101
|
Renal primordia activate kidney regenerative events in a rat model of progressive renal disease. PLoS One 2015; 10:e0120235. [PMID: 25811887 PMCID: PMC4374877 DOI: 10.1371/journal.pone.0120235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration.
Collapse
|
102
|
Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys. Sci Rep 2015; 5:9092. [PMID: 25766625 PMCID: PMC4357899 DOI: 10.1038/srep09092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys.
Collapse
|
103
|
Yokoo T. [The Cutting-edge of Medicine; CKD and regenerative medicine]. ACTA ACUST UNITED AC 2015; 104:600-6. [PMID: 26571750 DOI: 10.2169/naika.104.600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
104
|
Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M, Grazia de Simoni M, Remuzzi G, Goligorsky MS, Benigni A. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Reports 2015; 4:685-98. [PMID: 25754206 PMCID: PMC4400646 DOI: 10.1016/j.stemcr.2015.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. BMSCs cross lineage boundaries toward renal cells via cell-extract reprogramming Reprogrammed BMSCs acquire proximal tubular-like epithelial cell properties Reprogrammed BMSCs integrate into proximal tubuli and protect mice from AKI
Collapse
Affiliation(s)
- Evangelia Papadimou
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Marina Morigi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Paraskevas Iatropoulos
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Christodoulos Xinaris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Valentina Benedetti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Lorena Longaretti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Cinzia Rota
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Marta Todeschini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy
| | - Paola Rizzo
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Martino Introna
- Laboratory of Cellular Therapy "G. Lanzani," USC Hematology, 24122 Bergamo, Italy
| | - Maria Grazia de Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," 24020 Ranica, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy.
| | - Michael S Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, 15 Dana Road, BSB C-06, Valhalla, NY 10595, USA
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| |
Collapse
|
105
|
Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, Rogers J, Stratta RJ, Manzia TM, Orlando G. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther 2015; 15:547-58. [PMID: 25640286 DOI: 10.1517/14712598.2015.993376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dialysis and renal transplantation are the only two therapeutic options offered to patients affected by end-stage kidney disease; however, neither treatment can be considered definitive. In fact, dialysis is able to replace only the filtration function of the kidney without substituting its endocrine and metabolic roles, and dramatically impacts on patient's quality of life. On the other hand, kidney transplantation is severely limited by the shortage of transplantable organs, the need for immunosuppressive therapies and a narrow half-life. Regenerative medicine approaches are promising tools aiming to improve this condition. AREAS COVERED Cell therapies, bioartificial kidney, organ bioengineering, 3D printer and kidney-on-chip represent the most appealing areas of research for the treatment of end-stage kidney failure. The scope of this review is to summarize the state of the art, limits and directions of each branch. EXPERT OPINION In the future, these emerging technologies could provide definitive, curative and theoretically infinite options for the treatment of end-stage kidney disease. Progress in stem cells-based therapies, decellularization techniques and the more recent scientific know-how for the use of the 3D printer and kidney-on-chip could lead to a perfect cellular-based therapy, the futuristic creation of a bioengineered kidney in the lab or to a valid bioartificial alternative.
Collapse
Affiliation(s)
- Andrea Peloso
- Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Morales EE, Wingert RA. Renal stem cell reprogramming: Prospects in regenerative medicine. World J Stem Cells 2014; 6:458-466. [PMID: 25258667 PMCID: PMC4172674 DOI: 10.4252/wjsc.v6.i4.458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of gene activity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease.
Collapse
|
107
|
Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep 2014; 15:379. [PMID: 24375058 DOI: 10.1007/s11934-013-0379-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of chronic kidney disease continues to outpace the development of effective treatment strategies. For patients with advanced disease, renal replacement therapies approximate the filtration functions of the kidney at considerable cost and inconvenience, while failing to restore the resorptive and endocrine functions. Allogeneic transplantation remains the only restorative treatment, but donor shortage, surgical morbidity and the need for lifelong immunosuppression significantly limit clinical application. Emerging technologies in the fields of regenerative medicine and tissue engineering strive to address these limitations. We review recent advances in cell-based therapies, primordial allografts, bio-artificial organs and whole-organ bioengineering as they apply to renal regeneration. Collaborative efforts across these fields aim to produce a bioengineered kidney capable of restoring renal function in patients with end-stage disease.
Collapse
|
108
|
Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:45-54. [PMID: 24957510 DOI: 10.1089/ten.teb.2014.0300] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs)-comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others-have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Tek N Lamichhane
- 1 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | | | | | | | | | | |
Collapse
|
109
|
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345:1247125. [PMID: 25035496 DOI: 10.1126/science.1247125] [Citation(s) in RCA: 1789] [Impact Index Per Article: 162.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.
Collapse
Affiliation(s)
- Madeline A Lancaster
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science Vienna 1030, Austria
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Science Vienna 1030, Austria.
| |
Collapse
|
110
|
Yamanaka S, Yokote S, Yamada A, Katsuoka Y, Izuhara L, Shimada Y, Omura N, Okano HJ, Ohki T, Yokoo T. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation. PLoS One 2014; 9:e102311. [PMID: 25025381 PMCID: PMC4099219 DOI: 10.1371/journal.pone.0102311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/17/2014] [Indexed: 12/23/2022] Open
Abstract
We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.
Collapse
Affiliation(s)
- Shuichiro Yamanaka
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Yokote
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akifumi Yamada
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Katsuoka
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Luna Izuhara
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Omura
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takao Ohki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
111
|
Abstract
One in 10 Americans suffers from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the transplantation option is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein, we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need.
Collapse
Affiliation(s)
- Maria Lucia L Madariaga
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
112
|
Report on ISN Forefronts, Florence, Italy, 12-15 September 2013: Stem cells and kidney regeneration. Kidney Int 2014; 86:23-7. [PMID: 24897031 DOI: 10.1038/ki.2014.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/02/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
In recent years it has become clear that most organs and tissues, including kidney, contain resident stem/progenitor cells. Stem cells are undifferentiated, long-lived cells that are unique in their ability to produce differentiated daughter cells and to retain their stem cell identity by self-renewal. A primary goal of this meeting was to review the current understanding of kidney stem cells and mechanisms of kidney regeneration in both lower vertebrates and mammals. Presenters covered a broad range of topics including stem cell quiescence, epigenetics, transcriptional control circuits, dedifferentiation, pluripotent stem cells, renal progenitors, and novel imaging approaches in kidney regeneration. By the end of this highly interactive conference it was clear we are entering into very exciting times for regenerative medicine and the kidney.
Collapse
|
113
|
Davies J. Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discov Today 2014; 19:725-9. [PMID: 24201224 PMCID: PMC7615218 DOI: 10.1016/j.drudis.2013.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022]
Abstract
Pharmacology and regenerative medicine interact in two ways. One is the use of drugs to promote tissue regeneration. The other, less obvious but with great potential, is the use of techniques developed for regenerative medicine to engineer realistic human organoids for drug screening. This review focuses on testing for nephrotoxicity, often a problem with drugs and poorly predicted in animals. Current human-based screens mainly use proximal tubule cells growing in 2D monolayers. Realism might be improved by collagen-based culture systems that encourage proximal tubule cells to grow as tubules. More realistic would be a recently developed technique for engineering functioning 'mini-kidneys' from suspensions of stem cells, a technique that works in mouse but that could also be applied to humans.
Collapse
|
114
|
Martovetsky G, Nigam SK. Cellular and developmental strategies aimed at kidney tissue engineering. Nephron Clin Pract 2014; 126:101. [PMID: 24854650 DOI: 10.1159/000360680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND With the rate of kidney disease on the rise, and a serious imbalance between the number of patients requiring a kidney transplant and the number of available donor kidneys, it is becoming increasingly important to develop alternative strategies to restore organ function to diminish the need for human donors. SUMMARY We review the current progress and future directions of a subset of these strategies which are ultimately aimed towards bioengineering a functional, implantable, kidney-like tissue construct or organoid that might be genetically matched to the patient. KEY MESSAGES By combining the knowledge about normal kidney development with the rapidly growing knowledge in the field of cell differentiation and transdifferentiation, there is hope that partial or complete kidney function can be restored in patients with kidney disease - including genetic disorders, acute kidney injury, or chronic kidney disease - with tissue-engineered construct(s).
Collapse
Affiliation(s)
- Gleb Martovetsky
- Department of Pediatrics, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
115
|
Xinaris C, Yokoo T. Reforming the kidney starting from a single-cell suspension. Nephron Clin Pract 2014; 126:107. [PMID: 24854651 DOI: 10.1159/000360682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic kidney disease affects 5-7% of people worldwide. The increasing number of patients and the shortage of transplantable organs create an imperative need to develop new methods for generating kidney tissue. SUMMARY Recent advances in our understanding of the developmental biology of the kidney, along with the establishment of novel methodologies in the field of regenerative medicine, have created significant potential for kidney regeneration. These advances incorporate both transplantation of metanephric primordia into adult recipients and construction of 'fetal' kidney tissue from suspensions of single cells of metanephric origin. This paper examines these approaches in the context of organ regeneration. KEY MESSAGES The use of transplants of metanephric origin has the advantage over undifferentiated stem cells of already being committed to a renal developmental program. Although several technical difficulties remain to be overcome, the validation of these systems in preclinical models of renal disease will be of decisive importance in the coming years.
Collapse
Affiliation(s)
- Christodoulos Xinaris
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | | |
Collapse
|
116
|
Relevance of ureteric bud development and branching to tissue engineering, regeneration and repair in acute and chronic kidney disease. Curr Opin Organ Transplant 2014; 19:153-61. [DOI: 10.1097/mot.0000000000000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
117
|
Experimental renal progenitor cells: repairing and recreating kidneys? Pediatr Nephrol 2014; 29:665-72. [PMID: 24221350 DOI: 10.1007/s00467-013-2667-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/07/2023]
Abstract
Strategies to facilitate repair or generate new nephrons are exciting prospects for acute and chronic human renal disease. Repair of kidney injury involves not just local mechanisms but also mobilisation of progenitor/stem cells from intrarenal niches, including papillary, tubular and glomerular locations. Diverse markers characterise these unique cells, often including CD24 and CD133. Extrarenal stem cells may also contribute to repair, with proposed roles in secreting growth factors, transfer of microvesicles and exosomes and immune modulation. Creating new nephrons from stem cells is beginning to look feasible in mice in which kidneys can be dissociated into single cells and will then generate mature renal structures when recombined. The next step is to identify the correct human markers for progenitor cells from the fetus or mature kidney with similar potential to form new kidneys. Intriguingly, development can continue in vivo: whole foetal kidneys and recombined organs engraft, develop a blood supply and grow when xenotransplanted, and there are new advances in decellularised scaffolds to promote differentiation. This is an exciting time for human kidney repair and regeneration. Many of the approaches and techniques are in their infancy and based on animal rather than human work, but there is a rapid pace of discovery, and we predict that therapies based on advances in this field will come into clinical practice in the next decade.
Collapse
|
118
|
Davies JA, Chang CH. Engineering kidneys from simple cell suspensions: an exercise in self-organization. Pediatr Nephrol 2014; 29:519-24. [PMID: 23989397 PMCID: PMC3928531 DOI: 10.1007/s00467-013-2579-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells' self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy.
Collapse
|
119
|
Nigam SK. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs? Stem Cells Transl Med 2013; 2:993-1000. [PMID: 24191267 DOI: 10.5966/sctm.2013-0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, and Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
120
|
Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med 2013; 2:1011-9. [PMID: 24167320 DOI: 10.5966/sctm.2013-0097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kidney is a specialized low-regenerative organ with several different types of cellular lineages; however, the identity of renal stem/progenitor cells with nephrogenic potential and their preferred niche(s) are largely unknown and debated. Most of the therapeutic approaches to kidney regeneration are based on administration of cells proven to enhance intrinsic reparative capabilities of the kidney. Endogenous or exogenous cells of different sources were tested in rodent models of ischemia-reperfusion, acute kidney injury, or chronic disease. The translation to clinics is at the moment focused on the role of mesenchymal stem cells. In addition, bioproducts from stem/progenitor cells, such as extracellular vesicles, are likely a new promising approach for reprogramming resident cells. This concise review reports the current knowledge about resident or exogenous stem/progenitor populations and their derived bioproducts demonstrating therapeutic effects in kidney regeneration upon injury. In addition, possible approaches to nephrogenesis and organ generation using organoids, decellularized kidneys, and blastocyst complementation are surveyed.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Department of Molecular Biotechnology and Life Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | |
Collapse
|
121
|
Kimlin L, Kassis J, Virador V. 3D in vitro tissue models and their potential for drug screening. Expert Opin Drug Discov 2013; 8:1455-66. [PMID: 24144315 DOI: 10.1517/17460441.2013.852181] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The development of one standard, simplified in vitro three-dimensional tissue model suitable to biological and pathological investigation and drug-discovery may not yet be feasible, but standardized models for individual tissues or organs are a possibility. Tissue bioengineering, while concerned with finding methods of restoring functionality in disease, is developing technology that can be miniaturized for high throughput screening (HTS) of putative drugs. Through collaboration between biologists, physicists and engineers, cell-based assays are expanding into the realm of tissue analysis. Accordingly, three-dimensional (3D) micro-organoid systems will play an increasing role in drug testing and therapeutics over the next decade. Nevertheless, important hurdles remain before these models are fully developed for HTS. AREAS COVERED We highlight advances in the field of tissue bioengineering aimed at enhancing the success of drug candidates through pre-clinical optimization. We discuss models that are most amenable to high throughput screening with emphasis on detection platforms and data modeling. EXPERT OPINION Modeling 3D tissues to mimic in-vivo architecture remains a major challenge. As technology advances to provide novel methods of HTS analysis, so do potential pitfalls associated with such models and methods. We remain hopeful that integration of biofabrication with HTS will significantly reduce attrition rates in drug development.
Collapse
Affiliation(s)
- Lauren Kimlin
- 1114 Riverview Terrace, St. Michaels, MD 21663 , USA
| | | | | |
Collapse
|
122
|
A novel model of surgical injury in adult rat kidney: a "pouch model". Sci Rep 2013; 3:2890. [PMID: 24100472 PMCID: PMC3792422 DOI: 10.1038/srep02890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022] Open
Abstract
Regenerative mechanisms after surgical injury have been studied in many organs but not in the kidney. Studying surgical injury may provide new insights into mechanisms of kidney regeneration. In rodent models, extrarenal tissues adhere to surgical kidney wound and interfere with healing. We hypothesized that this can be prevented by wrapping injured kidney in a plastic pouch. Adult rats tolerated 5/6 nephrectomy with pouch application well. Histological analysis demonstrates that application of the pouch effectively prevented formation of adhesions and induced characteristic wound healing manifested by formation of granulation tissue. Additionally, selected tubules of the wounded kidney extended into the granulation tissue forming branching tubular epithelial outgrowths (TEOs) without terminal differentiation. Tubular regeneration outside of renal parenchyma was not previously observed, and suggests previously unrecognized capacity for regeneration. Our model provides a novel approach to study kidney wound healing.
Collapse
|
123
|
O’Neill AC, Ricardo SD. Human kidney cell reprogramming: applications for disease modeling and personalized medicine. J Am Soc Nephrol 2013; 24:1347-56. [PMID: 23949797 PMCID: PMC3752950 DOI: 10.1681/asn.2012121199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ability to reprogram fully differentiated cells into a pluripotent embryonic state, termed induced pluripotent stem cells (iPSCs), has been met with great excitement. iPSC technology has advanced the fundamental study of disease modeling with the potential for cell-replacement therapy, especially in the neuronal and cardiac fields. However, renal medicine as of yet has not benefited from similar advancements. This review summarizes the unique characteristics of iPSCs and their potential applications for modeling kidney disease. Pioneering such endeavors could yield constructs that recapitulate disease phenotypes, open avenues for more targeted drug development, and potentially serve as replenishable sources for replacement of kidney cells in the setting of human disease.
Collapse
Affiliation(s)
- Adam C. O’Neill
- Department of Pediatrics, Dunedin School of Medicine, Otago University, Dunedin, New Zealand, and
| | - Sharon D. Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
124
|
Remuzzi G, Benigni A, Finkelstein FO, Grunfeld JP, Joly D, Katz I, Liu ZH, Miyata T, Perico N, Rodriguez-Iturbe B, Antiga L, Schaefer F, Schieppati A, Schrier RW, Tonelli M. Kidney failure: aims for the next 10 years and barriers to success. Lancet 2013; 382:353-62. [PMID: 23727164 DOI: 10.1016/s0140-6736(13)60438-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although in some parts of the world acute and chronic kidney diseases are preventable or treatable disorders, in many other regions these diseases are left without any care. The nephrology community needs to commit itself to reduction of this divide between high-income and low-income regions. Moreover, new and exciting developments in fields such as pharmacology, genetic, or bioengineering, can give a boost, in the next decade, to a new era of diagnosis and treatment of kidney diseases, which should be made available to more patients.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Hendry CE, Vanslambrouck JM, Ineson J, Suhaimi N, Takasato M, Rae F, Little MH. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 2013; 24:1424-34. [PMID: 23766537 DOI: 10.1681/asn.2012121143] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFβ-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.
Collapse
Affiliation(s)
- Caroline E Hendry
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | |
Collapse
|
126
|
Bussolati B, Lauritano C, Moggio A, Collino F, Mazzone M, Camussi G. Renal CD133(+)/CD73(+) progenitors produce erythropoietin under hypoxia and prolyl hydroxylase inhibition. J Am Soc Nephrol 2013; 24:1234-41. [PMID: 23661806 DOI: 10.1681/asn.2012080772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The identity of the peritubular population of cells with mesenchymal phenotype thought responsible for producing erythropoietin in humans remains unclear. Here, renal CD133(+)/CD73(+) progenitor cells, isolated from the human renal inner medulla and described as a population of mesenchymal progenitors, released erythropoietin under hypoxic conditions. CD133(-) cells did not synthesize erythropoietin, and CD133(+) progenitor cells stopped producing erythropoietin when they differentiated and acquired an epithelial phenotype. Inhibition of prolyl hydroxylases, using either dimethyloxalylglycine or a small hairpin RNA against prolyl hydroxylase-2, increased both hypoxia-inducible factor-2α (HIF-2α) expression and erythropoietin transcription. Moreover, under hypoxic conditions, inhibition of prolyl hydroxylase significantly increased erythropoietin release by CD133(+) progenitors. Finally, blockade of HIF-2α impaired erythropoietin synthesis by CD133(+) progenitors. Taken together, these results suggest that it is the renal CD133(+) progenitor cells that synthesize and release erythropoietin under hypoxia, via the prolyl hydroxylase-HIF-2α axis, in the human kidney. In addition, this study provides rationale for the therapeutic use of prolyl hydroxylase inhibitors in the setting of acute or chronic renal injury.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
PURPOSE OF REVIEW The kidney has an elaborate and complicated structure comprising several cell types. Damage or destruction of the kidney thus necessitates reconstruction of all the component cell types to regenerate a functional three-dimensional renal structure. Therefore, despite all the recent advances in our understanding and technical approaches to stem cell and developmental biology, the anatomical complexity of the renal system makes de-novo kidney regeneration the most difficult challenge for organ regenerative therapy. RECENT FINDINGS To build a transplantable neo-kidney, some investigators propose using organogenesis. We suggest the metanephros of the developing kidney and blastocyst complementation can potentially generate a whole kidney with the required three-dimensional structure and renal function to produce urine and erythropoietin. In addition, some researchers are investigating the in-vitro differentiation of pluripotent stem cells into mature renal cells for in-vivo use. SUMMARY We review the current challenges to making a transplantable neo-kidney using stem cells.
Collapse
|
128
|
Machiguchi T, Nakamura T. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells. Biochem Biophys Res Commun 2013; 435:327-33. [PMID: 23618853 DOI: 10.1016/j.bbrc.2013.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 12/23/2022]
Abstract
There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues.
Collapse
Affiliation(s)
- Toshihiko Machiguchi
- Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Kyoto 606-8507, Japan.
| | | |
Collapse
|
129
|
D'Agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol 2012; 23:1763-6. [PMID: 23085630 DOI: 10.1681/asn.2012090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|