101
|
Small DM, Gobe GC. Cytochrome c: potential as a noninvasive biomarker of drug-induced acute kidney injury. Expert Opin Drug Metab Toxicol 2012; 8:655-64. [PMID: 22475359 DOI: 10.1517/17425255.2012.679657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality, yet there remains continued reliance on increased serum creatinine and blood urea nitrogen to diagnose AKI. These biomarkers increase only after significant renal structural damage has occurred. Recent research efforts have focused on discovery and validation of novel serum and urine biomarkers to detect AKI prior to extensive structural damage. Cytochrome c is best known as an indicator of cell death burden in any organ or tissue. It is released during mitochondrial damage that is associated with processing of apoptosis, cell lysis during necrosis and even reversible mitochondrial and cell injury. AREAS COVERED This article reviews the current literature on the potential for cytochrome c as an early biomarker of AKI. The article is based on PubMed searches, using the terms 'acute kidney injury,' 'renal failure,' 'biomarker,' 'toxicity' and 'cytochrome c', with a focus on experimental and clinical data. EXPERT OPINION Cytochrome c, as a biomarker, has the potential to improve outcome for AKI patients. Its release indicates mitochondrial damage, one of the earliest changes in cell injury and death. New mitochondrial-targeted therapeutics may be designed around this molecule. Its disadvantages include only transient increase at expression levels that are easily measurable and nonspecificity for kidney injury. The appropriate and optimal utilization of cytochrome c as a biomarker for AKI will be realized only after its complete characterization in experimental and clinical arenas.
Collapse
Affiliation(s)
- David M Small
- The University of Queensland, Princess Alexandra Hospital, School of Medicine, Centre for Kidney Disease Research, Brisbane, 4102, Australia
| | | |
Collapse
|
102
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
103
|
Courtneidge HR, Crawford C, Hall AM, Peppiatt-Wildman CM. Fluorescence imaging reveals differences in mitochondrial function along the collecting duct. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.867.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Carol Crawford
- Urinary System Physiology UnitRoyal Veterinary CollegeLondonUnited Kingdom
| | | | | |
Collapse
|
104
|
Crawford C, Hall AM, Peppiatt-Wildman CM. Imaging intracellular calcium signals in intact kidney tissue. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.690.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carol Crawford
- Urinary System Physiology UnitRoyal Veterinary CollegeLondonUnited Kingdom
| | | | | |
Collapse
|
105
|
Song XF, Ren H, Andreasen A, Thomsen JS, Zhai XY. Expression of Bcl-2 and Bax in mouse renal tubules during kidney development. PLoS One 2012; 7:e32771. [PMID: 22389723 PMCID: PMC3289675 DOI: 10.1371/journal.pone.0032771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 12/20/2022] Open
Abstract
Bcl-2 and Bax play an important role in apoptosis regulation, as well as in cell adhesion and migration during kidney morphogenesis, which is structurally and functionally related to mitochondria. In order to elucidate the role of Bcl-2 and Bax during kidney development, it is essential to establish the exact location of their expression in the kidney. The present study localized their expression during kidney development. Kidneys from embryonic (E) 16-, 17-, 18-day-old mouse fetuses, and postnatal (P) 1-, 3-, 5-, 7-, 14-, 21-day-old pups were embedded in Epon. Semi-thin serial sections from two E17 kidneys underwent computer assisted 3D tubule tracing. The tracing was combined with a newly developed immunohistochemical technique, which enables immunohistochemistry on glutaraldehyde fixated plastic embedded sections. Thereby, the microstructure could be described in detail, and the immunochemistry can be performed using exactly the same sections. The study showed that Bcl-2 and Bax were strongly expressed in mature proximal convoluted tubules at all time points, less strongly expressed in proximal straight tubules, and only weakly in immature proximal tubules and distal tubules. No expression was detected in ureteric bud and other earlier developing structures, such as comma bodies, S shaped bodies, glomeruli, etc. Tubules expressing Bcl-2 only were occasionally observed. The present study showed that, during kidney development, Bcl-2 and Bax are expressed differently in the proximal and distal tubules, although these two tubule segments are almost equally equipped with mitochondria. The functional significance of the different expression of Bcl-2 and Bax in proximal and distal tubules is unknown. However, the findings of the present study suggest that the mitochondrial function differs between mature proximal tubules and in the rest of the tubules. The function of Bcl-2 and Bax during tubulogenesis still needs to be investigated.
Collapse
Affiliation(s)
- Xiao-Feng Song
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shen Yang, Liao Ning, China
- Department of Histology and Embryology, Liao Ning Medical College, Jin Zhou, Liao Ning, China
| | - Hao Ren
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shen Yang, Liao Ning, China
| | - Arne Andreasen
- Department of Anatomy, Deaprtment of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Xiao-Yue Zhai
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shen Yang, Liao Ning, China
- Institute of Nephropathology, China Medical University, Shen Yang, Liao Ning, China
- * E-mail:
| |
Collapse
|
106
|
Gall JM, Wang Z, Liesa M, Molina A, Havasi A, Schwartz JH, Shirihai O, Borkan SC, Bonegio RGB. Role of mitofusin 2 in the renal stress response. PLoS One 2012; 7:e31074. [PMID: 22292091 PMCID: PMC3266928 DOI: 10.1371/journal.pone.0031074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
The role of mitofusin 2 (MFN2), a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO) by Pax2 promoter driven Cre expression (Pax2Cre). MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20%) decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis.
Collapse
Affiliation(s)
- Jonathan M Gall
- Renal Section, Boston Medical Center, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Peti-Peterdi J, Burford JL, Hackl MJ. The first decade of using multiphoton microscopy for high-power kidney imaging. Am J Physiol Renal Physiol 2011; 302:F227-33. [PMID: 22031850 DOI: 10.1152/ajprenal.00561.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this review, we highlight the major scientific breakthroughs in kidney research achieved using multiphoton microscopy (MPM) and summarize the milestones in the technological development of kidney MPM during the past 10 years. Since more and more renal laboratories invest in MPM worldwide, we discuss future directions and provide practical, useful tips and examples for the application of this still-emerging optical sectioning technology. Advantages of using MPM in various kidney preparations that range from freshly dissected individual glomeruli or the whole kidney in vitro to MPM of the intact mouse and rat kidney in vivo are reviewed. Potential combinations of MPM with micromanipulation techniques including microperfusion and micropuncture are also included. However, we emphasize the most advanced and complex, quantitative in vivo imaging applications as the ultimate use of MPM since the true mandate of this technology is to look inside intact organs in live animals and humans.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Departments of Physiology and Biophysics, and Medicine, Zilkha Neurogenetic Institute, Univ. of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
108
|
Formation of atubular glomeruli in the developing kidney following chronic urinary tract obstruction. Pediatr Nephrol 2011; 26:1381-5. [PMID: 21222000 DOI: 10.1007/s00467-010-1748-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/08/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Congenital urinary tract obstruction is a major cause of progressive renal disease in children. We developed a model of partial unilateral ureteral obstruction (UUO) in the neonatal mouse, in which nephrogenesis at birth is similar to that of the midtrimester human fetus. The proximal tubule responds to UUO by undergoing apoptosis and necrosis, likely due to mitochondrial sensitivity to hypoxia and reactive oxygen species in the face of reduced endogenous antiapoptotic factors such as eNOS. Damage to the glomerulotubular junction is followed by scission and formation of atubular glomeruli and aglomerular tubules. This is an orchestrated process, with atubular glomeruli surrounded by a continuous layer of regenerated parietal epithelial cells. Relief of UUO at 7 days of age results in remodeling of the renal parenchyma by adulthood. In contrast to proximal tubular destruction, collecting ducts remain dilated and patent, with remodeling due to apoptosis and proliferation (a process associated with recruitment of intercalated cells as progenitor cells following UUO in the fetal monkey). Formation of atubular glomeruli occurs in other renal disorders (congenital nephrotic syndrome and cystinosis), and may represent a maladaptive response to proximal tubular injury reflecting an evolutionary adaptation by an ancestor we share with aglomerular marine fish.
Collapse
|
109
|
Hall AM, Crawford C, Unwin RJ, Duchen MR, Peppiatt-Wildman CM. Multiphoton imaging of the functioning kidney. J Am Soc Nephrol 2011; 22:1297-304. [PMID: 21719788 DOI: 10.1681/asn.2010101054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translating discoveries made in isolated renal cells and tubules to the in vivo situation requires the assessment of cellular function in intact live organs. Multiphoton imaging is a form of fluorescence microscopy that is ideally suited to working with whole tissues and organs, but adequately loading cells with fluorescence dyes in vivo remains a challenge. We found that recirculation of fluorescence dyes in the rat isolated perfused kidney (IPK) resulted in levels of intracellular loading that would be difficult to achieve in vivo. This technique allowed the imaging of tubular cell structure and function with multiphoton microscopy in an intact, functioning organ. We used this approach to follow processes in real time, including (1) relative rates of reactive oxygen species (ROS) production in different tubule types, (2) filtration and tubular uptake of low-molecular-weight dextrans and proteins, and (3) the effects of ischemia-reperfusion injury on mitochondrial function and cell structure. This study demonstrates that multiphoton microscopy of the isolated perfused kidney is a powerful technique for detailed imaging of cell structure and function in an intact organ.
Collapse
Affiliation(s)
- Andrew M Hall
- University College London Centre for Nephrology, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom.
| | | | | | | | | |
Collapse
|
110
|
Hall AM. Pores for thought: new strategies to re-energize stressed mitochondria in acute kidney injury. J Am Soc Nephrol 2011; 22:986-9. [PMID: 21566050 DOI: 10.1681/asn.2011030309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
111
|
Kajiyama H. [Podocyte research in rheumatic diseases]. ACTA ACUST UNITED AC 2011; 34:40-8. [PMID: 21372512 DOI: 10.2177/jsci.34.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Podocytes are glomerular visceral epithelial cells, which function as molecular sieve with foot process (FT) and slit diaphragm (SD) spanning FT, not to allow high molecular weight protein to be filtrated through glomerular capillary loop. Pathological proteinuria is caused by discoordinated tertiary podocyte structure such as disappearance of FT and/or SD, and irreversible glomeular sclerosis is caused by podocyte loss due to cell death and/or detachment from capillary wall. With recent advance of nephrological research technology such as podocyte cell culture system, genetically engineered transgenic mice with podocyte-specific regulation of gene expression, podocyte-associated biomarkers, the new isolation method of glomeruli, laser capture microdissection, multiphoton imaging and extracellular flux analyzer, new findings of pathogenesis of glomerular lesions will be expected, not only in primary glomerulonephritis, but also in secondary glomerulonephritis or glomerulopathy due to rheumatic diseases.
Collapse
Affiliation(s)
- Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| |
Collapse
|
112
|
|
113
|
Hall AM, Campanella M, Loesch A, Duchen MR, Unwin RJ. Albumin uptake in OK cells exposed to rotenone: a model for studying the effects of mitochondrial dysfunction on endocytosis in the proximal tubule? Nephron Clin Pract 2010; 115:p9-p19. [PMID: 20484937 PMCID: PMC2889685 DOI: 10.1159/000314540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/24/2010] [Indexed: 12/23/2022] Open
Abstract
Background The renal proximal tubule (PT) is clinically vulnerable to mitochondrial dysfunction; sub-lethal injury can lead to the Fanconi syndrome, with elevated urinary excretion of low-molecular-weight proteins. As the mechanism that couples mitochondrial dysfunction to impaired PT low-molecular weight protein uptake is unknown, we investigated the effect of respiratory chain (RC) inhibitors on endocytosis of FITC-albumin in PT-derived OK cells. Methods Uptake of FITC-albumin was quantified using confocal microscopy. Cytosolic ATP levels were measured in real time using both luciferin/luciferase assays and measurements of free [Mg2+]. Reactive oxygen species production was measured using mitosox. Results RC blockade produced only a small decrease in cytosolic ATP levels and had minimal effect on FITC-albumin uptake. Inhibition of glycolysis caused a much bigger decrease in both cytosolic ATP levels and FITC-albumin endocytosis. Rotenone led to higher rates of reactive oxygen species production than other RC inhibitors. Rotenone also caused widespread structural damage on electron microscopy, which was mimicked by colchicine and prevented by taxol; consistent with inhibition of microtubule polymerisation as the underlying mechanism. Conclusions Endocytosis of FITC-albumin is ATP-dependent in OK cells, but the cells are very glycolytic and therefore represent a poor metabolic model of the PT. Rotenone has toxic extra-mitochondrial structural effects.
Collapse
Affiliation(s)
- A M Hall
- Centre for Nephrology, University of London, London , UK.
| | | | | | | | | |
Collapse
|
114
|
Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A. Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 2010; 133:481-91. [PMID: 20372919 DOI: 10.1007/s00418-010-0692-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criterion. Indeed, first we will focus on those studies in which organs were imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures.
Collapse
Affiliation(s)
- Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive Room 303A, Bethesda, MD 20892-4340, USA.
| | | | | | | | | |
Collapse
|
115
|
Campanella M, Parker N, Tan CH, Hall AM, Duchen MR. IF(1): setting the pace of the F(1)F(o)-ATP synthase. Trends Biochem Sci 2009; 34:343-50. [PMID: 19559621 DOI: 10.1016/j.tibs.2009.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/15/2022]
Abstract
When mitochondrial function is compromised and the mitochondrial membrane potential (Deltapsi(m)) falls below a threshold, the F(1)F(o)-ATP synthase can reverse, hydrolysing ATP to pump protons out of the mitochondrial matrix. Although this activity can deplete ATP and precipitate cell death, it is limited by the mitochondrial protein IF(1), an endogenous F(1)F(o)-ATPase inhibitor. IF(1), therefore, preserves ATP at the expense of Deltapsi(m). Despite a wealth of detailed knowledge on the biochemistry of the interaction of IF(1) and the F(1)F(o)-ATPase, little is known about its physiological activity. Emerging research suggests that IF(1) has a wider ranging impact on mitochondrial structure and function than previously thought.
Collapse
|
116
|
Weinberg JM, Molitoris BA. Illuminating mitochondrial function and dysfunction using multiphoton technology. J Am Soc Nephrol 2009; 20:1164-6. [PMID: 19470668 DOI: 10.1681/asn.2009040419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
117
|
Campanella M, Seraphim A, Abeti R, Casswell E, Echave P, Duchen MR. IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:393-401. [PMID: 19269273 DOI: 10.1016/j.bbabio.2009.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
The protein IF1 limits mitochondrial ATP consumption when mitochondrial respiration is impaired by inhibiting the 'reverse' activity of the F(1)F(o)-ATPsynthase. We have found that IF1 also increases F(1)F(o)-ATPsynthase activity in respiring mitochondria, promoting its dimerization and increasing the density of mitochondrial cristae. We also noted that IF1 overexpression was associated with an increase in mitochondrial volume fraction that was conversely reduced when IF1 was knocked down using small interfering RNA (siRNA). The volume change did not correlate with the level of transcription factors involved in mitochondrial biogenesis. However, autophagy was dramatically increased in the IF1siRNA treated cells (-IF1), assessed by quantifying LC3-GFP translocation to autophagosomes, whilst levels of autophagy were low in IF1 overexpressing cells (+IF1). The increase in LC3-GFP labelled autophagosomes in -IF1 cells was prevented by the superoxide dismutase mimetic, manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). An increase in the basal rate of generation of reactive oxygen species (ROS) in -IF1 cells was demonstrated using the fluorescent probe dihydroethidium (DHE). Thus, IF1 appears to limit mitochondrial ROS generation, limiting autophagy which is increased by IF1 knockdown. Variations in IF1 expression level may therefore play a significant role in defining both resting rates of ROS generation and cellular mitochondrial content.
Collapse
|