101
|
Ikeda Y, Hamano H, Horinouchi Y, Miyamoto L, Hirayama T, Nagasawa H, Tamaki T, Tsuchiya K. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J Trace Elem Med Biol 2021; 67:126798. [PMID: 34087581 DOI: 10.1016/j.jtemb.2021.126798] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cisplatin is widely used as an antitumor drug for the treatment of solid tumors. However, its use has been limited owing to nephrotoxicity, a major side effect. The mechanism of cisplatin-induced nephrotoxicity (CIN) has long been investigated in order to develop preventive/therapeutic drugs. Ferroptosis is a newly identified form of non-apoptotic regulated cell death induced by iron-mediated lipid peroxidation and is involved in the pathophysiology of various diseases. In this study, we examined the role of ferroptosis in CIN. METHODS We evaluated the role of ferroptosis in CIN by in vivo experiments in a mouse model. RESULTS Cisplatin increased the protein expressions of transferrin receptor-1 and ferritin, and iron content in the kidney of mice. In addition, treatment with cisplatin augmented renal ferrous iron and hydroxyl radical levels with co-localization. Mice administered cisplatin demonstrated kidney injury, with renal dysfunction and increased inflammatory cytokine expression; these changes were ameliorated by Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis. The expression of the ferroptosis markers, COX2 and 4-hydroxynonenal (4-HNE), increased with cisplatin administration, and decreased with the administration of Fer-1. By contrast, cisplatin-induced apoptosis and necroptosis were inhibited by treatment with Fer-1. Moreover, deferoxamine, an iron chelator, also inhibited CIN, with a decrease in the expression of COX-2 and 4-HNE. CONCLUSION Ferroptosis is involved in the pathogenesis of CIN and might be used as a new preventive target for CIN.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Anan-Medical Center, Anan, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
102
|
Wang S, Zhuang S, Dong Z. IFT88 deficiency in proximal tubular cells exaggerates cisplatin-induced injury by suppressing autophagy. Am J Physiol Renal Physiol 2021; 321:F269-F277. [PMID: 34251272 DOI: 10.1152/ajprenal.00672.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are widely regarded as specialized sensors in differentiated cells that have been implicated in the regulation of cell proliferation, differentiation, and viability. We have previously shown that shortening of primary cilia sensitizes cultured kidney tubular cells to cisplatin-induced apoptosis. Intraflagellar transport 88 (IFT88) is an essential component for ciliogenesis and maintenance. Here, we have further examined the effect of proximal tubule-specific IFT88 ablation on cisplatin-induced acute kidney injury (AKI). In this study, more severe AKI occurred in IFT88 knockout mice than age- and sex-matched wild-type mice. Mechanistically, cisplatin stimulated autophagy in kidney tubular cells as an intrinsic protective mechanism. However, renal autophagy was severely impaired in IFT88 knockout mice. In cultured HK-2 cells, cisplatin induced more apoptosis when IFT88 was knocked down. Tat-beclin 1 peptide, a specific autophagy activator, could partially prevent IFT88-associated cell death during cisplatin treatment, although cilium length was not improved significantly. Reexpression of IFT88 partially restored autophagy in IFT88 knockdown cells and suppressed apoptosis during cisplatin treatment. Taken together, these results indicate that defective autophagy in IFT88-deficient kidney cells and tissues contributes to the exaggerated AKI following cisplatin exposure.NEW & NOTEWORTHY Almost every cell has one hair-like, nonmotile antenna projecting from the cell surface, named the primary cilium. In kidney tubular cells, the primary cilium has a protective role, but the underlying mechanism is unclear. This study shows that a short cilium leads to the suppression of autophagy, which is responsible for the heightened injury sensitivity. These findings provide the clues of how to manipulate primary cilium and autophagy to save kidneys.
Collapse
Affiliation(s)
- Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
103
|
Li D, Liu B, Fan Y, Liu M, Han B, Meng Y, Xu X, Song Z, Liu X, Hao Q, Duan X, Nakai A, Chang Y, Cao P, Tan K. Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis. Br J Pharmacol 2021; 178:1182-1199. [PMID: 33450067 DOI: 10.1111/bph.15364] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute kidney injury is a common clinical problem with no definitive or specific treatment. Therefore, the molecular mechanisms of acute kidney injury must be fully understood to develop novel treatments. Nuciferine, a major bioactive compound isolated from the lotus leaf, possesses extensive pharmacological activities. Its effect on folic acid-induced acute kidney injury, however, remains unknown. Here, we aimed to clarify the pharmacological effects of nuciferine and its mechanisms of action in acute kidney injury. EXPERIMENTAL APPROACH The effects of nuciferine on folic acid-induced acute kidney injury in mice were investigated. HK-2 human proximal tubular epithelial cells and HEK293T HEK cells were used to evaluate the protective effect of nuciferine on RSL3-induced ferroptosis. KEY RESULTS Nuciferine treatment mitigated the pathological alterations, ameliorated inflammatory cell infiltration and improved kidney dysfunction in mice with folic acid-induced acute kidney injury. In HK-2 and HEK293T cells, nuciferine significantly prevented RSL3-induced ferroptotic cell death. Mechanistically, nuciferine significantly inhibited ferroptosis by preventing iron accumulation and lipid peroxidation in vitro and in vivo. Moreover, knockdown of glutathione (GSH) peroxidase 4 (GPX4) abolished the protective effect of nuciferine against ferroptosis. CONCLUSION AND IMPLICATIONS Nuciferine ameliorated renal injury in mice with acute kidney injury, perhaps by inhibiting the ferroptosis. Nuciferine may represent a novel treatment that improves recovery from acute kidney injury by targeting ferroptosis.
Collapse
Affiliation(s)
- Danyu Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bing Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ming Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bihui Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanxiu Meng
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiao Xu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhiyuan Song
- Department of Neurosurgery, Handan Central Hospital, Handan, China
| | - Xiaopeng Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiang Hao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xianglin Duan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
104
|
DNA demethylase Tet2 suppresses cisplatin-induced acute kidney injury. Cell Death Dis 2021; 7:167. [PMID: 34226503 PMCID: PMC8257623 DOI: 10.1038/s41420-021-00528-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023]
Abstract
Demethylase Tet2 plays a vital role in the immune response. Acute kidney injury (AKI) initiation and maintenance phases are marked by inflammatory responses and leukocyte recruitment in endothelial and tubular cell injury processes. However, the role of Tet2 in AKI is poorly defined. Our study determined the degree of renal tissue damage associated with Tet2 gene expression levels in a cisplatin-induced AKI mice model. Tet2-knockout (KO) mice with cisplatin treatment experienced severe tubular necrosis and dilatation, inflammation, and AKI markers' expression levels than the wild-type mice. In addition, the administration of Tet2 plasmid protected Tet2-KO mice from cisplatin-induced nephrotoxicity, but not Tet2-catalytic-dead mutant. Tet2 KO was associated with a change in metabolic pathways like retinol, arachidonic acid, linolenic acid metabolism, and PPAR signaling pathway in the cisplatin-induced mice model. Tet2 expression is also downregulated in other AKI mice models and clinical samples. Thus, our results indicate that Tet2 has a renal protective effect during AKI by regulating metabolic and inflammatory responses through the PPAR signaling pathway.
Collapse
|
105
|
A compendium of kinetic modulatory profiles identifies ferroptosis regulators. Nat Chem Biol 2021; 17:665-674. [PMID: 33686292 PMCID: PMC8159879 DOI: 10.1038/s41589-021-00751-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Cell death can be executed by regulated apoptotic and nonapoptotic pathways, including the iron-dependent process of ferroptosis. Small molecules are essential tools for studying the regulation of cell death. Using time-lapse imaging and a library of 1,833 bioactive compounds, we assembled a large compendium of kinetic cell death modulatory profiles for inducers of apoptosis and ferroptosis. From this dataset we identify dozens of ferroptosis suppressors, including numerous compounds that appear to act via cryptic off-target antioxidant or iron chelating activities. We show that the FDA-approved drug bazedoxifene acts as a potent radical trapping antioxidant inhibitor of ferroptosis both in vitro and in vivo. ATP-competitive mechanistic target of rapamycin (mTOR) inhibitors, by contrast, are on-target ferroptosis inhibitors. Further investigation revealed both mTOR-dependent and mTOR-independent mechanisms that link amino acid metabolism to ferroptosis sensitivity. These results highlight kinetic modulatory profiling as a useful tool to investigate cell death regulation.
Collapse
|
106
|
Lopes-Coelho F, Martins F, Hipólito A, Mendes C, Sequeira CO, Pires RF, Almeida AM, Bonifácio VDB, Pereira SA, Serpa J. The Activation of Endothelial Cells Relies on a Ferroptosis-Like Mechanism: Novel Perspectives in Management of Angiogenesis and Cancer Therapy. Front Oncol 2021; 11:656229. [PMID: 34041026 PMCID: PMC8141735 DOI: 10.3389/fonc.2021.656229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of endothelial cells (ECs) is a crucial step on the road map of tumor angiogenesis and expanding evidence indicates that a pro-oxidant tumor microenvironment, conditioned by cancer metabolic rewiring, is a relevant controller of this process. Herein, we investigated the contribution of oxidative stress-induced ferroptosis to ECs activation. Moreover, we also addressed the anti-angiogenic effect of Propranolol. We observed that a ferroptosis-like mechanism, induced by xCT inhibition with Erastin, at a non-lethal level, promoted features of ECs activation, such as proliferation, migration and vessel-like structures formation, concomitantly with the depletion of reduced glutathione (GSH) and increased levels of oxidative stress and lipid peroxides. Additionally, this ferroptosis-like mechanism promoted vascular endothelial cadherin (VE-cadherin) junctional gaps and potentiated cancer cell adhesion to ECs and transendothelial migration. Propranolol was able to revert Erastin-dependent activation of ECs and increased levels of hydrogen sulfide (H2S) underlie the mechanism of action of Propranolol. Furthermore, we tested a dual-effect therapy by promoting ECs stability with Propranolol and boosting oxidative stress to induce cancer cell death with a nanoformulation comprising selenium-containing chrysin (SeChry) encapsulated in a fourth generation polyurea dendrimer (SeChry@PUREG4). Our data showed that novel developments in cancer treatment may rely on multi-targeting strategies focusing on nanoformulations for a safer induction of cancer cell death, taking advantage of tumor vasculature stabilization.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Filipa Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Hipólito
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cindy Mendes
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita F Pires
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M Almeida
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,Hematology, Hospital da Luz, Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Jacinta Serpa
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
107
|
Sudarikova AV, Fomin MV, Yankelevich IA, Ilatovskaya DV. The implications of histamine metabolism and signaling in renal function. Physiol Rep 2021; 9:e14845. [PMID: 33932106 PMCID: PMC8087988 DOI: 10.14814/phy2.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Inflammation is an essential part of the immune response; it has been found to be central to the disruption of kidney function in acute kidney injury, diabetic nephropathy, hypertension, and other renal conditions. One of the well‐known mediators of the inflammatory response is histamine. Histamine receptors are expressed throughout different tissues, including the kidney, and their inhibition has proven to be a viable strategy for the treatment of many inflammation‐associated diseases. Here, we provide an overview of the current knowledge regarding the role of histamine and its metabolism in the kidney. Establishing the importance of histamine signaling for kidney function will enable new approaches for the treatment of kidney diseases associated with inflammation.
Collapse
Affiliation(s)
| | - Mikhail V Fomin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Irina A Yankelevich
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
108
|
Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci 2021; 278:119529. [PMID: 33894270 DOI: 10.1016/j.lfs.2021.119529] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Glomerular podocyte damage is considered to be one of the main mechanisms leading to Diabetic nephropathy (DN). However, the relevant mechanism of podocyte injury is not yet clear. This study aimed to investigate the effect of peroxiredoxin 6 (Prdx6) on the pathogenesis of podocyte injury induced by high glucose (HG). The mouse glomerular podocyte MPC5 was stimulated with 30 nM glucose, and the Prdx6 overexpression vector or specificity protein 1 (Sp1) overexpression vector was transfected into MPC5 cells before the high glucose stimulation. As results, HG treatment significantly reduced the expression of Prdx6 and Sp1 in MPC5 cells. Prdx6 overexpression increased cell viability, while inhibited podocyte death, inflammation and podocyte destruction in HG-induced MPC5 cells. Prdx6 overexpression inhibited HG-induced ROS and MDA production, while restored SOD and GSH activity in MPC5 cells. Prdx6 overexpression also eliminated ferroptosis caused by HG, which was reflected in the suppression of iron accumulation and the increase in SLC7A11 and GPX4 expression. The improvement effect of Prdx6 on HG-induced podocyte damage could be eliminated by erastin. Moreover, Sp1 could bind to the three Sp1 response elements in the Prdx6 promoter, thereby directly regulating the transcriptional activation of Prdx6 in podocytes. Silencing Sp1 could eliminate the effect of Prdx6 on HG-induced podocyte damage. Further, Prdx6 overexpression attenuated renal injuries in streptozotocin-induced DN mice. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis, which may provide new insights for the study of the mechanism of DN.
Collapse
Affiliation(s)
- Qianjin Zhang
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China.
| | - Yichuan Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Jin-E Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ying Ding
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Yanqiu Shen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Hong Xu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Huiqin Chen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ning Wu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| |
Collapse
|
109
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
110
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
111
|
Wang C, Xiong M, Yang C, Yang D, Zheng J, Fan Y, Wang S, Gai Y, Lan X, Chen H, Zheng L, Huang K. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury. J Med Chem 2020; 63:16028-16042. [PMID: 33290073 DOI: 10.1021/acs.jmedchem.0c01913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI), mostly caused by renal ischemia-reperfusion (I/R) injury and nephrotoxins, is characterized by rapid deterioration in renal-functions without effective drug treatment available. Through activation of a G protein-coupled receptor APJ, a furin-cleaved fragment of Elabela (ELA[22-32], E11), an endogenous APJ ligand, protects against renal I/R injury. However, the poor plasma stability and relatively weak APJ-binding ability of E11 limit its application. To address these issues, we rationally designed and synthesized a set of E11 analogues modified by palmitic acid (Pal) or polyethylene glycol; improved plasma stability and APJ-binding capacity of these analogues were achieved. In cultured renal tubular cells, these analogues protected against hypoxia-reperfusion or cisplatin-caused injury. For renal I/R-injured mice, these analogues showed improved reno-protective effects than E11; notably, Pal-E11 showed therapeutic effects at 24 h post I/R injury. These results present ELA analogues as potential therapeutic options in managing AKI.
Collapse
Affiliation(s)
- Chao Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shun Wang
- Department of Blood Transfusion, Wuhan Hospital of Traditional and Western Medicine, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
112
|
Guo L, Zhang T, Wang F, Chen X, Xu H, Zhou C, Chen M, Yu F, Wang S, Yang D, Wu B. Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury. Br J Pharmacol 2020; 178:328-345. [PMID: 33068011 DOI: 10.1111/bph.15283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute kidney injury (AKI) is a common and critical illness, resulting in severe morbidity and a high mortality. There is a considerable interest in identifying novel molecular targets for management of AKI. We investigated the potential role of the circadian clock components Rev-erb-α/β in regulation of ferroptosis and AKI. EXPERIMENTAL APPROACH AKI model was established by treating mice with folic acid. Regulatory effects of Rev-erb-α/β on AKI and ferroptosis were determined using single-gene knockout (Rev-erb-α-/- and Rev-erb-β-/- ) mice, incomplete double-knockout (icDKO, Rev-erb-α+/- Rev-erb-β-/- ) mice and cells with erastin-induced ferroptosis. Targeted antagonism of Rev-erb-α/β to alleviate AKI and ferroptosis was assessed using the small-molecule antagonist SR8278. Transcriptional gene regulation was investigated using luciferase reporter, mobility shift and chromatin immunoprecipitation assays. KEY RESULTS Loss of Rev-erb-α or Rev-erb-β reduced the sensitivity of mice to folic acid-induced AKI and eliminated the circadian time dependency in disease severity. This coincided with less extensive ferroptosis, a main cause of folic acid-induced AKI. Moreover, icDKO mice were more resistant to folic acid-induced AKI and ferroptosis as compared with single-gene knockout mice. Supporting this, targeting Rev-erb-α/β by SR8278 attenuated ferroptosis to ameliorate folic acid-induced AKI in mice. Rev-erb-α/β promoted ferroptosis by repressing the transcription of Slc7a11 and HO1 (two ferroptosis-inhibitory genes) via direct binding to a RORE cis-element. CONCLUSION AND IMPLICATIONS Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced AKI in mice. The findings may have implications for improved understanding of circadian clock-controlled ferroptosis and for formulating new strategies to treat AKI.
Collapse
Affiliation(s)
- Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fei Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xun Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Deguang Yang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
113
|
Liu J, Bandyopadhyay I, Zheng L, Khdour OM, Hecht SM. Antiferroptotic Activity of Phenothiazine Analogues: A Novel Therapeutic Strategy for Oxidative Stress Related Disease. ACS Med Chem Lett 2020; 11:2165-2173. [PMID: 33214825 DOI: 10.1021/acsmedchemlett.0c00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-catalyzed, nonapoptotic form of regulated necrosis that has been implicated in the pathological cell death associated with various disorders including neurodegenerative diseases (e.g., Friedreich's ataxia (FRDA), Alzheimer's disease, and Parkinson's disease), stroke, and traumatic brain injury. Recently, we showed that lipophilic methylene blue (MB) and methylene violet (MV) analogues both promoted increased frataxin levels and mitochondrial biogenesis, in addition to their antioxidant activity in cultured FRDA cells. Presently, we report the synthesis of series of lipophilic phenothiazine analogues that potently inhibit ferroptosis. The most promising compounds (1b-5b) exhibited an improved protection compared to the parent phenothiazine against erastin- and RSL3-induced ferroptotic cell death. These analogues have equivalent or better potency than ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1), that are among the most potent inhibitors of this regulated cell death described so far. They represent novel lead compounds with therapeutic potential in relevant ferroptosis-driven disease models such as FRDA.
Collapse
|
114
|
El-Boghdady NA, Kamel MA, El-Shamy RM. Omeprazole and Spirulina Platensis Ameliorate Steatohepatitis in Experimental Nonalcoholic Fatty Liver Disease. Metab Syndr Relat Disord 2020; 18:426-434. [DOI: 10.1089/met.2019.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Noha A. El-Boghdady
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maher A. Kamel
- Biochemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rouaina M. El-Shamy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
115
|
Germ-Free Conditions Modulate Host Purine Metabolism, Exacerbating Adenine-Induced Kidney Damage. Toxins (Basel) 2020; 12:toxins12090547. [PMID: 32859011 PMCID: PMC7551802 DOI: 10.3390/toxins12090547] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations in microbiota are known to affect kidney disease conditions. We have previously shown that germ-free conditions exacerbated adenine-induced kidney damage in mice; however, the mechanism by which this occurs has not been elucidated. To explore this mechanism, we examined the influence of germ-free conditions on purine metabolism and renal immune responses involved in the kidney damage. Germ-free mice showed higher expression levels of purine-metabolizing enzymes such as xanthine dehydrogenase, which converts adenine to a nephrotoxic byproduct 2,8-dihydroxyadenine (2,8-DHA). The germ-free mice also showed increased urinary excretion of allantoin, indicating enhanced purine metabolism. Metabolome analysis demonstrated marked differences in the purine metabolite levels in the feces of germ-free mice and mice with microbiota. Furthermore, unlike the germ-free condition, antibiotic treatment did not increase the expression of purine-metabolizing enzymes or exacerbate adenine-induced kidney damage. Considering renal immune responses, the germ-free mice displayed an absence of renal IL-17A expression. However, the adenine-induced kidney damage in wild-type mice was comparable to that in IL-17A-deficient mice, suggesting that IL-17A does not play a major role in the disease condition. Our results suggest that the enhanced host purine metabolism in the germ-free mice potentially promotes the conversion of the administered adenine into 2,8-DHA, resulting in exacerbated kidney damage. This further suggests a role of the microbiota in regulating host purine metabolism.
Collapse
|
116
|
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
117
|
Abstract
Sepsis is a major cause of acute kidney injury (AKI) among patients in the intensive care unit. However, the numbers of basic science papers for septic AKI account for only 1% of all publications on AKI. This may be partially attributable to the specific pathophysiology of septic AKI as compared to that of the other types of AKI because it shows only modest histological changes despite functional decline and often requires real-time functional analysis. To increase the scope of research in this field, this article reviews the basic research information that has been reported thus far on the subject of septic AKI, mainly from the viewpoint of functional dysregulation, including some knowledge acquired with multiphoton intravital imaging. Moreover, the efficacy and limitation of the potential novel therapies are discussed. Finally, the author proposes several points that should be considered when designing the study, such as monitoring the long-term effects of the intervention and reflecting the clinical settings for identifying the molecular mechanisms and for challenging the intervention effects.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| |
Collapse
|
118
|
Luo Y, Chen H, Liu H, Jia W, Yan J, Ding W, Zhang Y, Xiao Z, Zhu Z. Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2041-2049. [PMID: 32922599 PMCID: PMC7476959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
As a complex and highly prevalent global public health problem, obesity is associated with multiple diseases, including liver and renal injury. As an iron-dependent form of cell death, ferroptosis is different from apoptosis and necrosis, which has been reported to participate in pathologic processes of many diseases. However, whether ferroptosis is involved in obesity-induced liver and renal injury remains unclear. Male C57BL/6 mice were fed with high-fat diet (HFD) or control diet for 16 weeks and treated with 5 mg/kg or 10 mg/kg ferroptosis inhibitor, ferrostatin-1 (Fer-1), for the last 8 weeks with results indicating that glutathione peroxidase 4 (GPX4) gene expression decreased in the liver and renal tissue of obese mice. Additionally, Fer-1 pretreatment prevented the obesity-induced decline of GPX4. More importantly, Fer-1 treatment attenuated HFD-induced pathological and functional impairment, fibrosis, inflammatory cell infiltration, and inflammatory cytokine expression in liver and renal tissues. In short, our results indicate that obesity can induce ferroptosis and ferroptosis inhibitor, Fer-1, thereby inhibiting obesity-induced liver and renal injury in mice. The study provides a new therapeutic direction for the complications of obesity.
Collapse
Affiliation(s)
- Yinli Luo
- Department of Geriatric Medicine, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Wenjing Jia
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Jueqian Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical UniversityWenzhou 325600, Zhejiang, China
| | - Zaisheng Zhu
- Department of Geriatric Medicine, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| |
Collapse
|
119
|
Poon JF, Zilka O, Pratt DA. Potent Ferroptosis Inhibitors Can Catalyze the Cross-Dismutation of Phospholipid-Derived Peroxyl Radicals and Hydroperoxyl Radicals. J Am Chem Soc 2020; 142:14331-14342. [DOI: 10.1021/jacs.0c06379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
120
|
The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis 2020; 11:518. [PMID: 32647111 PMCID: PMC7347946 DOI: 10.1038/s41419-020-2732-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent form of regulated cell death (RCD). It is morphologically and biochemically distinct from characteristics of other cell death. This modality has been intensively investigated in recent years due to its involvement in a wide array of pathologies, including cancer, neurodegenerative diseases, and acute kidney injury. Dysregulation of ferroptosis has also been linked to various liver diseases and its modification may provide a hopeful and attractive therapeutic concept. Indeed, targeting ferroptosis may prevent the pathophysiological progression of several liver diseases, such as hemochromatosis, nonalcoholic steatohepatitis, and ethanol-induced liver injury. On the contrary, enhancing ferroptosis may promote sorafenib-induced ferroptosis and pave the way for combination therapy in hepatocellular carcinoma. Glutathione peroxidase 4 (GPx4) and system xc− have been identified as key players to mediate ferroptosis pathway. More recently diverse signaling pathways have also been observed. The connection between ferroptosis and other forms of RCD is intricate and compelling, where discoveries in this field advance our understanding of cell survival and fate. In this review, we summarize the central molecular machinery of ferroptosis, describe the role of ferroptosis in non-cancer hepatic disease conditions and discuss the potential to manipulate ferroptosis as a therapeutic strategy.
Collapse
|
121
|
Zou Y, Schreiber SL. Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit. Cell Chem Biol 2020; 27:463-471. [PMID: 32302583 PMCID: PMC7346472 DOI: 10.1016/j.chembiol.2020.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Ferroptosis is an iron-dependent cell-death modality driven by oxidative phospholipid damage. In contrast to apoptosis, which enables organisms to eliminate targeted cells purposefully at specific times, ferroptosis appears to be a vulnerability of cells that otherwise use high levels of polyunsaturated lipids to their advantage. Cells in this high polyunsaturated lipid state generally have safeguards that mitigate ferroptotic risk. Since its recognition, ferroptosis has been implicated in degenerative diseases in tissues including kidney and brain, and is a targetable vulnerability in multiple cancers-each likely characterized by the high polyunsaturated lipid state with insufficient or overwhelmed ferroptotic safeguards. In this Perspective, we present progress toward defining the essential roles and key mediators of lipid peroxidation and ferroptosis in disease contexts. Moreover, we discuss gaps in our understanding of ferroptosis and list key challenges that have thus far limited the full potential of targeting ferroptosis for improving human health.
Collapse
Affiliation(s)
- Yilong Zou
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA.
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|