101
|
Teyssier C, Gallet M, Rabier B, Monfoulet L, Dine J, Macari C, Espallergues J, Horard B, Giguère V, Cohen-Solal M, Chassande O, Vanacker JM. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency. PLoS One 2009; 4:e7942. [PMID: 19936213 PMCID: PMC2776272 DOI: 10.1371/journal.pone.0007942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/13/2009] [Indexed: 01/20/2023] Open
Abstract
Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis.
Collapse
Affiliation(s)
- Catherine Teyssier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte Rabier
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Laurent Monfoulet
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Julien Dine
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Claire Macari
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Espallergues
- Institut National de la Santé et de la Recherche Médicale U710, Université de Montpellier II, Montpellier, France
| | - Béatrice Horard
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Villeurbanne, France
| | - Vincent Giguère
- The Rosalind and Morris Goodman Cancer Centre, Montréal, Canada
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Olivier Chassande
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
102
|
Bianco S, Lanvin O, Tribollet V, Macari C, North S, Vanacker JM. Modulating estrogen receptor-related receptor-alpha activity inhibits cell proliferation. J Biol Chem 2009; 284:23286-92. [PMID: 19546226 PMCID: PMC2749102 DOI: 10.1074/jbc.m109.028191] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/01/2009] [Indexed: 11/06/2022] Open
Abstract
High expression of the estrogen receptor-related receptor (ERR)-alpha in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRalpha reduces the proliferation of various cell lines and blocks the G(1)/S transition of the cell cycle in an ERRalpha-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21(waf/cip)(1) at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice.
Collapse
Affiliation(s)
- Stéphanie Bianco
- From the Institut de Génomique
Fonctionnelle de Lyon, Université de Lyon, Université Lyon
1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale
Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon
Cedex 07 and
| | - Olivia Lanvin
- From the Institut de Génomique
Fonctionnelle de Lyon, Université de Lyon, Université Lyon
1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale
Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon
Cedex 07 and
| | - Violaine Tribollet
- From the Institut de Génomique
Fonctionnelle de Lyon, Université de Lyon, Université Lyon
1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale
Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon
Cedex 07 and
| | - Claire Macari
- From the Institut de Génomique
Fonctionnelle de Lyon, Université de Lyon, Université Lyon
1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale
Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon
Cedex 07 and
| | - Sophie North
- INSERM U920 and Université
Bordeaux 1, 33400 Talence, France
| | - Jean-Marc Vanacker
- From the Institut de Génomique
Fonctionnelle de Lyon, Université de Lyon, Université Lyon
1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale
Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon
Cedex 07 and
| |
Collapse
|
103
|
Ellmann S, Sticht H, Thiel F, Beckmann MW, Strick R, Strissel PL. Estrogen and progesterone receptors: from molecular structures to clinical targets. Cell Mol Life Sci 2009; 66:2405-26. [PMID: 19333551 PMCID: PMC11115849 DOI: 10.1007/s00018-009-0017-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 01/24/2023]
Abstract
Research involving estrogen and progesterone receptors (ER and PR) have greatly contributed to our understanding of cell signaling and transcriptional regulation. In addition to the classical ER and PR nuclear actions, new signaling pathways have recently been identified due to ER and PR association with cell membranes and signal transduction proteins. Bio-informatics has unveiled how ER and PR recognize their ligands, selective modulators and co-factors, which has helped to implement them as key targets in the treatment of benign and malignant tumors. Knowledge regarding ER and PR is vast and complex; therefore, this review will focus on their isoforms, signaling pathways, co-activators and co-repressors, which lead to target gene regulation. Moreover it will highlight ER and PR involvement in benign and malignant diseases as well as pharmacological substances influencing cell signaling and provide established and new structural insights into the mechanism of activation and inhibition of these receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Computational Biology
- Estradiol/chemistry
- Estradiol/metabolism
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Progesterone/chemistry
- Progesterone/metabolism
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/classification
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/classification
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/antagonists & inhibitors
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/metabolism
- Sequence Alignment
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Stephan Ellmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Department of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Falk Thiel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| |
Collapse
|
104
|
Heck S, Rom J, Thewes V, Becker N, Blume B, Sinn HP, Deuschle U, Sohn C, Schneeweiss A, Lichter P. Estrogen-related receptor alpha expression and function is associated with the transcriptional coregulator AIB1 in breast carcinoma. Cancer Res 2009; 69:5186-93. [PMID: 19491275 DOI: 10.1158/0008-5472.can-08-3062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The significance of the estrogen-related receptor alpha (ERRalpha) as prognostic marker for poor clinical outcome in breast carcinoma has recently been reported. Transcriptional activity of nuclear receptors such as ERRalpha depends on coregulatory proteins. Thus, we compared the expression of different receptors, coregulators, and target genes on RNA and protein level in identical primary breast tumor samples (n = 48). We found a positive correlation between the transcripts of ERRalpha and AIB1 (amplified in breast cancer-1), a coactivator overexpressed in breast cancers and associated with resistance to antihormone treatment. These data were confirmed on protein level, studying an independent patient collection (n = 257). Expression of the estrogen-regulated gene pS2 was associated with ERRalpha only in tumors, where estrogen receptor (ERalpha) expression was low or absent. In ERalpha high expressing tumors, no correlation of ERRalpha and pS2 was observed. AIB1 interacts directly with ERRalpha as shown by fluorescence-resonance energy transfer, mammalian two-hybrid, and coimmunoprecipitation assays with endogenous proteins. It enhances ERRalpha transcriptional activity in ERalpha-negative breast cancer cell lines as shown in functional reporter gene assays. Blocking ERRalpha with an inverse agonist abolished interaction and coactivation by AIB1. Recruitment of both proteins to ERRalpha target gene promoters further supports the significance of their interaction. Our findings identify AIB1 as functionally relevant cofactor for ERRalpha in breast carcinoma. ERRalpha/AIB1 complexes may control estradiol-regulated genes in a hormone-independent manner. Accordingly, ERRalpha might be a rewarding target for treatment of endocrine-resistant tumors.
Collapse
Affiliation(s)
- Stefanie Heck
- German Cancer Research Center (DKFZ), Division of Molecular Genetics, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Liu D, Benlhabib H, Mendelson CR. cAMP enhances estrogen-related receptor alpha (ERRalpha) transcriptional activity at the SP-A promoter by increasing its interaction with protein kinase A and steroid receptor coactivator 2 (SRC-2). Mol Endocrinol 2009; 23:772-83. [PMID: 19264843 PMCID: PMC2691680 DOI: 10.1210/me.2008-0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 02/24/2009] [Indexed: 01/01/2023] Open
Abstract
Estrogen-related receptor (ERRalpha) plays a critical role in basal and cAMP-induced expression of the human surfactant protein-A (SP-A) gene in lung type II cells through direct binding to an ERR response element (ERRE, 5'-TGACCTTA-3') within its 5'-flanking region. Furthermore, protein kinase A (PKA) up-regulates ERRalpha activation of the hSP-A promoter. In the present study, using cultured human fetal lung type II cells, we observed that cAMP enhanced ERRalpha phosphorylation and nuclear expression levels. cAMP/PKA stimulation of ERRalpha activation of the SP-A promoter was blocked by the PKA inhibitor, H89, whereas the MAPK P38 inhibitor, SB203580, and the MAPK kinase inhibitor, PD98059, had negligible to modest effects. This suggests that cAMP acts selectively through PKA to increase ERRalpha transcriptional activity. Of several coactivators tested, steroid receptor coactivator 2 (SRC-2) had the most pronounced effect to increase ERRalpha transcriptional activity at the SP-A promoter; this was enhanced by cotransfection with PKA catalytic subunit (PKAcat). Interestingly, SRC-2, ERRalpha, and PKAcat in type II cell nuclear extracts interacted at the ERRE; this was enhanced by cAMP and inhibited by H89. cAMP increased in vivo binding of PKAcat and SRC-2 to the ERRE genomic region in lung type II cells. In mutagenesis studies, three serines (S87, S114, and S277) were found to be critical for PKA and SRC-2 induction of ERRalpha transcriptional activity. Collectively, these findings indicate that cAMP/PKA signaling enhances ERRalpha phosphorylation and nuclear localization, recruitment to the SP-A promoter, and interaction with PKAcat and SRC-2, resulting in the up-regulation of SP-A gene transcription.
Collapse
Affiliation(s)
- Dongyuan Liu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 75390-9038, USA
| | | | | |
Collapse
|
106
|
Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e003. [PMID: 19381306 PMCID: PMC2670432 DOI: 10.1621/nrs.07003] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/18/2009] [Indexed: 12/11/2022]
Abstract
The last few years have witnessed a rapid increase in our knowledge of the retinoid-related orphan receptors RORα, -β, and -γ (NR1F1-3), their mechanism of action, physiological functions, and their potential role in several pathologies. The characterization of ROR-deficient mice and gene expression profiling in particular have provided great insights into the critical functions of RORs in the regulation of a variety of physiological processes. These studies revealed that RORα plays a critical role in the development of the cerebellum, that both RORα and RORβ are required for the maturation of photoreceptors in the retina, and that RORγ is essential for the development of several secondary lymphoid tissues, including lymph nodes. RORs have been further implicated in the regulation of various metabolic pathways, energy homeostasis, and thymopoiesis. Recent studies identified a critical role for RORγ in lineage specification of uncommitted CD4+ T helper cells into Th17 cells. In addition, RORs regulate the expression of several components of the circadian clock and may play a role in integrating the circadian clock and the rhythmic pattern of expression of downstream (metabolic) genes. Study of ROR target genes has provided insights into the mechanisms by which RORs control these processes. Moreover, several reports have presented evidence for a potential role of RORs in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, and obesity, and raised the possibility that RORs may serve as potential targets for chemotherapeutic intervention. This prospect was strengthened by recent evidence showing that RORs can function as ligand-dependent transcription factors.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
107
|
Bottegoni G, Kufareva I, Totrov M, Abagyan R. Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 2009; 52:397-406. [PMID: 19090659 DOI: 10.1021/jm8009958] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many available methods aimed at incorporating the receptor flexibility in ligand docking are computationally expensive, require a high level of user intervention, and were tested only on benchmarks of limited size and diversity. Here we describe the four-dimensional (4D) docking approach that allows seamless incorporation of receptor conformational ensembles in a single docking simulation and reduces the sampling time while preserving the accuracy of traditional ensemble docking. The approach was tested on a benchmark of 99 therapeutically relevant proteins and 300 diverse ligands (half of them experimental or marketed drugs). The conformational variability of the binding pockets was represented by the available crystallographic data, with the total of 1113 receptor structures. The 4D docking method reproduced the correct ligand binding geometry in 77.3% of the benchmark cases, matching the success rate of the traditional approach but employed on average only one-fourth of the time during the ligand sampling phase.
Collapse
Affiliation(s)
- Giovanni Bottegoni
- Department of Molecular Biology, The Scripps Research Institute, TPC28, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
108
|
Abstract
Transcriptional control of cellular energy metabolic pathways is achieved by the coordinated action of numerous transcription factors and associated coregulators. Several members of the nuclear receptor superfamily have been shown to play important roles in this process because they can translate hormonal, nutrient, and metabolite signals into specific gene expression networks to satisfy energy demands in response to distinct physiological cues. Estrogen-related receptor (ERR) alpha, ERRbeta, and ERRgamma are nuclear receptors that have yet to be associated with a natural ligand and are thus considered as orphan receptors. However, the transcriptional activity of the ERRs is exquisitely sensitive to the presence of coregulatory proteins known to be essential for the control of energy homeostasis, and for all intents and purposes, these coregulators function as protein ligands for the ERRs. In particular, functional genomics and biochemical studies have shown that ERRalpha and ERRgamma operate as the primary conduits for the activity of members of the family of PGC-1 coactivators. As transcription factors, the ERRs control vast gene networks involved in all aspects of energy homeostasis, including fat and glucose metabolism as well as mitochondrial biogenesis and function. Phenotypic analyses of knockout mouse models have shown that all three ERRs are indispensable for proper development and/or survival of the organism when subjected to a variety of physiological challenges. The focus of this review is on the recent and rapid advances in understanding the functions of the ERRs in regulating bioenergetic pathways, with an emphasis on their roles in the specification of energetic properties required for cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Vincent Giguère
- The Rosalind and Morris Goodman Cancer Centre, Cancer Pavilion, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3.
| |
Collapse
|
109
|
Baker ME. Trichoplax, the simplest known animal, contains an estrogen-related receptor but no estrogen receptor: Implications for estrogen receptor evolution. Biochem Biophys Res Commun 2008; 375:623-7. [PMID: 18722350 DOI: 10.1016/j.bbrc.2008.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
Although, as their names imply, estrogen receptors [ERs] and estrogen-related receptors [ERRs] are related transcription factors, their evolutionary relationships to each other are not fully understood. To elucidate the origins and evolution of ERs and ERRs, we searched for their orthologs in the recently sequenced genome of Trichoplax, the simplest known animal, and in the genomes of three lophotrochozoans: Capitella, an annelid worm, Helobdella robusta, a leech, and Lottia gigantea, a snail. BLAST searches found an ERR in Trichoplax, but no ER. BLAST searches also found ERRs in all three lophotrochozoans and invertebrate-like ERs in Capitella and Lottia, but not in Helobdella. Unexpectedly we find that the Capitella ER sequence is closest to ERbeta, unlike the other invertebrate ER sequences, which are closest to ERalpha. Our database searches and phylogenetic analysis indicate that invertebrate ERs evolved in a lophotrochozoan and steroid-binding ERs evolved in a deuterostome.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA.
| |
Collapse
|