechanisms in three major fungal pathogens of humans, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. Despite the conservation of SAPK pathways within these pathogenic fungi, evidence is emerging that their role and regulation has significantly diverged. However, consistent with stress adaptation being a common virulence trait, SAPK pathways are important pathogenicity determinants in all these major human pathogens. Thus, the development of drugs which target fungal SAPKs has the exciting potential to generate broad-acting antifungal treatments.
Collapse
Affiliation(s)
- Alison M Day
- Faculty of Medicine, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Janet Quinn
- Faculty of Medicine, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
150
|
Elhasi T, Blomberg A. Integrins in disguise - mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. MICROBIAL CELL 2019; 6:335-355. [PMID: 31404395 PMCID: PMC6685044 DOI: 10.15698/mic2019.08.686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to sense external mechanical stimuli is vital for all organisms. Integrins are transmembrane receptors that mediate bidirectional signalling between the extracellular matrix (ECM) and the cytoskeleton in animals. Thus, integrins can sense changes in ECM mechanics and can translate these into internal biochemical responses through different signalling pathways. In the model yeast species Saccharomyces cerevisiae there are no proteins with sequence similarity to mammalian integrins. However, we here emphasise that the WSC-type (Wsc1, Wsc2, and Wsc3) and the MID-type (Mid2 and Mtl1) mechanosensors in yeast act as partial functional integrin analogues. Various environmental cues recognised by these mechanosensors are transmitted by a conserved signal transduction cascade commonly referred to as the PKC1-SLT1 cell wall integrity (CWI) pathway. We exemplify the WSC- and MID-type mechanosensors functional analogy to integrins with a number of studies where they resemble the integrins in terms of both mechanistic and molecular features as well as in the overall phenotypic consequences of their activity. In addition, many important components in integrin-dependent signalling in humans are conserved in yeast; for example, Sla1 and Sla2 are homologous to different parts of human talin, and we propose that they together might be functionally similar to talin. We also propose that the yeast cell wall is a prominent cellular feature involved in sensing a number of external factors and subsequently activating different signalling pathways. In a hypothetical model, we propose that nutrient limitations modulate cell wall elasticity, which is sensed by the mechanosensors and results in filamentous growth. We believe that mechanosensing is a somewhat neglected aspect of yeast biology, and we argue that the physiological and molecular consequences of signal transduction initiated at the cell wall deserve more attention.
Collapse
Affiliation(s)
- Tarek Elhasi
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| | - Anders Blomberg
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| |
Collapse
|