101
|
Tripathi A, Martinez E, Obaidullah AJ, Lete MG, Lönnfors M, Khan D, Soni KG, Mousley CJ, Kellogg GE, Bankaitis VA. Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities. J Biol Chem 2019; 294:19081-19098. [PMID: 31690622 DOI: 10.1074/jbc.ra119.011153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
Phosphatidylinositol-transfer proteins (PITPs) are key regulators of lipid signaling in eukaryotic cells. These proteins both potentiate the activities of phosphatidylinositol (PtdIns) 4-OH kinases and help channel production of specific pools of phosphatidylinositol 4-phosphate (PtdIns(4)P) dedicated to specific biological outcomes. In this manner, PITPs represent a major contributor to the mechanisms by which the biological outcomes of phosphoinositide are diversified. The two-ligand priming model proposes that the engine by which Sec14-like PITPs potentiate PtdIns kinase activities is a heterotypic lipid-exchange cycle where PtdIns is a common exchange substrate among the Sec14-like PITP family, but the second exchange ligand varies with the PITP. A major prediction of this model is that second-exchangeable ligand identity will vary from PITP to PITP. To address the heterogeneity in the second exchange ligand for Sec14-like PITPs, we used structural, computational, and biochemical approaches to probe the diversities of the lipid-binding cavity microenvironments of the yeast Sec14-like PITPs. The collective data report that yeast Sec14-like PITP lipid-binding pockets indeed define diverse chemical microenvironments that translate into differential ligand-binding specificities across this protein family.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114
| | - Elliott Martinez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Ahmad J Obaidullah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298-0540
| | - Marta G Lete
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114
| | - Max Lönnfors
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114
| | - Danish Khan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Krishnakant G Soni
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Glen E Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298-0540
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114 .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
102
|
Tusso S, Nieuwenhuis BPS, Sedlazeck FJ, Davey JW, Jeffares DC, Wolf JBW. Ancestral Admixture Is the Main Determinant of Global Biodiversity in Fission Yeast. Mol Biol Evol 2019; 36:1975-1989. [PMID: 31225876 PMCID: PMC6736153 DOI: 10.1093/molbev/msz126] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutation and recombination are key evolutionary processes governing phenotypic variation and reproductive isolation. We here demonstrate that biodiversity within all globally known strains of Schizosaccharomyces pombe arose through admixture between two divergent ancestral lineages. Initial hybridization was inferred to have occurred ∼20-60 sexual outcrossing generations ago consistent with recent, human-induced migration at the onset of intensified transcontinental trade. Species-wide heritable phenotypic variation was explained near-exclusively by strain-specific arrangements of alternating ancestry components with evidence for transgressive segregation. Reproductive compatibility between strains was likewise predicted by the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution across the genome, we characterized the type, frequency, and position of structural genomic variation using nanopore and single-molecule real-time sequencing. Despite being associated with double-strand break initiation points, over 800 segregating structural variants exerted overall little influence on the introgression landscape or on reproductive compatibility between strains. In contrast, we found strong ancestry disequilibrium consistent with negative epistatic selection shaping genomic ancestry combinations during the course of hybridization. This study provides a detailed, experimentally tractable example that genomes of natural populations are mosaics reflecting different evolutionary histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and lineage-specific mutations sheds new light on the population history of S. pombe and highlights the importance of hybridization as a creative force in generating biodiversity.
Collapse
Affiliation(s)
- Sergio Tusso
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Bart P S Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - John W Davey
- Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Daniel C Jeffares
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute (YBRI), University of York, York, United Kingdom
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| |
Collapse
|
103
|
Salas-Pino S, Daga RR. Spatiotemporal control of spindle disassembly in fission yeast. Cell Mol Life Sci 2019; 76:3543-3551. [PMID: 31129857 PMCID: PMC11105212 DOI: 10.1007/s00018-019-03139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Maintenance of genomic stability during cell division is one of the most important cellular tasks, and it critically depends on the faithful replication of the genetic material and its equal partitioning into daughter cells, gametes, or spores in the case of yeasts. Defective mitotic spindle assembly and disassembly both result in changes in cellular ploidy that ultimately impinge proliferation fitness and might increase tumor malignancy. Although a great progress has been made in understanding how spindles are assembled to orchestrate chromosome segregation, much less is known about how they are disassembled once completed their function. Here, we review two recently uncovered mechanisms of spindle disassembly that operate at different stages of the fission yeast life cycle.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| |
Collapse
|
104
|
Hann ZS, Metzger MB, Weissman AM, Lima CD. Crystal structure of the Schizosaccharomyces pombe U7BR E2-binding region in complex with Ubc7. Acta Crystallogr F Struct Biol Commun 2019; 75:552-560. [PMID: 31397327 PMCID: PMC6688661 DOI: 10.1107/s2053230x19009786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 11/11/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality-control pathway in eukaryotes in which misfolded ER proteins are polyubiquitylated, extracted and ultimately degraded by the proteasome. This process involves ER membrane-embedded ubiquitin E2 and E3 enzymes, as well as a soluble E2 enzyme (Ubc7 in Saccharomyces cerevisiae and UBE2G2 in mammals). E2-binding regions (E2BRs) that recruit these soluble ERAD E2s to the ER have been identified in humans and S. cerevisiae, and structures of E2-E2BR complexes from both species have been determined. In addition to sequence and structural differences between the human and S. cerevisiae E2BRs, the binding of E2BRs also elicits different biochemical outcomes with respect to E2 charging by E1 and E2 discharge. Here, the Schizosaccharomyces pombe E2BR was identified and purified with Ubc7 to resolve a 1.7 Å resolution co-crystal structure of the E2BR in complex with Ubc7. The S. pombe E2BR binds to the back side of the E2 as an α-helix and, while differences exist, it exhibits greater similarity to the human E2BR. Structure-based sequence alignments reveal differences and conserved elements among these species. Structural comparisons and biochemistry reveal that the S. pombe E2BR presents a steric impediment to E1 binding and inhibits E1-mediated charging, respectively.
Collapse
Affiliation(s)
- Zachary S. Hann
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Meredith B. Metzger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christopher D. Lima
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
- Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
105
|
Zhang J, Si J, Gan L, Di C, Xie Y, Sun C, Li H, Guo M, Zhang H. Research progress on therapeutic targeting of quiescent cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2810-2820. [DOI: 10.1080/21691401.2019.1638793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jinhua Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xie
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
106
|
Nurse P, Hayles J. Using genetics to understand biology. Heredity (Edinb) 2019; 123:4-13. [PMID: 31189902 PMCID: PMC6781147 DOI: 10.1038/s41437-019-0209-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Paul Nurse
- The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK
| | | |
Collapse
|
107
|
Getz RA, Kwak G, Cornell S, Mbugua S, Eberhard J, Huang SX, Abbasi Z, de Medeiros AS, Thomas R, Bukowski B, Dranchak PK, Inglese J, Hoffman CS. A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening. Cell Signal 2019; 60:114-121. [PMID: 31026495 DOI: 10.1016/j.cellsig.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
Abstract
The fission yeast Schizosaccharomyces pombe uses a cAMP signaling pathway to link glucose-sensing to Protein Kinase A activity in order to regulate cell growth, sexual development, gluconeogenesis, and exit from stationary phase. We previously used a PKA-repressed fbp1-ura4 reporter to conduct high throughput screens (HTSs) for inhibitors of heterologously-expressed mammalian cyclic nucleotide phosphodiesterases (PDEs). Here, we describe the successful expression of all ten mammalian adenylyl cyclase (AC) genes, along with the human GNAS Gαs gene. By measuring expression of an fbp1-GFP reporter together with direct measurements of intracellular cAMP levels, we can detect both basal AC activity from all ten AC genes as well as GNAS-stimulated activity from eight of the nine transmembrane ACs (tmACs; AC2-AC9). The ability to use this platform to conduct HTS for novel chemical probes that reduce PKA activity was demonstrated by a pilot screen of the LOPAC®1280 library, leading to the identification of diphenyleneiodonium chloride (DPI) as an inhibitor of basal AC activity. This screening technology could open the door to the development of therapeutic compounds that target GNAS or the ACs, an area in which there is significant unmet need.
Collapse
Affiliation(s)
- Rachel A Getz
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Grace Kwak
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Stacie Cornell
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Samuel Mbugua
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | - Jeremy Eberhard
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | - Sheng Xiang Huang
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | - Zainab Abbasi
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | | | - Rony Thomas
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | - Brett Bukowski
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | - Patricia K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Charles S Hoffman
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| |
Collapse
|
108
|
Pérez P, Soto T, Gómez-Gil E, Cansado J. Functional interaction between Cdc42 and the stress MAPK signaling pathway during the regulation of fission yeast polarized growth. Int Microbiol 2019; 23:31-41. [PMID: 30989357 DOI: 10.1007/s10123-019-00072-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Cell polarization can be defined as the generation and maintenance of directional cellular organization. The spatial distribution and protein or lipid composition of the cell are not symmetric but organized in specialized domains which allow cells to grow and acquire a certain shape that is closely linked to their physiological function. The establishment and maintenance of polarized growth requires the coordination of diverse processes including cytoskeletal dynamics, membrane trafficking, and signaling cascade regulation. Some of the major players involved in the selection and maintenance of sites for polarized growth are Rho GTPases, which recognize the polarization site and transmit the signal to regulatory proteins of the cytoskeleton. Additionally, cytoskeletal organization, polarized secretion, and endocytosis are controlled by signaling pathways including those mediated by mitogen-activated protein kinases (MAPKs). Rho GTPases and the MAPK signaling pathways are strongly conserved from yeast to mammals, suggesting that the basic mechanisms of polarized growth have been maintained throughout evolution. For this reason, the study of how polarized growth is established and regulated in simple organisms such as the fission yeast Schizosaccharomyces pombe has contributed to broaden our knowledge about these processes in multicellular organisms. We review here the function of the Cdc42 GTPase and the stress activated MAPK (SAPK) signaling pathways during fission yeast polarized growth, and discuss the relevance of the crosstalk between both pathways.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007, Salamanca, Spain.
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Elisa Gómez-Gil
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Jose Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
109
|
Vassiliadis D, Wong KH, Andrianopoulos A, Monahan BJ. A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe. BMC Genomics 2019; 20:251. [PMID: 30922219 PMCID: PMC6440086 DOI: 10.1186/s12864-019-5602-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Optimal glucose metabolism is central to the growth and development of cells. In microbial eukaryotes, carbon catabolite repression (CCR) mediates the preferential utilization of glucose, primarily by repressing alternate carbon source utilization. In fission yeast, CCR is mediated by transcriptional repressors Scr1 and the Tup/Ssn6 complex, with the Rst2 transcription factor important for activation of gluconeogenesis and sexual differentiation genes upon derepression. Through genetic and genome-wide methods, this study aimed to comprehensively characterize CCR in fission yeast by identifying the genes and biological processes that are regulated by Scr1, Tup/Ssn6 and Rst2, the core CCR machinery. RESULTS The transcriptional response of fission yeast to glucose-sufficient or glucose-deficient growth conditions in wild type and CCR mutant cells was determined by RNA-seq and ChIP-seq. Scr1 was found to regulate genes involved in carbon metabolism, hexose uptake, gluconeogenesis and the TCA cycle. Surprisingly, a role for Scr1 in the suppression of sexual differentiation was also identified, as homothallic scr1 deletion mutants showed ectopic meiosis in carbon and nitrogen rich conditions. ChIP-seq characterised the targets of Tup/Ssn6 and Rst2 identifying regulatory roles within and independent of CCR. Finally, a subset of genes bound by all three factors was identified, implying that regulation of certain loci may be modulated in a competitive fashion between the Scr1, Tup/Ssn6 repressors and the Rst2 activator. CONCLUSIONS By identifying the genes directly and indirectly regulated by Scr1, Tup/Ssn6 and Rst2, this study comprehensively defined the gene regulatory networks of CCR in fission yeast and revealed the transcriptional complexities governing this system.
Collapse
Affiliation(s)
- Dane Vassiliadis
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia.
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| | - Alex Andrianopoulos
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon J Monahan
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia. .,Cancer Therapeutics (CTx), Parkville, Victoria, Australia.
| |
Collapse
|
110
|
Abstract
The fission yeast Schizosaccharomyces pombe, an ascomycete fungus, is an established model organism for studying eukaryotic molecular and cellular events such as the cell cycle due to its powerful genetics, a sequenced genome, and the ease of molecular manipulation (Wood et al., Nature 415:871-880, 2002; Hoffman et al., Genetics 201:403-423, 2015). This chapter describes genetic and cytological methods to study endosomal sorting complex required for transport (ESCRT) function during the cell cycle in fission yeast. These include tetrad analysis to allow the creation of double mutants to test for genetic interactions by synthetic phenotype characterization, such as cellular growth and the analysis of division septa by calcofluor-white staining.
Collapse
|
111
|
Larochelle M, Bergeron D, Arcand B, Bachand F. Proximity-dependent biotinylation by TurboID to identify protein-protein interaction networks in yeast. J Cell Sci 2019; 132:jcs.232249. [DOI: 10.1242/jcs.232249] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023] Open
Abstract
The use of proximity-dependent biotinylation assays coupled to mass spectrometry (PDB-MS) has changed the field of protein-protein interaction studies. Yet, despite the recurrent and successful use of BioID-based protein-protein interactions screening in mammalian cells, the implementation of PDB-MS in yeast has not been effective. Here we report a simple and rapid approach in yeast to effectively screen for proximal and interacting proteins in their natural cellular environment by using TurboID, a recently described version of the BirA biotin ligase. Using the protein arginine methyltransferase Rmt3 and the RNA exosome subunits, Rrp6 and Dis3, the application of PDB-MS in yeast by using TurboID was able to recover protein-protein interactions previously identified using other biochemical approaches and provided new complementary information for a given protein bait. The development of a rapid and effective PDB assay that can systematically analyze protein-protein interactions in living yeast cells opens the way for large-scale proteomics studies in this powerful model organism.
Collapse
Affiliation(s)
- Marc Larochelle
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Bruno Arcand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| |
Collapse
|
112
|
Roca-Domènech G, Cordero-Otero R, Rozès N, Cléroux M, Pernet A, Mira de Orduña R. Metabolism of Schizosaccharomyces pombe under reduced osmotic stress conditions afforded by fed-batch alcoholic fermentation of white grape must. Food Res Int 2018; 113:401-406. [DOI: 10.1016/j.foodres.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/27/2023]
|
113
|
Zach R, Převorovský M. The phenomenon of lipid metabolism "cut" mutants. Yeast 2018; 35:631-637. [PMID: 30278108 DOI: 10.1002/yea.3358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 02/05/2023] Open
Abstract
Every cell cycle iteration culminates with the resolution of a mitotic nucleus into a pair of daughter nuclei, which are distributed between the two daughter cells. In the fission yeast Schizosaccharomyces pombe, the faithful division of a mitotic nucleus depends on unperturbed lipogenesis. Upon genetically or chemically induced perturbation of lipid anabolism, S. pombe cells fail to separate the two daughter nuclei and subsequently initiate lethal cytokinesis resulting in the so-called "cut" terminal phenotype. Evidence supporting a critical role of lipid biogenesis in successful mitosis in S. pombe has been accumulating for almost two decades, but the exact mechanism explaining the reported observations had been elusive. Recently, several studies established a functional link between biosynthesis of structural phospholipids, nuclear membrane growth, and the fidelity of "closed" mitosis in S. pombe. These novel insights suggest a mechanistic explanation for the mitotic defects characteristic for some S. pombe mutants deficient in lipid anabolism and extend our knowledge of metabolic modulation within the context of the cell cycle. In this review, we cover the essential role of lipogenesis in "closed" mitosis, focusing mainly on S. pombe as a model system.
Collapse
Affiliation(s)
- Róbert Zach
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
114
|
Dysfunction of Prohibitin 2 Results in Reduced Susceptibility to Multiple Antifungal Drugs via Activation of the Oxidative Stress-Responsive Transcription Factor Pap1 in Fission Yeast. Antimicrob Agents Chemother 2018; 62:AAC.00860-18. [PMID: 30181366 DOI: 10.1128/aac.00860-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2 + gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2 + gene also exhibited antifungal drug resistance. Overexpression of the phb2 + gene failed to cause drug resistance when the pap1 + gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2 + gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2 + gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.
Collapse
|
115
|
Khmelinskii I, Makarov VI. EPR hyperthermia of S. cerevisiae using superparamagnetic Fe 3O 4 nanoparticles. J Therm Biol 2018; 77:55-61. [PMID: 30196899 DOI: 10.1016/j.jtherbio.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 11/24/2022]
Abstract
Presently we communicate a newly developed method of resonant radiofrequency heating, applicable in hyperthermal therapy. This method uses electron paramagnetic resonance (EPR) to transform the electromagnetic field energy into heat. We report the growth dynamics of the S. cerevisiae yeast cells exposed to EPR heating with superparamagnetic magnetite (Fe3O4) nanoparticles, with only 4% of yeast cells surviving hyperthermia. Given that EPR functions independently of type of the biologic species exposed, and produces spatially localized heating in conjunction with MRI hardware, it may be used in hyperthermal therapy of cancer and other diseases.
Collapse
Affiliation(s)
- I Khmelinskii
- Universidade do Algarve, FCT, DQF and CEOT, 8005-139 Faro, Portugal
| | - V I Makarov
- Department of Physics, University of Puerto Rico, Rio Piedras, PO Box 23343, San Juan, PR 00931-3343, USA.
| |
Collapse
|
116
|
Viigand K, Põšnograjeva K, Visnapuu T, Alamäe T. Genome Mining of Non-Conventional Yeasts: Search and Analysis of MAL Clusters and Proteins. Genes (Basel) 2018; 9:E354. [PMID: 30013016 PMCID: PMC6070925 DOI: 10.3390/genes9070354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic clustering of functionally related genes is rare in yeasts and other eukaryotes with only few examples available. Here, we summarize our data on a nontelomeric MAL cluster of a non-conventional methylotrophic yeast Ogataea (Hansenula) polymorpha containing genes for α-glucosidase MAL1, α-glucoside permease MAL2 and two hypothetical transcriptional activators. Using genome mining, we detected MAL clusters of varied number, position and composition in many other maltose-assimilating non-conventional yeasts from different phylogenetic groups. The highest number of MAL clusters was detected in Lipomyces starkeyi while no MAL clusters were found in Schizosaccharomyces pombe and Blastobotrys adeninivorans. Phylograms of α-glucosidases and α-glucoside transporters of yeasts agreed with phylogenesis of the respective yeast species. Substrate specificity of unstudied α-glucosidases was predicted from protein sequence analysis. Specific activities of Scheffersomycesstipitis α-glucosidases MAL7, MAL8, and MAL9 heterologously expressed in Escherichia coli confirmed the correctness of the prediction-these proteins were verified promiscuous maltase-isomaltases. α-Glucosidases of earlier diverged yeasts L. starkeyi, B. adeninivorans and S. pombe showed sequence relatedness with α-glucosidases of filamentous fungi and bacilli.
Collapse
Affiliation(s)
- Katrin Viigand
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristina Põšnograjeva
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
117
|
Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J, Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. Int J Mol Sci 2018; 19:E1947. [PMID: 29970827 PMCID: PMC6073265 DOI: 10.3390/ijms19071947] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
In this review article, yeast model-based research advances regarding the role of Amyloid-β (Aβ), Tau and frameshift Ubiquitin UBB+1 in Alzheimer’s disease (AD) are discussed. Despite having limitations with regard to intercellular and cognitive AD aspects, these models have clearly shown their added value as complementary models for the study of the molecular aspects of these proteins, including their interplay with AD-related cellular processes such as mitochondrial dysfunction and altered proteostasis. Moreover, these yeast models have also shown their importance in translational research, e.g., in compound screenings and for AD diagnostics development. In addition to well-established Saccharomyces cerevisiae models, new upcoming Schizosaccharomyces pombe, Candida glabrata and Kluyveromyces lactis yeast models for Aβ and Tau are briefly described. Finally, traditional and more innovative research methodologies, e.g., for studying protein oligomerization/aggregation, are highlighted.
Collapse
Affiliation(s)
- David Seynnaeve
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Mara Del Vecchio
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Gernot Fruhmann
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Joke Verelst
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Melody Cools
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Jimmy Beckers
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK.
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Vanessa Franssens
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| |
Collapse
|
118
|
Hayashi T, Teruya T, Chaleckis R, Morigasaki S, Yanagida M. S-Adenosylmethionine Synthetase Is Required for Cell Growth, Maintenance of G0 Phase, and Termination of Quiescence in Fission Yeast. iScience 2018; 5:38-51. [PMID: 30240645 PMCID: PMC6123894 DOI: 10.1016/j.isci.2018.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine is an important compound, because it serves as the methyl donor in most methyl transfer reactions, including methylation of proteins, nucleic acids, and lipids. However, cellular defects in the genetic disruption of S-adenosylmethionine synthesis are not well understood. Here, we report the isolation and characterization of temperature-sensitive mutants of fission yeast S-adenosylmethionine synthetase (Sam1). Levels of S-adenosylmethionine and methylated histone H3 were greatly diminished in sam1 mutants. sam1 mutants stopped proliferating in vegetative culture and arrested specifically in G2 phase without cell elongation. Furthermore, sam1 mutants lost viability during nitrogen starvation-induced G0 phase quiescence. After release from the G0 state, sam1 mutants could neither increase in cell size nor re-initiate DNA replication in the rich medium. Sam1 is thus required for cell growth and proliferation, and maintenance of and exit from quiescence. sam1 mutants lead to broad cellular and drug response defects, as expected, since S. pombe contains more than 90 S-adenosylmethionine-dependent methyltransferases.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Romanas Chaleckis
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Susumu Morigasaki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
119
|
Virčíková V, Pokorná L, Tahotná D, Džugasová V, Balážová M, Griač P. Schizosaccharomyces pombe cardiolipin synthase is part of a mitochondrial fusion protein regulated by intron retention. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1331-1344. [PMID: 29958934 DOI: 10.1016/j.bbalip.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.
Collapse
Affiliation(s)
- Veronika Virčíková
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Mária Balážová
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
120
|
Yang Y, Liu Q, Jiang G, Chen S, Zhou L, Sakamoto N, Kuno T, Fang Y, Yao F. Genome-wide screen reveals important roles for ESCRT proteins in drug/ion resistance of fission yeast. PLoS One 2018; 13:e0198516. [PMID: 29856841 PMCID: PMC5983419 DOI: 10.1371/journal.pone.0198516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
To study sodium homeostasis, we performed a genome-wide screen for deletion strains that show resistance to NaCl. We identified 34 NaCl-resistant strains. Among them, the largest group that consists of 10 genes related to membrane trafficking and 7 out of 10 genes are ESCRT proteins which are involved in cargo transportation into luminal vesicles within the multivesicular body. All of the ESCRT related mutants which showed sodium resistance also showed defects in vacuole fusion. To further understand the role of the ESCRT pathway in various ion homeostasis, we examined sensitivity of these ESCRT mutants to various cation salts other than NaCl, including KCl, LiCl, CaCl2, CoCl2, MgCl2, NiSO4 and MnCl2. While these ESCRT mutants showed resistance to LiCl, CoCl2 and MgCl2, they showed sensitivity to KCl, CaCl2, NiSO4 and MnCl2. Then we examined sensitivity of these ESCRT mutants to various drugs which are known to inhibit the growth of fission yeast cells. While these ESCRT mutants were more or equally sensitive to most of the drugs tested as compared to the wild-type cells, they showed resistance to some drugs such as tamoxifen, fluorouracil and amiodarone. These results suggest that the ESCRT pathway plays important roles in drug/ion resistance of fission yeast.
Collapse
Affiliation(s)
- Yikun Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Lina Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
- Division of Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
121
|
Migeot V, Hermand D. Chromatin Immunoprecipitation-Polymerase Chain Reaction (ChIP-PCR) Detects Methylation, Acetylation, and Ubiquitylation in S. pombe. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1721:25-34. [PMID: 29423844 DOI: 10.1007/978-1-4939-7546-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of modified histones within the fission yeast Schizosaccharomyces pombe genome is ultimately dependent upon the transcriptional activity and in turn influences the ability of the polymerases to bind and progress through the chromatin template. The Chromatin Immunoprecipitation-Polymerase Chain Reaction (ChIP-PCR) method currently provides the highest resolution, accuracy, and reproducibility to characterize histones modifications within a defined region of the genome. The following protocol details the method applied to S. pombe.
Collapse
|
122
|
Jeffares DC. The natural diversity and ecology of fission yeast. Yeast 2018; 35:253-260. [PMID: 29084364 DOI: 10.1002/yea.3293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
While the fission yeast is a powerful model of eukaryote biology, there have been few studies of quantitative genetics, phenotypic or genetic diversity. Here I survey the small collection of fission yeast diversity research. I discuss what we can infer about the ecology and origins of Schizosaccharomyces pombe from microbiology field studies and the few strains that have been collected.
Collapse
Affiliation(s)
- Daniel C Jeffares
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
123
|
Rayhan A, Faller A, Chevalier R, Mattice A, Karagiannis J. Using genetic buffering relationships identified in fission yeast to reveal susceptibilities in cells lacking hamartin or tuberin function. Biol Open 2018; 7:bio.031302. [PMID: 29343513 PMCID: PMC5827267 DOI: 10.1242/bio.031302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tuberous sclerosis complex is an autosomal dominant disorder characterized by benign tumors arising from the abnormal activation of mTOR signaling in cells lacking TSC1 (hamartin) or TSC2 (tuberin) activity. To expand the genetic framework surrounding this group of growth regulators, we utilized the model eukaryote Schizosaccharomyces pombe to uncover and characterize genes that buffer the phenotypic effects of mutations in the orthologous tsc1 or tsc2 loci. Our study identified two genes: fft3 (encoding a DNA helicase) and ypa1 (encoding a peptidyle-prolyl cis/trans isomerase). While the deletion of fft3 or ypa1 has little effect in wild-type fission yeast cells, their loss in tsc1Δ or tsc2Δ backgrounds results in severe growth inhibition. These data suggest that the inhibition of Ypa1p or Fft3p might represent an 'Achilles' heel' of cells defective in hamartin/tuberin function. Furthermore, we demonstrate that the interaction between tsc1/tsc2 and ypa1 can be rescued through treatment with the mTOR inhibitor, torin-1, and that ypa1Δ cells are resistant to the glycolytic inhibitor, 2-deoxyglucose. This identifies ypa1 as a novel upstream regulator of mTOR and suggests that the effects of ypa1 loss, together with mTOR activation, combine to result in a cellular maladaptation in energy metabolism that is profoundly inhibitory to growth.
Collapse
Affiliation(s)
- Ashyad Rayhan
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Adam Faller
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Ryan Chevalier
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Alannah Mattice
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Jim Karagiannis
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| |
Collapse
|
124
|
Reeves TD, Warner DM, Ludlow LH, O'Connor CM. Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course. CBE LIFE SCIENCES EDUCATION 2018; 17:ar1. [PMID: 29326101 PMCID: PMC6007769 DOI: 10.1187/cbe.17-01-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/28/2017] [Accepted: 10/04/2017] [Indexed: 05/30/2023]
Abstract
National reports have called for the introduction of research experiences throughout the undergraduate curriculum, but practical implementation at many institutions faces challenges associated with sustainability, cost, and large student populations. We describe a novel course-based undergraduate research experience (CURE) that introduces introductory-level students to research in functional genomics in a 3-credit, multisection laboratory class. In the Pathways over Time class project, students study the functional conservation of the methionine biosynthetic pathway between divergent yeast species. Over the five semesters described in this study, students (N = 793) showed statistically significant and sizable growth in content knowledge (d = 1.85) and in self-reported research methods skills (d = 0.65), experimental design, oral and written communication, database use, and collaboration. Statistical analyses indicated that content knowledge growth was larger for underrepresented minority students and that growth in content knowledge, but not research skills, varied by course section. Our findings add to the growing body of evidence that CUREs can support the scientific development of large numbers of students with diverse characteristics. The Pathways over Time project is designed to be sustainable and readily adapted to other institutional settings.
Collapse
Affiliation(s)
- Todd D Reeves
- Department of Measurement, Evaluation, Statistics, and Assessment, Boston College, Chestnut Hill, MA 02467
| | | | - Larry H Ludlow
- Department of Measurement, Evaluation, Statistics, and Assessment, Boston College, Chestnut Hill, MA 02467
| | | |
Collapse
|
125
|
Abstract
The fission yeast Schizosaccharomyces pombe has become well established as a model species for studying conserved cell-level biological processes, especially the mechanics and regulation of cell division. PomBase integrates the S. pombe genome sequence with traditional genetic, molecular, and cell biological experimental data as well as the growing body of large datasets generated by emerging high-throughput methods. This chapter provides insight into the curation philosophy and data organization at PomBase, and provides a guide to using PomBase for infrequent visitors and anyone considering exploring S. pombe in their research.
Collapse
|
126
|
Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 84:AEM.01553-17. [PMID: 29079624 PMCID: PMC5734042 DOI: 10.1128/aem.01553-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/23/2017] [Indexed: 12/02/2022] Open
Abstract
Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5′ sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenized AAD genes via ancestral-state reconstruction. The phylogeny of yeast AAD genes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars, AAD genes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization.
Collapse
|
127
|
Kaino T, Tonoko K, Mochizuki S, Takashima Y, Kawamukai M. Schizosaccharomyces japonicus has low levels of CoQ 10 synthesis, respiration deficiency, and efficient ethanol production. Biosci Biotechnol Biochem 2017; 82:1031-1042. [PMID: 29191091 DOI: 10.1080/09168451.2017.1401914] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coenzyme Q (CoQ) is essential for mitochondrial respiration and as a cofactor for sulfide quinone reductase. Schizosaccharomyces pombe produces a human-type CoQ10. Here, we analyzed CoQ in other fission yeast species. S. cryophilus and S. octosporus produce CoQ9. S. japonicus produces low levels of CoQ10, although all necessary genes for CoQ synthesis have been identified in its genome. We expressed three genes (dps1, dlp1, and ppt1) for CoQ synthesis from S. japonicus in the corresponding S. pombe mutants, and confirmed that they were functional. S. japonicus had very low levels of oxygen consumption and was essentially respiration defective, probably due to mitochondrial dysfunction. S. japonicus grows well on minimal medium during anaerobic culture, indicating that it acquires sufficient energy by fermentation. S. japonicus produces comparable levels of ethanol under both normal and elevated temperature (42 °C) conditions, at which S. pombe is not able to grow.
Collapse
Affiliation(s)
- Tomohiro Kaino
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Kai Tonoko
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Shiomi Mochizuki
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Yuriko Takashima
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
128
|
Rodrigo JA, Soto JM, Alieva T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. BIOMEDICAL OPTICS EXPRESS 2017; 8:5507-5517. [PMID: 29296484 PMCID: PMC5745099 DOI: 10.1364/boe.8.005507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 05/03/2023]
Abstract
The refractive index (RI) is an important optical characteristic that is often exploited in label-free microscopy for analysis of biological objects. A technique for 3D RI reconstruction of living cells has to be fast enough to capture the cell dynamics and preferably needs to be compatible with standard wide-field microscopes. To solve this challenging problem, we present a technique that provides fast measurement and processing of data required for real-time 3D visualization of the object RI. Specifically, the 3D RI is reconstructed from the measurement of bright-field intensity images, axially scanned by a high-speed focus tunable lens mounted in front of a sCMOS camera, by using a direct deconvolution approach designed for partially coherent light microscopy in the non-paraxial regime. Both the measurement system and the partially coherent illumination, that provides optical sectioning and speckle-noise suppression, enable compatibility with wide-field microscopes resulting in a competitive and affordable alternative to the current holographic laser microscopes. Our experimental demonstrations show video-rate 3D RI visualization of living bacteria both freely swimming and optically manipulated by using freestyle laser traps allowing for their trapping and transport along 3D trajectories. These results prove that is possible to conduct simultaneous 4D label-free quantitative imaging and optical manipulation of living cells, which is promising for the study of the cell biophysics and biology.
Collapse
|
129
|
Vishwanatha A, D'Souza CJM, Schweingruber ME. Genes Controlling 2-deoxyglucose Induced Lysis and Formation of Reactive Oxygen Species in Schizosaccharomyces pombe. Pol J Microbiol 2017; 66:393-396. [PMID: 29319508 DOI: 10.5604/01.3001.0010.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schizosaccharomyces pombe cells of strains each carrying a deletion of one of the genes snf5, ypa1, pho7 and pas1 and of a strain overexpressing gene odr1, have been previously shown to grow in presence of the toxic glucose analogue 2-deoxyglucose (2-DG). Here we report that these genes control 2-DG induced lysis and are, with the exception of odr1, also involved in control of formation of reactive oxygen species (ROS) upon exposure of cells to H2O2. Lysis of deletion strains, but not of strain overexpressing odr1, is dependent on glucose concentration of the medium whereas ROS formation is glucose independent.
Collapse
Affiliation(s)
- Akshay Vishwanatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Cletus J M D'Souza
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Martin E Schweingruber
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
130
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
131
|
Liu X, Hoque M, Larochelle M, Lemay JF, Yurko N, Manley JL, Bachand F, Tian B. Comparative analysis of alternative polyadenylation in S. cerevisiae and S. pombe. Genome Res 2017; 27:1685-1695. [PMID: 28916539 PMCID: PMC5630032 DOI: 10.1101/gr.222331.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
Abstract
Alternative polyadenylation (APA) is a widespread mechanism that generates mRNA isoforms with distinct properties. Here we have systematically mapped and compared cleavage and polyadenylation sites (PASs) in two yeast species, S. cerevisiae and S. pombe. Although >80% of the mRNA genes in each species were found to display APA, S. pombe showed greater 3′ UTR size differences among APA isoforms than did S. cerevisiae. PASs in different locations of gene are surrounded with distinct sequences in both species and are often associated with motifs involved in the Nrd1-Nab3-Sen1 termination pathway. In S. pombe, strong motifs surrounding distal PASs lead to higher abundances of long 3′ UTR isoforms than short ones, a feature that is opposite in S. cerevisiae. Differences in PAS placement between convergent genes lead to starkly different antisense transcript landscapes between budding and fission yeasts. In both species, short 3′ UTR isoforms are more likely to be expressed when cells are growing in nutrient-rich media, although different gene groups are affected in each species. Significantly, 3′ UTR shortening in S. pombe coordinates with up-regulation of expression for genes involved in translation during cell proliferation. Using S. pombe strains deficient for Pcf11 or Pab2, we show that reduced expression of 3′-end processing factors lengthens 3′ UTR, with Pcf11 having a more potent effect than Pab2. Taken together, our data indicate that APA mechanisms in S. pombe and S. cerevisiae are largely different: S. pombe has many of the APA features of higher species, and Pab2 in S. pombe has a different role in APA regulation than its mammalian homolog, PABPN1.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Marc Larochelle
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jean-François Lemay
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Nathan Yurko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| |
Collapse
|
132
|
Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling. Curr Genet 2017; 64:103-108. [PMID: 28799069 DOI: 10.1007/s00294-017-0732-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023]
Abstract
In eukaryotic cells, RNA binding proteins (RBPs) play critical roles in regulating almost every aspect of gene expression, often shuttling between the nucleus and the cytoplasm. They are also key determinants in cell fate via controlling the target mRNAs under the regulation of various signaling pathways in response to environmental stresses. Therefore, understanding the mechanisms that couple the location of mRNA and RBPs is a major challenge in the field of gene expression and signal responses. In fission yeast, a KH-type RBP Rnc1 negatively regulates MAPK signaling activation via mRNA stabilization of the dual-specificity MAPK phosphatase Pmp1, which dephosphorylates MAPK Pmk1. Rnc1 also serves as a target of MAPK phosphorylation, which makes a feedback loop mediated by an RBP. We recently discovered that the nuclear export of Rnc1 requires mRNA-binding ability and the mRNA export factor Rae1. This strongly suggested the presence of an mRNA-export system, which recognizes the mRNA/RBP complex and dictates the location and post-transcriptional regulation of mRNA cargo. Here, we briefly review the known mechanisms of general nuclear transporting systems, with an emphasis on our recent findings on the spatial regulation of Rnc1 and its impact on the regulation of the MAPK signal transduction cascade.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
133
|
Stovicek V, Holkenbrink C, Borodina I. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res 2017; 17:3828107. [PMID: 28505256 PMCID: PMC5812514 DOI: 10.1093/femsyr/fox030] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022] Open
Abstract
The methods based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have quickly gained popularity for genome editing and transcriptional regulation in many organisms, including yeast. This review aims to provide a comprehensive overview of CRISPR application for different yeast species: from basic principles and genetic design to applications.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
134
|
Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg Med Chem 2017; 25:5396-5406. [PMID: 28789907 DOI: 10.1016/j.bmc.2017.07.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Benzothiazole analogues are of interest due to their potential activity against malarial and microbial infections. In search of suitable antimicrobial and antimalarial agents, we report here the synthesis, characterization and biological activities of benzothiazole analogues (J 1-J 10). The molecules were characterized by IR, Mass, 1H NMR, 13C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains; the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds J 1, J 2, J 3, J 5 and J 6 were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR, computational and in vitro studies were carried out to examine their candidatures as lead dihydrofolate reductase inhibitors.
Collapse
|
135
|
Kashiwazaki G, Maeda R, Kawase T, Hashiya K, Bando T, Sugiyama H. WITHDRAWN: Evaluation of alkylating pyrrole-imidazole polyamide conjugates by a novel method for high-throughput sequencer. Bioorg Med Chem 2017:S0968-0896(17)31427-X. [PMID: 29884583 DOI: 10.1016/j.bmc.2017.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| | - Rina Maeda
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Nakaadachi-cho, Yoshida, Sakyo, Kyoto 606-8306, Japan
| | - Takashi Kawase
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi 36-1, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiya-cho, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
136
|
1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg Med Chem 2017. [PMID: 28634040 DOI: 10.1016/j.bmc.2017.05.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,2,4-Triazole and 1,3,4-oxadiazole analogues are of interest due to their potential activity against microbial and malarial infections. In search of suitable antimicrobial and antimalarial compounds, we report here the synthesis, characterization and biological activities of 1,2,4-triazole and 1,3,4-oxadiazole analogues (SS 1-SS 10). The molecules were characterized by IR, mass, 1H NMR, 13C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains, the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR computationally as well as in vitro to prove their candidature as lead dihydrofolate reductase inhibitors.
Collapse
|
137
|
A Brief History of Schizosaccharomyces pombe Research: A Perspective Over the Past 70 Years. Genetics 2017; 203:621-9. [PMID: 27270696 DOI: 10.1534/genetics.116.189407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since its humble start as a model organism in two European laboratories in the 1940s and 1950s, the fission yeast Schizosaccharomyces pombe has grown to become one of the best-studied eukaryotes today. This article outlines the way in which interest in S. pombe developed and spread from Europe to Japan, North America, and elsewhere from its beginnings up to the first International Meeting devoted to this yeast in 1999. We describe the expansion of S. pombe research during this period with an emphasis on many of the individual researchers involved and their interactions that resulted in the development of today's vibrant community.
Collapse
|
138
|
Nishino K, Kushima M, Kaino T, Matsuo Y, Kawamukai M. Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants. Biosci Biotechnol Biochem 2017; 81:1444-1451. [PMID: 28345447 DOI: 10.1080/09168451.2017.1303360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.
Collapse
Affiliation(s)
- Kohei Nishino
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Misaki Kushima
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Tomohiro Kaino
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Yasuhiro Matsuo
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
139
|
Lee SQE, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q 10 production. Microb Cell Fact 2017; 16:39. [PMID: 28253886 PMCID: PMC5335738 DOI: 10.1186/s12934-017-0646-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/10/2017] [Indexed: 04/20/2023] Open
Abstract
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore, Singapore. .,National University Health System (NUHS), Singapore, Singapore. .,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
140
|
Vishwanatha A, D'Souza CJM. Multifaceted effects of antimetabolite and anticancer drug, 2-deoxyglucose on eukaryotic cancer models budding and fission yeast. IUBMB Life 2017; 69:137-147. [DOI: 10.1002/iub.1599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Akshay Vishwanatha
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka India
| | | |
Collapse
|
141
|
The functions of the multi-tasking Pfh1 Pif1 helicase. Curr Genet 2017; 63:621-626. [PMID: 28054200 PMCID: PMC5504263 DOI: 10.1007/s00294-016-0675-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/03/2022]
Abstract
Approximately, 1% of the genes in eukaryotic genomes encode for helicases, which make the number of helicases expressed in the cell considerably high. Helicases are motor proteins that participate in many central aspects of the nuclear and mitochondrial genomes, and based on their helicase motif conservation, they are divided into different helicase families. The Pif1 family of helicases is an evolutionarily conserved helicase family that is associated with familial breast cancer in humans. The Schizosaccharomyces pombe Pfh1 helicase belongs to the Pif1 helicase family and is a multi-tasking helicase that is important for replication fork progression through natural fork barriers, for G-quadruplex unwinding, and for Okazaki fragment maturation, and these activities are potentially shared by the human Pif1 helicase. This review discusses the known functions of the Pfh1 helicase, the study of which has led to a better understanding of nucleic acid metabolism in eukaryotes.
Collapse
|
142
|
Paul Nurse and Pierre Thuriaux on wee Mutants and Cell Cycle Control. Genetics 2016; 204:1325-1326. [PMID: 27927897 DOI: 10.1534/genetics.116.197186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
143
|
Koyama M, Nagakura W, Tanaka H, Kujirai T, Chikashige Y, Haraguchi T, Hiraoka Y, Kurumizaka H. In vitro reconstitution and biochemical analyses of the Schizosaccharomyces pombe nucleosome. Biochem Biophys Res Commun 2016; 482:896-901. [PMID: 27890612 DOI: 10.1016/j.bbrc.2016.11.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Schizosaccharomyces pombe, which has a small genome but shares many physiological functions with higher eukaryotes, is a useful single-cell, model eukaryotic organism. In particular, many features concerning chromatin structure and dynamics, including heterochromatin, centromeres, telomeres, and DNA replication origins, are well conserved between S. pombe and higher eukaryotes. However, the S. pombe nucleosome, the fundamental structural unit of chromatin, has not been reconstituted in vitro. In the present study, we established the method to purify S. pombe histones H2A, H2B, H3, and H4, and successfully reconstituted the S. pombe nucleosome in vitro. Our thermal stability assay and micrococcal nuclease treatment assay revealed that the S. pombe nucleosome is markedly unstable and its DNA ends are quite accessible, as compared to the canonical human nucleosome. These findings are important to understand the mechanisms of epigenetic genomic DNA regulation in fission yeast.
Collapse
Affiliation(s)
- Masako Koyama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Nagakura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoya Kujirai
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
144
|
Jamroskovic J, Livendahl M, Eriksson J, Chorell E, Sabouri N. Identification of Compounds that Selectively Stabilize Specific G-Quadruplex Structures by Using a Thioflavin T-Displacement Assay as a Tool. Chemistry 2016; 22:18932-18943. [DOI: 10.1002/chem.201603463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| | | | - Jonas Eriksson
- Laboratories for Chemical Biology Umeå; Chemical Biology Consortium Sweden; Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Erik Chorell
- Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| |
Collapse
|
145
|
Abstract
We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens.
Collapse
Affiliation(s)
- Michal Malecki
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, UK.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
146
|
Sequential and counter-selectable cassettes for fission yeast. BMC Biotechnol 2016; 16:76. [PMID: 27825338 PMCID: PMC5101803 DOI: 10.1186/s12896-016-0307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023] Open
Abstract
Background Fission yeast is one of the most commonly used model organisms for studying genetics. For selection of desirable genotypes, antibiotic resistance cassettes are widely integrated into the genome near genes of interest. In yeasts, this is achieved by PCR amplification of the cassette flanked by short homology sequences, which can be incorporated by homology directed repair. However, the currently available cassettes all share the same tef promoter and terminator sequences. It can therefore be challenging to perform multiple genetic modifications by PCR-based targeting, as existing resistance cassettes in strains can be favored for recombination due to shared homology between the cassettes. Results Here we have generated new selection cassettes that do not recombine with those traditionally used. We achieved this by swapping the tef promoter and terminator sequences in the established antibiotic resistance MX6 cassette series for alternative promoters and/or terminators. The newly created selection cassettes did not recombine with the tef-containing MX6 cassettes already present in the genome, allowing for sequential gene targeting using the PCR-based method. In addition, we have generated a series of plasmids to facilitate the C-terminal tagging of genes with desired epitopes. We also utilized the anti-selection gene HSV-TK, which results in cell death in strains grown on the drug 5-Fluoro-2’-deoxyuridine (FdU, Floxuridin or FUDR). By fusing an antibiotic resistance gene to HSV-TK, we were able to select on the relevant antibiotic as well as counter-select on FdU media to confirm the desired genomic modification had been made. We noted that the efficiency of the counter selection by FdU was enhanced by treatment with hydroxyurea. However, a number of DNA replication checkpoint and homologous recombination mutants, including rad3∆, cds1∆, rad54∆ and rad55∆, exhibited sensitivity to FdU even though those strains did not carry the HSV-TK gene. To remove counter-selectable markers, we introduced the Cre-loxP irreversible recombination method. Finally, utilizing the negative selectable markers, we showed efficient induction of point mutations in an endogenous gene by a two-step transformation method. Conclusions The plasmid constructs and techniques described here are invaluable tools for sequential gene targeting and will simplify construction of fission yeast strains required for study.
Collapse
|
147
|
Abstract
Meiosis is essential for sexually reproducing organisms, including the fission yeast Schizosaccharomyces pombe In meiosis, chromosomes replicate once in a diploid precursor cell (zygote), and then segregate twice to generate four haploid meiotic products, named spores in yeast. In S. pombe, Php4 is responsible for the transcriptional repression capability of the heteromeric CCAAT-binding factor to negatively regulate genes encoding iron-using proteins under low-iron conditions. Here, we show that the CCAAT-regulatory subunit Php4 is required for normal progression of meiosis under iron-limiting conditions. Cells lacking Php4 exhibit a meiotic arrest at metaphase I. Microscopic analyses of cells expressing functional GFP-Php4 show that it colocalizes with chromosomal material at every stage of meiosis under low concentrations of iron. In contrast, GFP-Php4 fluorescence signal is lost when cells undergo meiosis under iron-replete conditions. Global gene expression analysis of meiotic cells using DNA microarrays identified 137 genes that are regulated in an iron- and Php4-dependent manner. Among them, 18 genes are expressed exclusively during meiosis and constitute new putative Php4 target genes, which include hry1+ and mug14+ Further analysis validates that Php4 is required for maximal and timely repression of hry1+ and mug14+ genes. Using a chromatin immunoprecipitation approach, we show that Php4 specifically associates with hry1+ and mug14+ promoters in vivo Taken together, the results reveal that in iron-starved meiotic cells, Php4 is essential for completion of the meiotic program since it participates in global gene expression reprogramming to optimize the use of limited available iron.
Collapse
|
148
|
Zhao D, Liu XM, Yu ZQ, Sun LL, Xiong X, Dong MQ, Du LL. Atg20- and Atg24-family proteins promote organelle autophagy in fission yeast. J Cell Sci 2016; 129:4289-4304. [PMID: 27737912 DOI: 10.1242/jcs.194373] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
Autophagy cargos include not only soluble cytosolic materials but also bulky organelles, such as ER and mitochondria. In budding yeast, two proteins that contain the PX domain and the BAR domain, Atg20 and Atg24 (also known as Snx42 and Snx4, respectively) are required for organelle autophagy and contribute to general autophagy in a way that can be masked by compensatory mechanisms. It remains unclear why these proteins are important for organelle autophagy. Here, we show that in a distantly related fungal organism, the fission yeast Schizosaccharomyces pombe, autophagy of ER and mitochondria is induced by nitrogen starvation and is promoted by three Atg20- and Atg24-family proteins - Atg20, Atg24 and SPBC1711.11 (named here as Atg24b). These proteins localize at the pre-autophagosomal structure, or phagophore assembly site (PAS), during starvation. S. pombe Atg24 forms a homo-oligomer and acts redundantly with Atg20 and Atg24b, and the latter two proteins can form a hetero-oligomer. The organelle autophagy defect caused by the loss of these proteins is associated with a reduction of autophagosome size and a decrease in Atg8 accumulation at the PAS. These results provide new insights into the autophagic function of Atg20- and Atg24-family proteins.
Collapse
Affiliation(s)
- Dan Zhao
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhong-Qiu Yu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ling-Ling Sun
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
149
|
Big data mining powers fungal research: recent advances in fission yeast systems biology approaches. Curr Genet 2016; 63:427-433. [PMID: 27730285 DOI: 10.1007/s00294-016-0657-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.
Collapse
|
150
|
Noguchi C, Grothusen G, Anandarajan V, Martínez-Lage García M, Terlecky D, Corzo K, Tanaka K, Nakagawa H, Noguchi E. Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast. Cell Cycle 2016; 16:45-58. [PMID: 27687866 DOI: 10.1080/15384101.2016.1237326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde. We demonstrate that Atd1 functions as a major acetaldehyde detoxification enzyme that prevents accumulation of Rad52-DNA repair foci, while Atd2 and Atd3 have minor roles in acetaldehyde detoxification. We found that acetaldehyde causes DNA damage at the replication fork and activates the cell cycle checkpoint to coordinate cell cycle arrest with DNA repair. Our investigation suggests that acetaldehyde-mediated DNA adducts include interstrand-crosslinks and DNA-protein crosslinks. We also demonstrate that acetaldehyde activates multiple DNA repair pathways. Nucleotide excision repair and homologous recombination, which are both epistatically linked to the Fanconi anemia pathway, have major roles in acetaldehyde tolerance, while base excision repair and translesion synthesis also contribute to the prevention of acetaldehyde-dependent genomic instability. We also show the involvement of Wss1-related metalloproteases, Wss1 and Wss2, in acetaldehyde tolerance. These results indicate that acetaldehyde causes cellular stresses that require cells to coordinate multiple cellular processes in order to prevent genomic instability. Considering that acetaldehyde is a human carcinogen, our genetic studies serve as a guiding investigation into the mechanisms of acetaldehyde-dependent genomic instability and carcinogenesis.
Collapse
Affiliation(s)
- Chiaki Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Grant Grothusen
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Vinesh Anandarajan
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Marta Martínez-Lage García
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Daniel Terlecky
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Krysten Corzo
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| | - Katsunori Tanaka
- b Department of Bioscience , School of Science and Technology, Kwansei Gakuin University , Sanda , Japan
| | - Hiroshi Nakagawa
- c Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine , PA , USA
| | - Eishi Noguchi
- a Department of Biochemistry and Molecular Biology , Drexel University College of Medicine , Philadelphia , PA , USA
| |
Collapse
|