101
|
Lin L, Xu W, Zhang G, Ren P, Zhao J, Yan Q. Association of interleukin-22 polymorphisms with the colon cancer: A case-control study. Immunol Lett 2017; 188:59-63. [PMID: 28624523 DOI: 10.1016/j.imlet.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Interleukin-22 (IL-22), an IL-10 family cytokine produced by T cells and innate lymphoid cells, is implicated in inflammation and tumorigenesis. In this study, we aimed to investigate the association of IL-22 polymorphisms with the colon cancer in a Chinese population. MATERIALS AND METHODS Five hundred forty colon cancer cases and 540 healthy controls were recruited in the case-control study. The fluorogenic 5' exonuclease assays were used for genotype analysis of three common polymorphisms (-429C/T, +1046T/A and +1995A/C) of the IL-22 gene. RESULTS Colon cancer cases had a significantly higher frequency of IL-22-429 TT genotype [odds ratio (OR)=1.69, 95% confidence interval (CI)=1.24, 2.30; P=0.001] and -429T allele (OR=1.35, 95% CI=1.14, 1.60; P=0.001) than healthy controls. The findings are still emphatic by the Bonferroni correction (P<0.017). When stratifying by the differentiation of colon cancer, we found that colon cancer cases with poor differentiation had a significantly higher frequency of IL-22-429 TT genotype (OR=1.45, 95% CI=1.02, 2.07; P=0.04). When stratifying by the tumor location, tumor size, growth pattern and TNM stage of colon cancer, we found no statistical association. The IL-22 +1046T/A and IL-22 +1995A/C gene polymorphisms were not associated with colon cancer. CONCLUSION Our findings suggested that the IL-22 -429C/T gene polymorphisms might be associated with colon cancer.
Collapse
Affiliation(s)
- Lin Lin
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Weili Xu
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guojian Zhang
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Pengtao Ren
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Zhao
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Qinghui Yan
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
102
|
Lo Re O, Panebianco C, Porto S, Cervi C, Rappa F, Di Biase S, Caraglia M, Pazienza V, Vinciguerra M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells. J Cell Physiol 2017; 233:1202-1212. [PMID: 28471474 DOI: 10.1002/jcp.25987] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.
Collapse
Affiliation(s)
- Oriana Lo Re
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Masaryk University, Brno, Czech Republic
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Carlo Cervi
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Di Biase
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), California
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| |
Collapse
|
103
|
Lu WQ, Hu YY, Lin XP, Fan W. Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget 2017; 8:44171-44185. [PMID: 28498807 PMCID: PMC5546471 DOI: 10.18632/oncotarget.17396] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
Clinical treatment for colorectal cancer (CRC) thus far encounters a huge challenge due to oxaliplatin-resistance. As crucial rate-limiting enzymes in aerobic glycolysis and glutaminolysis, pyruvate kinase M2 type (PKM2) and kidney-type glutaminase (GLS1) are proposed to carry important implications in colorectal carcinogenesis and drug-resistance. This study aimed to explore the possible association of oxaliplatin-resistance with aerobic glycolysis/glutaminolysis indexed by PKM2/GLS1 expression. PKM2 and GLS1 expression was quantified by polymerase chain reaction (PCR) and Western blot techniques in CRC cell lines. The abilities of cell formation, kinetics, migration, invasion, survival and apoptosis, as well as permeability glycoprotein (Pgp) expression were inspected before and after knocking-down PKM2/GLS1 expression. In addition, the influence of knocking-down PKM2/GLS1 expression was evaluated in vivo. Differentiated PKM2 and GLS1 expression in both THC8307 and THC8307/Oxa cell lines was identified. In the THC8307 cell line, PKM2 and GLS1 can accelerate malignant behaviors, increase oxaliplatin-resistance, upregulate Pgp expression, and inhibit cell apoptosis. Contrastingly in the THC8307/Oxa cell line, knockdown of PKM2/GLS1 expression can restrain malignant behaviors, reestablish oxaliplatin-sensitivity, downregulate Pgp expression, and induce cell apoptosis. In xenograft, knockdown of PKM2/GLS1 expression can significantly inhibit tumor growth, reduce Pgp expression, and increase tumor apoptosis. Taken together, the present findings enriched our knowledge by demonstrating a significant association of PKM2 and GLS1 with oxaliplatin-resistance in CRC. We further propose that knockdown of PKM2/GLS1 expression may constitute a novel therapeutic strategy toward effective treatment for CRC.
Collapse
Affiliation(s)
- Wei-Qun Lu
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Ying-Ying Hu
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Xiao-Ping Lin
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| |
Collapse
|
104
|
Huang D, Feng X, Liu Y, Deng Y, Chen H, Chen D, Fang L, Cai Y, Liu H, Wang L, Wang J, Yang Z. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapy treatment efficacy in colorectal cancer. Cell Death Dis 2017. [PMID: 28640255 PMCID: PMC5520935 DOI: 10.1038/cddis.2017.282] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aquaporin-9 (AQP9) expression is associated with arsenic sensitivity in leukemia cells. However, the role of AQP9 in regulating tumor sensitivity to adjuvant chemotherapy in colorectal cancer (CRC) has not been elucidated. In this study, we demonstrated that AQP9 can serve as an independent predictive marker for adjuvant chemotherapy in CRC. Patients with high AQP9 expression had higher rate of disease-free survival (DFS) than those with low AQP9 expression. Upregulation of AQP9 was associated with enhanced chemosensitivity to 5-fluorouracil (5-FU) both in vitro and in vivo. Overexpression of AQP9 resulted in an increased intracellular level of 5-FU in CRC cells, hence leading to a higher percentage of apoptosis after 5-FU treatment. Moreover, AQP9 is positively associated with RAS activation and other downstream signaling molecules in CRC. AQP9 overexpression resulted in p21 upregulation and induced S-phase arrest. Taken together, AQP9 enhances the cytotoxic response to 5-FU in CRC cells by simultaneously inducing S-phase arrest via activation of RAS signaling and facilitating drug uptake. Our results suggest that AQP9 might be a novel predictor for the benefit of 5-FU-based chemotherapy in CRC. The identification of AQP9-induced tumor sensitivity to 5-FU highlights the role of AQP9 in regulating chemosensitivity in CRC.
Collapse
Affiliation(s)
- Dandan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yanhong Deng
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China.,Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Hao Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Lekun Fang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yue Cai
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China.,Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Jianping Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| |
Collapse
|
105
|
Sociali G, Magnone M, Ravera S, Damonte P, Vigliarolo T, Von Holtey M, Vellone VG, Millo E, Caffa I, Cea M, Parenti MD, Del Rio A, Murone M, Mostoslavsky R, Grozio A, Nencioni A, Bruzzone S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. FASEB J 2017; 31:3138-3149. [PMID: 28386046 DOI: 10.1096/fj.201601294r] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 01/08/2023]
Abstract
Sirtuin 6 (SIRT6) is a sirtuin family member involved in a wide range of physiologic and disease processes, including cancer and glucose homeostasis. Based on the roles played by SIRT6 in different organs, including its ability to repress the expression of glucose transporters and glycolytic enzymes, inhibiting SIRT6 has been proposed as an approach for treating type 2 diabetes mellitus (T2DM). However, so far, the lack of small-molecule Sirt6 inhibitors has hampered the conduct of in vivo studies to assess the viability of this strategy. We took advantage of a recently identified SIRT6 inhibitor, compound 1, to study the effect of pharmacological Sirt6 inhibition in a mouse model of T2DM (i.e., in high-fat-diet-fed animals). The administration of the Sirt6 inhibitor for 10 d was well tolerated and improved oral glucose tolerance, it increased the expression of the glucose transporters GLUT1 and -4 in the muscle and enhanced the activity of the glycolytic pathway. Sirt6 inhibition also resulted in reduced insulin, triglycerides, and cholesterol levels in plasma. This study represents the first in vivo study of a SIRT6 inhibitor and provides the proof-of-concept that targeting SIRT6 may be a viable strategy for improving glycemic control in T2DM.-Sociali, G., Magnone, M., Ravera, S., Damonte, P., Vigliarolo, T., Von Holtey, M., Vellone, V. G., Millo, E., Caffa, I., Cea, M., Parenti, M. D., Del Rio, A., Murone, M., Mostoslavsky, R., Grozio, A., Nencioni, A., Bruzzone S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model.
Collapse
Affiliation(s)
- Giovanna Sociali
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Mirko Magnone
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Silvia Ravera
- Biochemistry Laboratory, Department of Pharmacy, University of Genova, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Tiziana Vigliarolo
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | | | - Valerio G Vellone
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Genoa, Italy
| | - Enrico Millo
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Marco Daniele Parenti
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna, Italy.,Innovamol Srls, Modena, Italy
| | - Maximilien Murone
- Debiopharm International S.A., Lausanne, Switzerland.,Cellestia Biotech AG, Basel, Switzerland
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessia Grozio
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genova, Genoa, Italy; .,Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliera Universitaria San Martino Istituto Nazionale per la Ricerca sul Cancro (IST), Genoa, Italy; and
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy; .,Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
106
|
Abstract
Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.
Collapse
|
107
|
Raffaghello L, Longo V. Metabolic Alterations at the Crossroad of Aging and Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:1-42. [PMID: 28526131 DOI: 10.1016/bs.ircmb.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging represents the major risk factor for cancer. Cancer and aging are characterized by a similar dysregulated metabolism consisting in upregulation of glycolysis and downmodulation of oxidative phosphorylation. In this respect, metabolic interventions can be viewed as promising strategies to promote longevity and to prevent or delay age-related disorders including cancer. In this review, we discuss the most promising metabolic approaches including chronic calorie restriction, periodic fasting/fasting-mimicking diets, and pharmacological interventions mimicking calorie restriction. Metabolic interventions can also be viewed as adjuvant anticancer strategies to be combined to standard cancer therapy (chemotherapeutic agents, ionizing radiation, and drugs with specific molecular target), whose major limiting factors are represented by toxicity against healthy cells but also limited efficacy easily circumvented by tumor cells. In fact, conventional cancer therapy is unable to distinguish normal and cancerous cells and thus causes toxic side effects including secondary malignancies, cardiovascular and respiratory complications, endocrinopathies, and other chronic conditions, that resemble and, in some cases, accelerate the age-related disorders and profoundly affect the quality of life. In this scenario, geroscience contributes to the understanding of the mechanisms of protection of normal cells against a cytotoxic agent and finding strategies focused on the preserving healthy cells while enhancing the efficacy of the treatment against malignant cells.
Collapse
Affiliation(s)
- L Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - V Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
108
|
AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 2017; 7:17815-28. [PMID: 26894973 PMCID: PMC4951252 DOI: 10.18632/oncotarget.7404] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/29/2016] [Indexed: 01/12/2023] Open
Abstract
The signaling pathways that govern survival response in hepatic cancer cells subjected to nutritional restriction have not been clarified yet. In this study we showed that liver cancer cells undergoing glucose deprivation both arrested in G0/G1 and died mainly by apoptosis. Treatment with the AMPK activator AICAR phenocopied the effect of glucose deprivation on cell survival, whereas AMPK silencing in HepG2/C3A, HuH-7 or SK-Hep-1 cells blocked the cell cycle arrest and the increase in apoptotic death induced by glucose starvation. Both AMPK and PKA were promptly activated after glucose withdrawal. PKA signaling had a dual role during glucose starvation: whereas it elicited an early decreased in cell viability, it later improved this parameter. We detected AMPK phosphorylation (AMPKα(Ser173)) by PKA, which was increased in glucose starved cells and was associated with diminution of AMPK activation. To better explore this inhibitory effect, we constructed a hepatocarcinoma derived cell line which stably expressed an AMPK mutant lacking that PKA phosphorylation site: AMPKα1(S173C). Expression of this mutant significantly decreased viability in cells undergoing glucose starvation. Furthermore, after 36 h of glucose deprivation, the index of AMPKα1(S173C) apoptotic cells doubled the apoptotic index observed in control cells. Two main remarks arise: 1. AMPK is the central signaling kinase in the scenario of cell cycle arrest and death induced by glucose starvation in hepatic cancer cells; 2. PKA phosphorylation of Ser173 comes out as a strong control point that limits the antitumor effects of AMPK in this situation.
Collapse
|
109
|
Saintas E, Abrahams L, Ahmad GT, Ajakaiye AOM, AlHumaidi ASHAM, Ashmore-Harris C, Clark I, Dura UK, Fixmer CN, Ike-Morris C, Mato Prado M, Mccullough D, Mishra S, Schöler KMU, Timur H, Williamson MDC, Alatsatianos M, Bahsoun B, Blackburn E, Hogwood CE, Lithgow PE, Rowe M, Yiangou L, Rothweiler F, Cinatl J, Zehner R, Baines AJ, Garrett MD, Gourlay CW, Griffin DK, Gullick WJ, Hargreaves E, Howard MJ, Lloyd DR, Rossman JS, Smales CM, Tsaousis AD, von der Haar T, Wass MN, Michaelis M. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS. PLoS One 2017; 12:e0172140. [PMID: 28192521 PMCID: PMC5305101 DOI: 10.1371/journal.pone.0172140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.
Collapse
Affiliation(s)
- Emily Saintas
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Liam Abrahams
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gulshan T. Ahmad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | | | - Iain Clark
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Usha K. Dura
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Carine N. Fixmer
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Mireia Mato Prado
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Shishir Mishra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Husne Timur
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Basma Bahsoun
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Edith Blackburn
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Catherine E. Hogwood
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Pamela E. Lithgow
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michelle Rowe
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Lyto Yiangou
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Richard Zehner
- Institut für Rechtsmedizin, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Anthony J. Baines
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Emma Hargreaves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Mark J. Howard
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Daniel R. Lloyd
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeremy S. Rossman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - C. Mark Smales
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | | | | | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
- * E-mail:
| |
Collapse
|
110
|
Sturla L, Mannino E, Scarfì S, Bruzzone S, Magnone M, Sociali G, Booz V, Guida L, Vigliarolo T, Fresia C, Emionite L, Buschiazzo A, Marini C, Sambuceti G, De Flora A, Zocchi E. Abscisic acid enhances glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:131-144. [PMID: 27871880 DOI: 10.1016/j.bbalip.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/20/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
|
111
|
Gu Z, Xia J, Xu H, Frech I, Tricot G, Zhan F. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase. J Hematol Oncol 2017; 10:17. [PMID: 28086949 PMCID: PMC5237262 DOI: 10.1186/s13045-017-0392-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2) has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. METHODS Tandem affinity purification followed up by mass spectrometry (TAP-MS) and co-immunoprecipitation (Co-IP) were used to study the interaction between NIMA (never in mitosis gene A)-related kinase 2 (NEK2) and heterogeneous nuclear ribonucleoproteins (hnRNP) A1/2. RNA immunoprecipitation (RIP) was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP)-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. RESULTS NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. CONCLUSIONS Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.
Collapse
Affiliation(s)
- Zhimin Gu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Jiliang Xia
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
- Institute of Cancer Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Ivana Frech
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Guido Tricot
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA.
| |
Collapse
|
112
|
Izadi F, Zamanian-Azodi M, Mansouri V, Khodadoostan M, Naderi N. Exploring conserved mRNA-miRNA interactions in colon and lung cancers. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:184-193. [PMID: 29118934 PMCID: PMC5660268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
AIM The main goal of this analysis was prioritization of co-expressed genes and miRNAs that are thought to have important influences in the pathogenesis of colon and lung cancers. BACKGROUND MicroRNAs (miRNAs) as small and endogenous noncoding RNAs which regulate gene expression by repressing mRNA translation or decreasing stability of mRNAs; they have proven pivotal roles in different types of cancers. Accumulating evidence indicates the role of miRNAs in a wide range of biological processes from oncogenesis and tumor suppressors to contribution to tumor progression. Colon and lung cancers are frequently encountered challenging types of cancers; therefore, exploring trade-off among underlying biological units such as miRNA with mRNAs will probably lead to identification of promising biomarkers involved in these malignancies. METHODS Colon cancer and lung cancer expression data were downloaded from Firehose and TCGA databases and varied genes extracted by DCGL software were subjected to build two gene regulatory networks by parmigene R package. Afterwards, a network-driven integrative analysis was performed to explore prognosticates genes, miRNAs and underlying pathways. RESULTS A total of 192 differentially expressed miRNAs and their target genes within gene regulatory networks were derived by ARACNE algorithm. BTF3, TP53, MYC, CALR, NEM2, miR-29b-3p and miR-145 were identified as bottleneck nodes and enriched via biological gene ontology (GO) terms and pathways chiefly in biosynthesis and signaling pathways by further screening. CONCLUSION Our study uncovered correlated alterations in gene expression that may relate with colon and lung cancers and highlighted the potent common biomarker candidates for the two diseases.
Collapse
Affiliation(s)
- Fereshteh Izadi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Khodadoostan
- Department of Gastroenterology and Hepatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nosratollah Naderi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Minutolo F. Immune by Heart: Unexpected Observations Inspiring Perspective Therapeutic/Preventive Strategies against Cancer. ChemMedChem 2016; 11:2560-2566. [PMID: 27922212 DOI: 10.1002/cmdc.201600483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/20/2016] [Indexed: 12/18/2022]
Abstract
We often overlook ordinary events that take place right in front of our eyes. However, such events might be inspiring sources of revolutionary scientific discovery. Simple observations, such as those regarding the substantial immunity of the heart to cancer or the noninvasive behavior of plant tumors, are just the tips of icebergs hiding profound mechanistic causes that deserve deeper investigation. Several current or unprecedented approaches aimed at improving both the prevention and treatment of tumors are discussed on these bases herein. This viewpoint is not intended to give definitive answers, but rather to provide cues for discussion and motivation to pursue unexplored and accessible strategies to fight cancer.
Collapse
Affiliation(s)
- Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| |
Collapse
|
114
|
Zhong Y, Li X, Yu D, Li X, Li Y, Long Y, Yuan Y, Ji Z, Zhang M, Wen JG, Nesland JM, Suo Z. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro. Oncotarget 2016; 6:37758-69. [PMID: 26413751 PMCID: PMC4741963 DOI: 10.18632/oncotarget.5386] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
Aerobic glycolysis is one of the important hallmarks of cancer cells and eukaryotic cells. In this study, we have investigated the relationship between blocking mitochondrial pyruvate carrier (MPC) with UK5099 and the metabolic alteration as well as stemness phenotype of prostatic cancer cells. It was found that blocking pyruvate transportation into mitochondrial attenuated mitochondrial oxidative phosphorylation (OXPHOS) and increased glycolysis. The UK5099 treated cells showed significantly higher proportion of side population (SP) fraction and expressed higher levels of stemness markers Oct3/4 and Nanog. Chemosensitivity examinations revealed that the UK5099 treated cells became more resistant to chemotherapy compared to the non-treated cells. These results demonstrate probably an intimate connection between metabolic reprogram and stem-like phenotype of LnCap cells in vitro. We propose that MPC blocker (UK5099) application may be an ideal model for Warburg effect studies, since it attenuates mitochondrial OXPHOS and increases aerobic glycolysis, a phenomenon typically reflected in the Warburg effect. We conclude that impaired mitochondrial OXPHOS and upregulated glycolysis are related with stem-like phenotype shift in prostatic cancer cells.
Collapse
Affiliation(s)
- Yali Zhong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaoran Li
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Long
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Yuan
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenyu Ji
- Department of Oncology, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian-Guo Wen
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
115
|
Kirkland JL, Stout MB, Sierra F. Resilience in Aging Mice. J Gerontol A Biol Sci Med Sci 2016; 71:1407-1414. [PMID: 27535963 DOI: 10.1093/gerona/glw086] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an aging context. The preliminary set of tests ranked by the participants is discussed here, recognizing that this is a first attempt.
Collapse
Affiliation(s)
- James L Kirkland
- Mayo Clinic Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Michael B Stout
- Mayo Clinic Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Felipe Sierra
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
116
|
Qin J, Zhou J, Dai X, Zhou H, Pan X, Wang X, Zhang F, Rao J, Lu L. Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice. Am J Transl Res 2016; 8:3364-3375. [PMID: 27648127 PMCID: PMC5009389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Calorie restriction or starvation (fasting) has some beneficial effects in terms of prolonging life and increasing resistance to stress. It has also been shown that calorie restriction has a protective role during ischemia-reperfusion injury (IRI) in several organs, but the underlying mechanism has not been elucidated. In this study we investigated the effects and molecular mechanisms of short-term starvation (STS) on liver IRI in a mouse liver IRI model. We found that STS significantly attenuated liver IRI in this model, as evidenced by inhibition of serum aminotransferase levels, and decreased pathological damage and hepatocellular apoptosis, especially after 2- or 3-day starvation. Furthermore, we found that 2- or 3-day starvation induced expression of hepatocellular autophagy in vivo and in vitro. Further experiments provided support for the notion that STS-induced autophagy played a key role during starvation-regulated protection against liver IRI via autophagy inhibition with 3-methyladenine. Interestingly, the longevity gene Sirt1 was also significantly up-regulated in liver after STS. Importantly, inhibition of Sirt1 by sirtinol abolished STS-induced autophagy and further abrogated STS-mediated protection against liver IRI. In conclusion, our results indicate that STS attenuates liver IRI via the Sirt1-autophagy pathway. Our findings provide a rationale for a novel therapeutic strategy for managing liver IRI.
Collapse
Affiliation(s)
- Jianjie Qin
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Junjin Zhou
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Xinzheng Dai
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Haoming Zhou
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Xiongxiong Pan
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Xuehao Wang
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Feng Zhang
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Jianhua Rao
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Ling Lu
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| |
Collapse
|
117
|
Senichkin VV, Kopeina GS, Zamaraev AV, Lavrik IN, Zhivotovsky BD. Nutrient restriction in combinatory therapy of tumors. Mol Biol 2016. [DOI: 10.1134/s0026893316030109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
118
|
Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, Bottoni G, Emionite L, Pastorino F, Monteverde E, Garaboldi L, Martella R, Salani B, Maggi D, Ponzoni M, Fais F, Raffaghello L, Sambuceti G. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep 2016; 6:25092. [PMID: 27121192 PMCID: PMC4848551 DOI: 10.1038/srep25092] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022] Open
Abstract
Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Section of Genoa, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Anna Maria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Elena Monteverde
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lucia Garaboldi
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Barbara Salani
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Mirco Ponzoni
- Laboratorio di Oncologia, IRCCS G. Gaslini, Genoa, Italy
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Molecular Pathology, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
119
|
Bragazzi NL, Briki W, Khabbache H, Rammouz I, Chamari K, Demaj T, Re TS, Zouhir M. Ramadan Fasting and Patients with Cancer: State-of-the-Art and Future Prospects. Front Oncol 2016; 6:27. [PMID: 26904505 PMCID: PMC4748028 DOI: 10.3389/fonc.2016.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/25/2016] [Indexed: 01/09/2023] Open
Abstract
Ramadan fasting represents one of the five pillars of the Islam creed. Even though some subjects (among which patients) are exempted from observing this religious duty, they may be eager to share this particular moment of the year with their family and peers. However, there are no guidelines or standardized protocols that can help physicians to properly address the issue of patients with cancer fasting in Ramadan and correctly advising them. Moreover, in a more interconnected and globalized society, in which more and more Muslim patients live in the Western countries, this topic is of high interest also for the general practitioner. For this purpose, we carried out a systematic review on the subject. Our main findings are that (1) very few studies have been carried out, addressing this issue, (2) evidence concerning quality of life and compliance to treatment is contrasting and scarce, and (3) generally speaking, few patients ask their physicians whether they can safely fast or not. For these reasons, further research should be performed, given the relevance and importance of this topic.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy; Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Walid Briki
- College of Arts and Sciences, Qatar University , Doha , Qatar
| | - Hicham Khabbache
- Laboratoire Etudes théologiques, Sciences Cognitives et Sociales, Faculty of Literature and Humanistic Studies, Sais, Sidi Mohamed Ben Abdellah University , Fez , Morocco
| | - Ismail Rammouz
- Psychiatric Centre Ibn Alhassan, CHU Hassan II, Fez, Morocco; Clinical Neuroscience Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Karim Chamari
- Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital , Doha , Qatar
| | - Taned Demaj
- Emergency Department (Servizio di Emergenza Sanitaria Territoriale 118), Ospedale Maggiore della Carità , Novara , Italy
| | | | - Mohamed Zouhir
- Laboratoire Etudes théologiques, Sciences Cognitives et Sociales, Faculty of Literature and Humanistic Studies, Sais, Sidi Mohamed Ben Abdellah University , Fez , Morocco
| |
Collapse
|
120
|
Yang Q, Cai J, Sun S, Kang X, Guo J, Zhu Y, Yan L, Jing X, Wang Z. Polymer nanoparticle delivery of dichloroacetate and DACH-Pt to enhance antitumor efficacy and lower systemic toxicity. Biomater Sci 2016; 4:661-9. [DOI: 10.1039/c5bm00439j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nanoparticles loaded with dichloroacetate and DACHPt showed potential to sensitize cancer cells to chemotherapy in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jing Cai
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Si Sun
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Xiang Kang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jing Guo
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Yapei Zhu
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Lesan Yan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Zehua Wang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| |
Collapse
|