101
|
Nash DM, Weatherley AJ, Kleinman PJA, Sharpley AN. Estimating dissolved phosphorus losses from legacy sources in pastures: The limits of soil tests and small-scale rainfall simulators. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1042-1062. [PMID: 34245460 DOI: 10.1002/jeq2.20265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A legacy of using P fertilizers on grazed pastures has been enhanced soil fertility and an associated increased risk of P loss in runoff. Rainfall simulation has been extensively used to develop relationships between soil test P (STP) and dissolved P (DP) in runoff as part of modeling efforts scrutinizing the impact of legacy P. This review examines the applicability of rainfall simulation to draw inferences related to legacy P. Using available literature, we propose a mixing layer model with chemical transfer to describe DP mobilization from pasture soils where readily available P in the mixing layer is rapidly exhausted and contact time controls DP concentrations responsible for subsequent DP mobilization. That conceptual model was shown to be consistent with field monitoring data and then used to assess the likely effect of rainfall simulation protocols on DP mobilization, highlighting the influence of soil preparation, scale and measurement duration, and, most important, hydrology that can facilitate the physical transport of P into and out of surface flow. We conclude that rainfall simulation experimental protocols can have severe limitations for developing relationships between DP in runoff and STP that are subsequently used to estimate legacy P contributions to downstream water resources.
Collapse
Affiliation(s)
- David M Nash
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, Victoria, 3010, Australia
- Soil and Allied Services Pty. Ltd., 48 Stewart Street, Port Welshpool, Victoria, 3965, Australia
| | - A J Weatherley
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter J A Kleinman
- USDA-ARS, Soil Management and Sugar Beet Research Unit, Center for Agricultural Resources Research, Fort Collins, CO, 80526, USA
| | - Andrew N Sharpley
- Dep. of Crop Soil and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
102
|
Cheng K, Xu X, Cui L, Li Y, Zheng J, Wu W, Sun J, Pan G. The role of soils in regulation of freshwater and coastal water quality. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200176. [PMID: 34365829 DOI: 10.1098/rstb.2020.0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Water quality regulation is an important ecosystem service function of soil. In this study, the mechanism by which soil regulates water quality was reviewed, and the effects of soil management on water quality were explored. A scientometrics analysis was also conducted to explore the research fields and hotspots of water quality regulation of soil in the past 5 years. This review found that the pollutants entering the soil can be mitigated by precipitation, adsorption and desorption, ion exchange, redox and metabolic decomposition. As an optimal substrate, soil in constructed wetlands has perfect performance in the adsorption and passivation of pollutants such as nitrogen, phosphorus and heavy metals in water, and degradation of pesticides and emerging contaminants. Mangrove wetlands play an important role in coastal zone protection and coastal water quality restoration. However, the excessive application of agricultural chemicals causes soil overload, which leads to the occurrence of agricultural non-point source pollution. Under the dual pressures of climate change and food insecurity in the future, developing environmentally friendly and economically feasible sustainable soil management measures is crucial for maintaining the water purification function of soil by relying on the accurate quantification of soil function based on big data and modelling. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Kun Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Xiangrui Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu 224003, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Jufeng Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Wenao Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Jianfei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Genxing Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| |
Collapse
|
103
|
Kreiling RM, Bartsch LA, Perner PM, Hlavacek EJ, Christensen VG. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments. ENVIRONMENTAL MANAGEMENT 2021; 68:279-293. [PMID: 34105016 DOI: 10.1007/s00267-021-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Watershed land cover affects in-stream water quality and sediment nutrient dynamics. The presence of natural land cover in the riparian zone can reduce the negative effects of agricultural land use on water quality; however, literature evaluating the effects of natural riparian land cover on stream sediment nutrient dynamics is scarce. The objective of this study was to assess if stream sediment phosphorus retention and nitrogen removal varies with riparian forest cover in agricultural watersheds. Stream sediment nutrient dynamics from 28 sites with mixed land cover were sampled three times during the growing season. Phosphorus dynamics and nitrification rates did not change considerably throughout the study period. Sediment total phosphorus concentrations and nitrification rates decreased as riparian forest cover increased likely due to a decline in fine, organic material. Denitrification rates were strongly correlated to surface water nitrate concentrations. Denitrification rate and denitrification enzyme activity decreased with an increase in forest cover during the first sampling period only. The first sampling period coincided with the greatest connectivity between the watershed and in-stream processing, indicating that riparian forest cover indirectly decreased denitrification rates by reducing the concentrations of dissolved nutrients entering the stream. This reduction in load may allow the sediment to maintain greater nitrogen removal efficiency, because bacteria are not saturated with nitrogen. Riparian forest cover also appeared to lessen the effect of agriculture in the watershed by decreasing the amount of fine material in the stream, resulting in reduced phosphorus storage in the stream sediment.
Collapse
Affiliation(s)
- R M Kreiling
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA.
| | - L A Bartsch
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - P M Perner
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - E J Hlavacek
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - V G Christensen
- U.S. Geological Survey, Upper Midwest Water Science Center, Moundsview, MN, USA
| |
Collapse
|
104
|
Chakraborty D, Prasad R, Bhatta A, Torbert HA. Understanding the environmental impact of phosphorus in acidic soils receiving repeated poultry litter applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146267. [PMID: 33744574 DOI: 10.1016/j.scitotenv.2021.146267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
With rising global demand of poultry products, a surge in poultry production would warrant safe disposal of waste byproducts such as poultry litter (PL). A dilemma exists over environmental phosphorus (P) loss risk and agronomic utilization of PL in highly weathered soils with high P fixation capacity. The objective of this study was to determine P forms and their distribution in highly weathered Piedmont soils located in high density poultry operation (HDPO) areas and evaluate environmental P loss risk using soil P storage capacity (SPSC) approach. Soil samples from agricultural fields with 10 ± 2 years PL application history were collected from surface (0-15 cm) and subsurface (15-30 cm) depths. Approximately 64 ± 11% of total P was in non-reactive P (NRP) form, 35 ± 19% in moderately reactive P (MRP) forms, and < 1% in highly reactive P (HRP) form. Phosphorus sorption index (PSI) was higher in subsurface (316 L kg-1) compared to surface soils (150 L kg-1). The SPSC calculated based on a distinct soil threshold P saturation ratio (PSR; ratio of P/[Al + Fe], all elements expressed in moles) was higher in subsurface (17 mg kg-1) than surface (-150 mg kg-1) soils. Repeated application of PL resulted in P saturation of surface soils (SPSC<0) and represents a source of P to the environment. The NRP form decreased, and MRP forms increased when a) soil test P (STP) rating transitioned from low to extremely high, and b) SPSC changed from positive to negative. Results indicate that P release in soil solution is predominantly controlled by buffering action of MRP forms since HRP was minimal and NRP is mostly unavailable in highly weathered soils. A holistic approach that includes STP for maintaining agronomic productivity along with SPSC to minimize environmental P loss risk will be desirable for sustainable management of PL in HDPO.
Collapse
Affiliation(s)
- Debolina Chakraborty
- 202 Funchess Hall, Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rishi Prasad
- 202 Funchess Hall, Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; Department of Animal Science, Auburn University; Auburn, AL 36849, USA.
| | - Anjan Bhatta
- 202 Funchess Hall, Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - H Allen Torbert
- USDA-ARS National Soil Dynamics Lab., 411 S. Donahue Dr., Auburn, AL 36832, USA
| |
Collapse
|
105
|
Agricultural Landscape Transformation Needed to Meet Water Quality Goals in the Yahara River Watershed of Southern Wisconsin. Ecosystems 2021. [DOI: 10.1007/s10021-021-00668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
106
|
Shaw PJ, Leung KC, Clarke D. The fractionation of phosphorus in UK chalk stream surface waters and its relevance to the regulation and management of water quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112555. [PMID: 33848882 DOI: 10.1016/j.jenvman.2021.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The regulatory management of river water quality requires measurements of phosphorus that are operationally viable and meaningful in terms of insight into its effects. This need is a particular concern in globally rare and ecologically sensitive chalk streams. P data pertaining to rivers are commonly limited to soluble reactive P; other fractions of P may be of concern but are not routinely monitored. This study seeks to establish the nature and extent of non-regulated forms of P in UK chalk streams. Whilst soluble reactive P in two southern English chalk streams was found to comprise the majority of reactive P in surface waters in the majority of samples, 15-20% of the total reactive P was within other size fractions greater than 0.22 μm. The contribution of reactive P to the total P was highly variable. We conclude that, with some adjustments, the established method of regulatory monitoring of P in UK rivers is viable and valuable. In cases where the levels of reactive P are not consistent with ecological status and/or expected outcomes of programmes of measures, we recommend that targeted analysis of non-regulated forms of P is undertaken as a means to guide and focus management interventions.
Collapse
Affiliation(s)
- P J Shaw
- School of Geography and Environmental Science, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - K-C Leung
- School of Geography and Environmental Science, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - D Clarke
- School of Engineering, Faculty of Engineering & Physical Sciences, University of Southampton, Southampton Boldrewood Innovation Campus, Burgess Road, Southampton, SO16 7QF, UK
| |
Collapse
|
107
|
The Influence of Soil Fertilization on the Distribution and Diversity of Phosphorus Cycling Genes and Microbes Community of Maize Rhizosphere Using Shotgun Metagenomics. Genes (Basel) 2021; 12:genes12071022. [PMID: 34209356 PMCID: PMC8306440 DOI: 10.3390/genes12071022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Biogeochemical cycling of phosphorus in the agro-ecosystem is mediated by soil microbes. These microbes regulate the availability of phosphorus in the soil. Little is known about the response of functional traits of phosphorus cycling microbes in soil fertilized with compost manure (derived from domestic waste and plant materials) or inorganic nitrogen fertilizers at high and low doses. We used a metagenomics investigation study to understand the changes in the abundance and distribution of microbial phosphorus cycling genes in agricultural farmlands receiving inorganic fertilizers (120 kg N/ha, 60 kg N/ha) or compost manure (8 tons/ha, 4 tons/ha), and in comparison with the control. Soil fertilization with high level of compost (Cp8) or low level of inorganic nitrogen (N1) fertilizer have nearly similar effects on the rhizosphere of maize plants in promoting the abundance of genes involved in phosphorus cycle. Genes such as ppk involved in polyphosphate formation and pstSABC (for phosphate transportation) are highly enriched in these treatments. These genes facilitate phosphorus immobilization. At a high dose of inorganic fertilizer application or low compost manure treatment, the phosphorus cycling genes were repressed and the abundance decreased. The bacterial families Bacillaceae and Carnobacteriaceae were very abundant in the high inorganic fertilizer (N2) treated soil, while Pseudonocardiaceae, Clostridiaceae, Cytophagaceae, Micromonosporaceae, Thermomonosporaceae, Nocardiopsaceae, Sphaerobacteraceae, Thermoactinomycetaceae, Planococcaceae, Intrasporangiaceae, Opitutaceae, Acidimicrobiaceae, Frankiaceae were most abundant in Cp8. Pyrenophora, Talaromyces, and Trichophyton fungi were observed to be dominant in Cp8 and Methanosarcina, Methanobrevibacter, Methanoculleus, and Methanosphaera archaea have the highest percentage occurrence in Cp8. Moreover, N2 treatment, Cenarchaeum, Candidatus Nitrososphaera, and Nitrosopumilus were most abundant among fertilized soils. Our findings have brought to light the basis for the manipulation of rhizosphere microbial communities and their genes to improve availability of phosphorus as well as phosphorus cycle regulation in agro-ecosystems.
Collapse
|
108
|
Cerven V, Novak JM, Szögi AA, Pantuck K, Watts DW, Johnson MG. The Occurrence of Legacy P Soils and Potential Mitigation Practices Using Activated Biochar. AGRONOMY JOURNAL 2021; 11:1-11. [PMID: 35769313 PMCID: PMC9238423 DOI: 10.3390/agronomy11071289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The long-term application of manures in watersheds with dense animal production has increased soil phosphorus (P) concentration, exceeding plant and soil assimilative capacities. The P accumulated in soils that are heavily manured and contain excess extractable soil P concentrations is known as legacy P. Runoff and leaching can transport legacy P to ground water and surface water bodies, contributing to water quality impairment and environmental pollution, such as eutrophication. This review article analyzes and discusses current and innovative management practices for soil legacy P. Specifically, we address the use of biochar as an emerging novel technology that reduces P movement and bioavailability in legacy P soils. We illustrate that properties of biochar can be affected by pyrolysis temperature and by various activating chemical compounds and by-products. Our approach consists of engineering biochars, using an activation process on poultry litter feedstock before pyrolysis to enhance the binding or precipitation of legacy P. Finally, this review article describes previous examples of biochar activation and offers new approaches to the production of biochars with enhanced P sorption capabilities.
Collapse
Affiliation(s)
- Vasile Cerven
- Water and Plant Research Center, Coastal Plains Soil, Agricultural Research Service, United States Department of Agriculture, 2611 W. Lucas Street, Florence, SC 29501, USA
| | - Jeff M. Novak
- Water and Plant Research Center, Coastal Plains Soil, Agricultural Research Service, United States Department of Agriculture, 2611 W. Lucas Street, Florence, SC 29501, USA
| | - Ariel A. Szögi
- Water and Plant Research Center, Coastal Plains Soil, Agricultural Research Service, United States Department of Agriculture, 2611 W. Lucas Street, Florence, SC 29501, USA
| | - Kenneth Pantuck
- State Assistance & Partnerships Branch Infrastructure and Assistance Section, Water Division, U.S. Environmental Protection Agency, Philadelphia, PA 19103, USA
| | - Don W. Watts
- Water and Plant Research Center, Coastal Plains Soil, Agricultural Research Service, United States Department of Agriculture, 2611 W. Lucas Street, Florence, SC 29501, USA
| | - Mark G. Johnson
- Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR 97333, USA
| |
Collapse
|
109
|
How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? SUSTAINABILITY 2021. [DOI: 10.3390/su13126565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus is an essential component of modern agriculture. Long-term land application of phosphorous-enriched fertilizers and animal manure leads to phosphorus accumulation in soil that may become susceptible to mobilization via erosion, surface runoff and subsurface leaching. Globally, highly water-soluble phosphorus fertilizers used in agriculture have contributed to eutrophication and hypoxia in surface waters. This paper provides an overview of the literature relevant to the advances in phosphorous management strategies and surface water quality problems in the U.S. Over the past several decades, significant advances have been made to control phosphorus discharge into surface water bodies of the U.S. However, the current use of phosphorus remains inefficient at various stages of its life cycle, and phosphorus continues to remain a widespread problem in many water bodies, including the Gulf of Mexico and Lake Erie. In particular, the Midwestern Corn Belt region of the U.S. is a hotspot of phosphorous fertilization that has resulted in a net positive soil phosphorous balance. The runoff of phosphorous has resulted in dense blooms of toxic, odor-causing phytoplankton that deteriorate water quality. In the past, considerable attention was focused on improving the water quality of freshwater bodies and estuaries by reducing inputs of phosphorus alone. However, new research suggests that strategies controlling the two main nutrients, phosphorus and nitrogen, are more effective in the management of eutrophication. There is no specific solution to solving phosphorus pollution of water resources; however, sustainable management of phosphorus requires an integrated approach combining at least a reduction in consumption levels, source management, more specific regime-based nutrient criteria, routine soil fertility evaluation and recommendations, transport management, as well as the development of extensive phosphorus recovery and recycling programs.
Collapse
|
110
|
Zammali MK, Hassanzadeh E, Shupena-Soulodre E, Lindenschmidt KE. A generic approach to evaluate costs and effectiveness of agricultural Beneficial Management Practices to improve water quality management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112336. [PMID: 33740750 DOI: 10.1016/j.jenvman.2021.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Nutrient export from agricultural areas is among the main contributors to water pollution in various watersheds. Agricultural Beneficial Management Practices (BMPs) are commonly used to reduce excessive nutrient runoff and improve water quality. The successful uptake of BMPs not only depends on their effectiveness but also on their costs of implementation. This study conducts a set of cost-effectiveness analyses to help stakeholders identify their preferred combinations of BMPs in the Qu'Appelle River Basin, a typical watershed in the Canadian Prairies. The considered BMPs are related to cattle and cropping farms and are initially selected by agricultural producers in this region. The analyses use a water quality model to estimate the impact of implementing BMPs on nutrient export, and the cost estimation model to approximate the cost of implementing BMPs at tributary and watershed scales. Our results show that BMPs' effectiveness, total costs of implementation and costs per kilogram of nutrient abatement vary between tributaries. However, wetland conservation is among the optimal practices to improve water quality across the watershed. It is also found that the rates of BMP adoption by stakeholders can influence the effectiveness of practices in a large watershed scale, which highlights the importance of stakeholder engagement in water quality management. This type of analyses can help stakeholders choose single or a combination of BMPs according to their available budget and acceptable levels of reduction in nutrients.
Collapse
Affiliation(s)
- Mohamed Khalil Zammali
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Elmira Hassanzadeh
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada.
| | | | - Karl-Erich Lindenschmidt
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
| |
Collapse
|
111
|
Brookfield AE, Hansen AT, Sullivan PL, Czuba JA, Kirk MF, Li L, Newcomer ME, Wilkinson G. Predicting algal blooms: Are we overlooking groundwater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144442. [PMID: 33482544 DOI: 10.1016/j.scitotenv.2020.144442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Significant advances in understanding and predicting freshwater algal bloom dynamics have emerged in response to both increased occurrence and financial burden of nuisance and harmful blooms. Several factors have been highlighted as key controls of bloom occurrence, including nutrient dynamics, local hydrology, climatic perturbations, watershed geomorphology, biogeochemistry, food-web control, and algal competition. However, a major research gap continues to be the degree to which groundwater inputs modulate microbial biomass production and food-web dynamics at the terrestrial-aquatic interface. We present a synthesis of groundwater related algal bloom literature, upon which we derive a foundational hypothesis: long residence times cause groundwater to be geochemically and biologically distinct from surface water, allowing groundwater inputs to modulate algal bloom dynamics (growth, decline, toxicity) through its control over in-stream water chemistry. Distinct groundwater chemistry can support or prevent algal blooms, depending on specific local conditions. We highlight three mechanisms that influence the impact of groundwater discharge on algal growth: 1) redox state of the subsurface, 2) extent of water-rock interactions, and 3) stability of groundwater discharge. We underscore that in testing hypotheses related to groundwater control over algal blooms, it is critical to understand how changes in land use, water management, and climate will influence groundwater dynamics and, thus, algal bloom probabilities. Given this challenge, we argue that advances in both modeling and data integration, including genomics data and integrated process-based models that capture groundwater dynamics, are needed to illuminate mechanistic controls and improve predictions of algal blooms.
Collapse
Affiliation(s)
- Andrea E Brookfield
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada.
| | - Amy T Hansen
- Civil, Environmental & Architectural Engineering, University of Kansas, Lawrence, KS, USA
| | - Pamela L Sullivan
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Jonathan A Czuba
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Matthew F Kirk
- Department of Geology, Kansas State University, Manhattan, KS, USA
| | - Li Li
- Department of Civil and Environmental Engineering, Penn State, University Park, PA, USA
| | - Michelle E Newcomer
- Climate & Ecosystems Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Grace Wilkinson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Center for Limnology, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
112
|
Sandström S, Futter MN, O'Connell DW, Lannergård EE, Rakovic J, Kyllmar K, Gill LW, Djodjic F. Variability in fluvial suspended and streambed sediment phosphorus fractions among small agricultural streams. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:612-626. [PMID: 33817794 DOI: 10.1002/jeq2.20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Agriculture is a major source of sediment and particulate phosphorus (P) inputs to freshwaters. Distinguishing between P fractions in sediment can aid in understanding its eutrophication risk. Although streams and rivers are important parts of the P cycle in agricultural catchments, streambed sediment and especially fluvial suspended sediment (FSS) and its P fractions are less studied. To address this knowledge gap, seasonal variations in FSS P fractions and their relation to water quality and streambed sediment were examined in three Swedish agricultural headwater catchments over 2 yr. Sequential fractionation was used to characterize P fractions in both streambed sediment and FSS. All catchments had similar annual P losses (0.4-0.8 kg ha-1 ), suspended solids (124-183 mg L-1 ), and FSS total P concentrations (1.15-1.19 mg g-1 ). However, distribution of P fractions and the dominant P fractions in FSS differed among catchments (p < .05), which was most likely dependent on differences in catchment geology, clay content, external P sources, and flow conditions. The most prominent seasonal pattern in all catchments was found for iron-bound P, with high concentrations during low summer flows and low concentrations during winter high flows. Streambed sediment P fractions were in the same concentration ranges as in FSS, and the distribution of the fractions differed between catchments. This study highlights the need to quantify P fractions, not just total P in FSS, to obtain a more complete understanding of the eutrophication risk posed by agricultural sediment losses.
Collapse
Affiliation(s)
- Sara Sandström
- Dep. of Aquatic Sciences and Assessment, Swedish Univ. of Agricultural Sciences, P.O. Box 7050, Uppsala, Sweden
| | - Martyn N Futter
- Dep. of Aquatic Sciences and Assessment, Swedish Univ. of Agricultural Sciences, P.O. Box 7050, Uppsala, Sweden
| | - David W O'Connell
- Dep. of Civil and Environmental Engineering, Museum Building, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Emma E Lannergård
- Dep. of Aquatic Sciences and Assessment, Swedish Univ. of Agricultural Sciences, P.O. Box 7050, Uppsala, Sweden
| | - Jelena Rakovic
- Dep. of Soil and Environment, Swedish Univ. of Agricultural Sciences, P.O. Box 7014, Uppsala, Sweden
| | - Katarina Kyllmar
- Dep. of Soil and Environment, Swedish Univ. of Agricultural Sciences, P.O. Box 7014, Uppsala, Sweden
| | - Laurence W Gill
- Dep. of Civil and Environmental Engineering, Museum Building, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Faruk Djodjic
- Dep. of Aquatic Sciences and Assessment, Swedish Univ. of Agricultural Sciences, P.O. Box 7050, Uppsala, Sweden
| |
Collapse
|
113
|
Christopher SF, Tank JL, Mahl UH, Hanrahan BR, Royer TV. Effect of winter cover crops on soil nutrients in two row-cropped watersheds in Indiana. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:667-679. [PMID: 33788277 DOI: 10.1002/jeq2.20217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The midwestern United States is a highly productive agricultural region, and extended crop-free periods in winter/spring can result in nitrogen (N) and phosphorus (P) losses to waterways that degrade downstream water quality. Planting winter cover crops can improve soil health while reducing nutrient leaching from farm fields during the fallow period. In this study, we used linear mixed effects models and multivariate statistics to determine the effect of cover crops on soil nutrients by comparing fields with cover crops (n = 9) versus those without (n = 6) in two Indiana agricultural watersheds: the Shatto Ditch Watershed, which had >60% of croppable acres in winter cover crops, and the Kirkpatrick Ditch Watershed, which had ∼20%. We found that cover crops decreased soil nitrate-N by >50% and that the magnitude of reduction was related to the amount of cover crop biomass. In contrast, cover crops had variable effects on water extractable P and Mehlich III soil test P. Finally, cover crop biomass significantly increased soil N mineralization and nitrification rates, demonstrating that cover crops have the potential to supply bioavailable N to cash crop after termination. Our study showed that widespread implementation of winter cover crops holds considerable promise for reducing nutrient loss and improving soil health. The degree to which these results are generalizable across other systems depends on factors such as climate, soil characteristics, and past and current agronomic practices.
Collapse
Affiliation(s)
- Sheila F Christopher
- Environmental Change Initiative, Univ. of Notre Dame, 721 Flanner Hall, Notre Dame, IN, 46556, USA
| | - Jennifer L Tank
- Dep. of Biological Sciences, Univ. of Notre Dame, 192 Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Ursula H Mahl
- Dep. of Biological Sciences, Univ. of Notre Dame, 192 Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Brittany R Hanrahan
- USDA-ARS, Soil Drainage Research Unit, 590 Woody Hayes Drive, Columbus, OH, 43210, USA
| | - Todd V Royer
- O'Neill School of Public and Environmental Affairs, Indiana Univ., 702 N. Walnut Grove Ave, Bloomington, IN, 47405, USA
| |
Collapse
|
114
|
Bos J, Williams M, Smith D, Armstrong S, Harmel D. Long-term effect of poultry litter application on phosphorus balances and runoff losses. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:639-652. [PMID: 33742467 DOI: 10.1002/jeq2.20219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Assessment of annual and cumulative impacts of phosphorus (P) management strategies at field and watershed scales is needed to improve crop use efficiency and minimize environmental impacts. The objectives of this study were (a) to assess relationships among P balance, soil test P (STP) concentration, and runoff dissolved reactive P (DRP) concentration from fields receiving different poultry litter application rates (0.0-13.4 Mg ha-1 ) and (b) to determine the effect of long-term poultry litter application to fields on watershed DRP loss. Nutrient management practices, crop yield, STP, and runoff losses were assessed from nine fields and two watersheds located near Riesel, TX, from 2000 to 2015. Field-scale P balances were largely controlled by P application rate and exhibited a positive relationship with STP and runoff DRP flow-weighted mean concentration. Using a before-after control-impact experimental design that included monitoring at both field and watershed scales showed the influence of field P management on watershed DRP loss varied according to both source (i.e., P application rate, impacted area) and transport (i.e., hydrological connectivity) factors. Increased risk of watershed DRP loss was observed during wet years and years with two poultry litter applications to fields within the watershed. The percentage of the total watershed area receiving high rates of poultry litter also played a critical role in determining the risk of DRP loss. Findings highlight the impact of long-term P management strategies on DRP loss at both field and watershed scales and show the importance of incorporating hydrologic connectivity when assessing conservation effects on water quality.
Collapse
Affiliation(s)
- Janae Bos
- National Soil Erosion Research Lab., USDA-ARS, 275 S Russell Street, West Lafayette, IN, 47907, USA
- Dep. of Agronomy, Purdue Univ., 915 West State Street, West Lafayette, IN, 47907, USA
| | - Mark Williams
- National Soil Erosion Research Lab., USDA-ARS, 275 S Russell Street, West Lafayette, IN, 47907, USA
| | - Douglas Smith
- Grassland Soil and Water Research Lab., USDA-ARS, 808 East Blackland Road, Temple, TX, 76502, USA
| | - Shalamar Armstrong
- Dep. of Agronomy, Purdue Univ., 915 West State Street, West Lafayette, IN, 47907, USA
| | - Daren Harmel
- Center for Agricultural Resources Research Center, USDA-ARS, 2150 Centre Avenue, Fort Collins, CO, 80526, USA
| |
Collapse
|
115
|
Merrill NH, Piscopo AN, Balogh S, Furey RP, Mulvaney KK. When, where, and how to intervene? Trade-offs between time and costs in coastal nutrient management. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 2021; 57:328-343. [PMID: 35153467 PMCID: PMC8827406 DOI: 10.1111/1752-1688.12897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Policies and regulations designed to address nutrient pollution in coastal waters are often complicated by delays in environmental and social systems. Social and political inertia may delay implementation of cleanup projects, and even after the best nutrient pollution management practices are developed and implemented, long groundwater travel times may delay the impact of inland or upstream interventions. These delays and the varying costs of nutrient removal alternatives used to meet water quality goals combine to create a complex dynamic decision problem with trade-offs about when, where, and how to intervene. We use multi-objective optimization to quantify the trade-offs between costs and minimizing the time to meet in-bay nutrient reduction goals represented as a Total Maximum Daily Load (TMDL). We calculate the impact of using in-bay (in-situ) nutrient removal through shellfish aquaculture relative to waiting for traditional source control to be implemented. We apply these methods to the Three Bays Watershed in Cape Cod, Massachusetts. In gross benefit terms, not accounting for any social costs, this equates to an average value of 37¢ (2035 TMDL target date) and 11¢ (2060 TMDL target date) per animal harvested over the plan implementation period. Our results encourage the consideration of alternative and in-situ approaches to tackle coastal pollution while traditional source control is implemented and its effects realized over time.
Collapse
Affiliation(s)
- Nathaniel H Merrill
- U.S. Environmental Protection Agency (Merrill, Balogh, Furey, Mulvaney), Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA. Northeast Water Solutions, Inc (Piscopo), Rhode Island, USA
| | - Amy N Piscopo
- U.S. Environmental Protection Agency (Merrill, Balogh, Furey, Mulvaney), Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA. Northeast Water Solutions, Inc (Piscopo), Rhode Island, USA
| | - Stephen Balogh
- U.S. Environmental Protection Agency (Merrill, Balogh, Furey, Mulvaney), Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA. Northeast Water Solutions, Inc (Piscopo), Rhode Island, USA
| | - Ryan P Furey
- U.S. Environmental Protection Agency (Merrill, Balogh, Furey, Mulvaney), Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA. Northeast Water Solutions, Inc (Piscopo), Rhode Island, USA
| | - Kate K Mulvaney
- U.S. Environmental Protection Agency (Merrill, Balogh, Furey, Mulvaney), Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA. Northeast Water Solutions, Inc (Piscopo), Rhode Island, USA
| |
Collapse
|
116
|
Montgomery JA, Eames JM, Klimas C. A
16‐year
investigation of legacy phosphorus discharge from Prairie Wolf Slough: a wetland restored on a former farmed field. Restor Ecol 2021. [DOI: 10.1111/rec.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James A. Montgomery
- Department of Environmental Science and Studies DePaul University, 1110 West Belden Avenue, Chicago, IL 60614, U.S.A
| | - James M. Eames
- Department of Environmental Science and Studies DePaul University, 1110 West Belden Avenue, Chicago, IL 60614, U.S.A
| | - Christie Klimas
- Department of Environmental Science and Studies DePaul University, 1110 West Belden Avenue, Chicago, IL 60614, U.S.A
| |
Collapse
|
117
|
Saia SM, Carrick HJ, Buda AR, Regan JM, Walter MT. Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2722-2742. [PMID: 33559467 DOI: 10.1021/acs.est.0c03566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals.
Collapse
Affiliation(s)
- Sheila M Saia
- Depatment of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter J Carrick
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Anthony R Buda
- Pasture Systems and Watershed Management Research Unit, Agricultural Research Service, United States Department of Agriculture, University Park, Pennsylvania 16802, United States
| | - John M Regan
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
118
|
Fan B, Fenton O, Daly K, Ding J, Chen S, Chen Q. Alum split applications strengthened phosphorus fixation and phosphate sorption in high legacy phosphorus calcareous soil. J Environ Sci (China) 2021; 101:87-97. [PMID: 33334540 DOI: 10.1016/j.jes.2020.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
High phosphorus (P) saturation arising from historic P inputs to protected vegetable fields (PVFs) drives high P mobilisation to waterbodies. Amendment of soils with alum has shown potential in terms of fixing labile P and protecting water quality. The present 15 month pot experiment investigated P stabilisation across single alum application (Alum-1 treatment, 20 g alum/kg soil incorporated into soil before the maize was sown), alum split applications (Alum-4 treatment, 5 g alum/kg soil incorporated into soil before each crop was sown i.e. 4 × 5 g/kg) and soil only treatment (Control). Results showed that the Alum-1 treatment caused the strongest stabilisation of soil labile P after maize plant removal, whereas the P stabilisation effect was gradually weakened due to the transformation of soil non-labile P to labile P and the reduced active Al3+ in soil solution. For the Alum-4 treatment, soil labile P decreased gradually with each crop planting and was lower than the Alum-1 treatment at the end of the final crop removal, without any impairment on plant growth. The better P stabilisation at the end of Alum-4 treatment was closely correlated with a progressive supply of Al3+ and a gradual decrease of pH, which resulted in higher contents of poorly-crystalline Al, Fe and exchangeable Ca. These aspects were conducive to increasing the soil P stabilisation and phosphate sorption. In terms of management, growers in continuous cropping systems could utilise split alum applications as a strategy to alleviate P losses in high-P enriched calcareous soil.
Collapse
Affiliation(s)
- Bingqian Fan
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Owen Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Karen Daly
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Jiahui Ding
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shuo Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
119
|
Simpson ZP, McDowell RW, Condron LM, McDaniel MD, Jarvie HP, Abell JM. Sediment phosphorus buffering in streams at baseflow: A meta-analysis. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:287-311. [PMID: 33491241 DOI: 10.1002/jeq2.20202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) pollution of surface waters remains a challenge for protecting and improving water quality. Central to the challenge is understanding what regulates P concentrations in streams. This quantitative review synthesizes the literature on a major control of P concentrations in streams at baseflow-the sediment P buffer-to better understand streamwater-sediment P interactions. We conducted a global meta-analysis of sediment equilibrium phosphate concentrations at net zero sorption (EPC0 ), which is the dissolved reactive P (DRP) concentration toward which sediments buffer solution DRP. Our analysis of 45 studies and >900 paired observations of DRP and EPC0 showed that sediments often have potential to remove or release P to the streamwater (83% of observations), meaning that "equilibrium" between sediment and streamwater is rare. This potential for P exchange is moderated by sediment and stream characteristics, including sorption affinity, stream pH, exchangeable P concentration, and particle sizes. The potential for sediments to modify streamwater DRP concentrations is often not realized owing to other factors (e.g., hydrologic interactions). Sediment surface chemistry, hyporheic exchange, and biota can also influence the potential exchange of P between sediments and the streamwater. Methodological choices significantly influenced EPC0 determination and thus the estimated potential for P exchange; we therefore discuss how to measure and report EPC0 to best suit research objectives and aid in interstudy comparison. Our results enhance understanding of the sediment P buffer and inform how EPC0 can be effectively applied to improve management of aquatic P pollution and eutrophication.
Collapse
Affiliation(s)
- Zachary P Simpson
- Faculty of Agriculture and Life Sciences, Lincoln Univ., P.O. Box 84, Lincoln, Christchurch, 7647, New Zealand
| | - Richard W McDowell
- Faculty of Agriculture and Life Sciences, Lincoln Univ., P.O. Box 84, Lincoln, Christchurch, 7647, New Zealand
- AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch, 8140, New Zealand
| | - Leo M Condron
- Faculty of Agriculture and Life Sciences, Lincoln Univ., P.O. Box 84, Lincoln, Christchurch, 7647, New Zealand
| | | | - Helen P Jarvie
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
120
|
Kast JB, Apostel AM, Kalcic MM, Muenich RL, Dagnew A, Long CM, Evenson G, Martin JF. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111803. [PMID: 33341725 DOI: 10.1016/j.jenvman.2020.111803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Coastal eutrophication is a leading cause of degraded water quality around the world. Identifying the sources and their relative contributions to impaired downstream water quality is an important step in developing management plans to address water quality concerns. Recent mass-balance studies of Total Phosphorus (TP) loads of the Maumee River watershed highlight the considerable phosphorus contributions of non-point sources, including agricultural sources, degrading regional downstream water quality. This analysis builds upon these mass-balance studies by using the Soil and Water Assessment Tool to simulate the movement of phosphorus from manure, inorganic fertilizer, point sources, and soil sources, and respective loads of TP and Dissolved Reactive Phosphorus (DRP). This yields a more explicit estimation of source contribution from the watershed. Model simulations indicate that inorganic fertilizers contribute a greater proportion of TP (45% compared to 8%) and DRP (58% compared to 12%) discharged from the watershed than manure sources in the March-July period, the season driving harmful algal blooms. Although inorganic fertilizers contributed a greater mass of TP and DRP than manure sources, the two sources had similar average delivery fractions of TP (2.7% for inorganic fertilizers vs. 3.0% for manure sources) as well as DRP (0.7% for inorganic fertilizers vs. 1.2% for manure sources). Point sources contributed similar proportions of TP (5%) and DRP (12%) discharged in March-July as manure sources. Soil sources of phosphorus contributed over 40% of the March-July TP load and 20% of the March-July DRP load from the watershed to Lake Erie. Reductions of manures and inorganic fertilizers corresponded to a greater proportion of phosphorus delivered from soil sources of phosphorus, indicating that legacy phosphorus in soils may need to be a focus of management efforts to reach nutrient load reduction goals. In agricultural watersheds aground the world, including the Maumee River watershed, upstream nutrient management should not focus solely on an individual nutrient source; rather a comprehensive approach involving numerous sources should be undertaken.
Collapse
Affiliation(s)
- Jeffrey B Kast
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, United States; Environmental Science Graduate Program, The Ohio State University, 174 18th Ave., Columbus, OH, 43210, United States.
| | - Anna M Apostel
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, United States.
| | - Margaret M Kalcic
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, United States; The Translational Data Analytics Institute at Ohio State, Columbus, OH, 43210, United States.
| | - Rebecca L Muenich
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Ave., Tempe, AZ, 85281, United States.
| | - Awoke Dagnew
- Environmental Consulting and Technology, Inc., 2200 Commonwealth Blvd, Ann Arbor, MI, 48105, United States.
| | - Colleen M Long
- Graham Sustainability Institute, University of Michigan, 214 S. State St., Ann Arbor, MI, 48105, United States.
| | - Grey Evenson
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, United States.
| | - Jay F Martin
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, United States; The Sustainability Institute at Ohio State, 174 W. 18th Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
121
|
Adediran GA, Lundberg D, Almkvist G, Pradas Del Real AE, Klysubun W, Hillier S, Gustafsson JP, Simonsson M. Micro and nano sized particles in leachates from agricultural soils: Phosphorus and sulfur speciation by X-ray micro-spectroscopy. WATER RESEARCH 2021; 189:116585. [PMID: 33171296 DOI: 10.1016/j.watres.2020.116585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Colloids and nanoparticles leached from agricultural land are major carriers of potentially bioavailable nutrients with high mobility in the environment. Despite significant research efforts, accurate knowledge of macronutrients in colloids and nanoparticles is limited. We used multi-elemental synchrotron X-ray fluorescence (XRF) microscopy with multivariate spatial analysis and X-ray atomic absorption near-edge structure (XANES) spectroscopy at the P and S K-edges, to study the speciation of P and S in two fractions of leached particles, >0.45 and <0.45 µm respectively, collected from four tile-drained agricultural sites in Sweden. P K-edge XANES showed that organic P, followed by P adsorbed to surfaces of aluminum-bearing particles were the most common forms of leached P. Iron-bound P (Fe-P) forms were generally less abundant (0-30 % of the total P). S K-edge XANES showed that S was predominantly organic, and a relatively high abundance of reduced S species suggests that redox conditions were adverse to the persistence of P bound to Fe-bearing colloids in the leachates. Acid ammonium-oxalate extractions suggested that P associated with Al and Fe (Al-P and Fe-P) in most cases could be explained by the adsorption capacity of non-crystalline (oxalate-extractable) oxides of Al and Fe. These results improve our understanding of particulate P and S speciation in the vadose zone and helps in developing effective technologies for mitigating colloidal driven eutrophication of water bodies near agricultural land.
Collapse
Affiliation(s)
- Gbotemi A Adediran
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala 750 07, Sweden.
| | - Daniel Lundberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, Uppsala 750 07, Sweden
| | - Gunnar Almkvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, Uppsala 750 07, Sweden
| | | | - Wantana Klysubun
- Synchrotron Light Research Institute, 111 Moo 6, Suranaree, Muang, Nakhon Ratchasima, Thailand
| | - Stephen Hillier
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala 750 07, Sweden; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala 750 07, Sweden
| | - Magnus Simonsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala 750 07, Sweden.
| |
Collapse
|
122
|
Hanrahan BR, King KW, Williams MR. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142047. [PMID: 33254852 DOI: 10.1016/j.scitotenv.2020.142047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
The magnitude of nitrogen (N) and phosphorus (P) exported from agricultural fields via subsurface tile drainage systems is determined by site-specific interactions between weather, soil, field, and management characteristics. Here, we used multiple regression analyses to evaluate the influence of 29 controls of precipitation event-driven discharge, nitrate (NO3--N) load, and dissolved reactive P (DRP) load from subsurface tile drains, leveraging a unique dataset of ~7000 precipitation events observed across 40 agricultural fields (n = 190 site years) instrumented to collect continuous water quality samples. We calculated marginal effects of significant controls and assessed the modifying influence of event rainfall, duration, and intensity, and antecedent precipitation. Tile discharge was strongly and positively influenced by previous 7-day precipitation and total rainfall and negatively influenced by daily temperature and tile spacing. Both tile NO3--N and DRP loads were positively influenced by transport and source variables, including event discharge and total fertilizer applied as well as soil test P (STP) in the case of tile DRP load; factors with the strongest negative influence on tile NO3--N and DRP loads were related to time of year. The strength and direction of both positive and negative controls also varied with precipitation characteristics. For example, the positive influence of event discharge on nutrient loads lessened as event duration, event intensity, and previous 7-day precipitation increased, while the positive influence of N and P sources strengthened, particularly in response to extreme (or maximum) events. Results here demonstrate the predominant role of transport and source controls while accounting for interactive effects among site-specific characteristics and underscore the importance of storm dynamics when managing N and P loss from agricultural fields.
Collapse
Affiliation(s)
- Brittany R Hanrahan
- USDA-ARS Soil Drainage Research Unit, 590 Woody Hayes Dr., Columbus, OH 43210, United States of America.
| | - Kevin W King
- USDA-ARS Soil Drainage Research Unit, 590 Woody Hayes Dr., Columbus, OH 43210, United States of America.
| | - Mark R Williams
- USDA-ARS National Soil Erosion Research Laboratory, 275 South Russell Street, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
123
|
Brownlie WJ, Sutton MA, Reay DS, Heal KV, Hermann L, Kabbe C, Spears BM. Global actions for a sustainable phosphorus future. NATURE FOOD 2021; 2:71-74. [PMID: 37117414 DOI: 10.1038/s43016-021-00232-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Will J Brownlie
- UK Centre for Ecology & Hydrology, Edinburgh, UK.
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK.
| | | | - David S Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK
| | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
124
|
Wang YT, Zhang TQ, Zhao YC, Ciborowski JJH, Zhao YM, O'Halloran IP, Qi ZM, Tan CS. Characterization of sedimentary phosphorus in Lake Erie and on-site quantification of internal phosphorus loading. WATER RESEARCH 2021; 188:116525. [PMID: 33091803 DOI: 10.1016/j.watres.2020.116525] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Lake Erie harmful algal blooms and hypoxia are two major environmental problems, and have severe impacts on human health, aquatic ecosystems, and the economy. However, little is known about internal loading of phosphorus (P) from sediments, which pose a challenge for assessing the efficacy of current conservation measures on the improvement of lake water quality. A modified Hedley's extraction procedure was employed to analyze representative sediment samples collected from the Lake Erie basin for assessing sedimentary P stock, potential availability for release into lake water, and internal P loading. Inorganic and organic P in the sediments were characterized by sequential extractions in H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl, respectively. In the 0 - 10 cm sediment, total P stock was 172, 191, and 170 metric tons km-2 in the western, central, and eastern basins, respectively. Sedimentary P seems unlikely to contribute to internal P loading in the western basin, while in the eastern basin it can potentially contribute to an internal loading of 359 metric tons P yr-1. In the central basin, 41% of organic P, 15% of non-HCl extractable inorganic P, and 9.7% of residual P in the 0 - 10 cm sediment is potentially available for release into lake water; in the 10 - 20 cm sediment, organic P extracted by NaHCO3 and NaOH is also partially available. The central basin potentially contributes to internal P loading at a total amount of 10,599 metric tons yr-1. Internal P loading may not contribute to HABs in the western basin, but it can cause and maintain hypoxia in the central basin and delay the recovery of lake water quality for a lengthy time period in response to external P reduction measures.
Collapse
Affiliation(s)
- Y T Wang
- Harrow Research and Development Center, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada
| | - T Q Zhang
- Harrow Research and Development Center, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Y C Zhao
- Nanotechnology Engineering Program, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - J J H Ciborowski
- Department of Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Y M Zhao
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 320 Milo Rd, Wheatley, ON N0P 2P0, Canada
| | - I P O'Halloran
- School of Environmental Sciences, Ridgetown Campus, University of Guelph, ON, Canada
| | - Z M Qi
- McGill University, Department of Bioresource Engineering, Sainte-Anne-de-Bellevue, QC H9 × 3V9, Canada
| | - C S Tan
- Harrow Research and Development Center, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada
| |
Collapse
|
125
|
Wu CL, Herrington SJ, Charry B, Chu ML, Knouft JH. Assessing the potential of riparian reforestation to facilitate watershed climate adaptation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111431. [PMID: 33032001 DOI: 10.1016/j.jenvman.2020.111431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Transformations of forested areas to agricultural and urban uses are known to degrade freshwater ecosystems, in part, because of increased surface runoff and soil erosion. Changes in climate are expected to exacerbate these impacts, particularly through increases and intensification of precipitation events during various times of the year. While decreases in greenhouse gas emissions are ultimately necessary to minimize changes in climate, best management practices (BMPs), such as reforestation, can serve as watershed climate adaptation strategies to mitigate the impacts of changes in air temperature and precipitation. The Meramec River Basin (MRB) in eastern Missouri is of economic and recreational importance and supports high levels of biodiversity. While much of the MRB is forested, various land transformations are increasing sediment inputs throughout the basin, and these contributions are expected to increase as climate changes. To address the potential of riparian reforestation to serve as a climate adaptation strategy in the MRB, we developed a Soil and Water Assessment Tool model to simulate streamflow and sediment transport throughout the basin. We then used model outputs characterizing spatial variation in sediment yields to identify critical source areas (CSAs) at the subbasin level. The application of a riparian buffer BMP was simulated in each CSA to quantify the effectiveness of this strategy in reducing sediment for contemporary conditions (1990-2009) as well as under three future climate scenarios for two time periods, 2040-2059 (mid-century) and 2080-2099 (late-century). For the contemporary period, the simulated addition of a riparian buffer BMP resulted in a projected 12.1% average reduction in surface sediment yield among CSAs. For the mid-century projection, subbasin surface sediment output is projected to increase by an average of 277.5% and 221.8% for the climate change scenario and the climate change + BMP scenario, respectively. In the late-century, respective increases in sediment for CSAs are estimated to be, on average, 690.7% and 528.3% for the climate change scenario and the climate change + BMP scenario. Results suggest that surface sediment yields will increase with climate change even with riparian buffer BMP applications. While adding a riparian buffer can potentially reduce sediment outputs, the reduction, on average, is likely inadequate to fully offset the impacts from changes in climate.
Collapse
Affiliation(s)
- Chin-Lung Wu
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, USA.
| | | | - Barbara Charry
- The Nature Conservancy, P.O. Box 440400, St. Louis, Missouri 63144, USA
| | - Maria L Chu
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Jason H Knouft
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, USA
| |
Collapse
|
126
|
Rubin JA, Görres JH. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E7. [PMID: 33374981 PMCID: PMC7792571 DOI: 10.3390/ijerph18010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans' damage to Earth's freshwater. We also identify areas where research is needed.
Collapse
Affiliation(s)
- Jessica A. Rubin
- Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA;
| | | |
Collapse
|
127
|
Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast. WATER 2020. [DOI: 10.3390/w12123525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Runoff modeling of glaciated watersheds is required to predict runoff for water supply, aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact of climate and land use change on the hydrological system and watershed export of contaminants of glaciated watersheds. A widely used pollutant loading model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) was applied to simulate runoff from three watersheds in glaciated geomorphic settings. The objective of this study was to evaluate the suitability of the AnnAGNPS model in glaciated landscapes for the prediction of runoff volume. The study area included Sugar Creek watershed, Indiana; Fall Creek watershed, New York; and Pawcatuck River watershed, Rhode Island, USA. The AnnAGNPS model was developed, calibrated and validated for runoff estimation for these watersheds. The daily and monthly calibration and validation statistics (NSE > 0.50 and RSR < 0.70, and PBIAS ± 25%) of the developed model were satisfactory for runoff simulation for all the studied watersheds. Once AnnAGNPS successfully simulated runoff, a parameter sensitivity analysis was carried out for runoff simulation in all three watersheds. The output from our hydrological models applied to glaciated areas will provide the capacity to couple edge-of-field hydrologic modeling with the examination of riparian or riverine functions and behaviors.
Collapse
|
128
|
Weihrauch C, Weber CJ. Phosphorus enrichment in floodplain subsoils as a potential source of freshwater eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141213. [PMID: 32791407 DOI: 10.1016/j.scitotenv.2020.141213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Despite decades of management efforts, freshwater eutrophication has not been effectively mitigated in each affected ecosystem. This might be due to insufficient knowledge of the sources of phosphorus (P) inputs into surface waters. We sampled 2 m-deep soil profiles in four floodplain areas under differently managed grassland in Germany under dry and moist conditions regarding soil moisture and precipitation. Four soil P fractions of decreasing solubility were determined. We found systematic enrichment of easily soluble P forms in the floodplain subsoils (average: from 87.5 cm depth). Water-soluble P in these "deep P stocks" was positively correlated with total phosphorus concentrations in the adjacent surface waters. Our data cautiously suggest increased P mobilization from deep P stocks under moist conditions. Drier conditions coincided with increased P retention, resulting in relatively large amounts of easily soluble P which could readily be desorbed and lost at the next stronger precipitation event. We found no effects of grassland management on deep P stock features and dynamics. Deep P stocks might be considered a new source of diffuse P losses from soils. To effectively mitigate freshwater eutrophication, best management practices need to be developed to minimize P transfer from deep P stocks.
Collapse
Affiliation(s)
- Christoph Weihrauch
- Department of Geography, Philipps-University of Marburg, Deutschhausstrasse 10, 35037 Marburg, Germany.
| | - Collin Joel Weber
- Department of Geography, Philipps-University of Marburg, Deutschhausstrasse 10, 35037 Marburg, Germany
| |
Collapse
|
129
|
Stratified Soil Sampling Improves Predictions of P Concentration in Surface Runoff and Tile Discharge. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4040067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphorus (P) stratification in agricultural soils has been proposed to increase the risk of P loss to surface waters. Stratified soil sampling that assesses soil test P (STP) in a shallow soil horizon may improve predictions of P concentrations in surface and subsurface discharge compared to single depth agronomic soil sampling. However, the utility of stratified sampling efforts for enhancing understanding of environmental P losses remains uncertain. In this study, we examined the potential benefit of integrating stratified sampling into existing agronomic soil testing efforts for predicting P concentrations in discharge from 39 crop fields in NW Ohio, USA. Edge-of-field (EoF) dissolved reactive P (DRP) and total P (TP) flow-weighted mean concentrations in surface runoff and tile drainage were positively related to soil test P (STP) measured in both the agronomic sampling depth (0–20 cm) and shallow sampling depth (0–5 cm). Tile and surface DRP and TP were more closely related to shallow depth STP than agronomic STP, as indicated by regression models with greater coefficients of determination (R2) and lesser root-mean square errors (RMSE). A multiple regression model including the agronomic STP and P stratification ratio (Pstrat) provided the best model fit for DRP in surface runoff and tile drainage and TP in tile drainage. Additionally, STP often varied significantly between soil sampling events at individual sites and these differences were only partially explained by management practices, highlighting the challenge of assessing STP at the field scale. Overall, the linkages between shallow STP and P transport persisted over time across agricultural fields and incorporating stratified soil sampling approaches showed potential for improving predictions of P concentrations in surface runoff and tile drainage.
Collapse
|
130
|
Law JY, Brendel C, Long LA, Helmers M, Kaleita A, Soupir M. Impact of stacked conservation practices on phosphorus and sediment export at the catchment scale. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1552-1563. [PMID: 33459412 DOI: 10.1002/jeq2.20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Best management practices (BMPs) are effective in reducing nutrient and sediment export, but further understanding of the benefits of the stacked BMPs is needed. This catchment-scale study was established to evaluate the impact of hydrology and BMPs on phosphorus (P) and sediment losses. Two adjacent catchments, one with a lower level of BMP adoption (Low-BMP #11) and one with a higher level (High-BMP #12), were compared for total P (TP) and total suspended solids (TSS) export. The BMPs include nutrient management plans, reduced tillage, grassed waterways, terraces, and perennial vegetation. The TP event-flow-weighted (EFW) concentration was significantly higher at Low-BMP #11 (0.293 mg L-1) than at High-BMP #12 (0.069 mg L-1). There was no significant difference in TP base-flow-weighted (BFW) concentrations between Low-BMP #11 (0.035 mg L-1) and High-BMP #12 (0.037 mg L-1). The TSS-EFW (148.0 vs. 18.6 mg L-1) and TSS-BFW (13.3 vs. 6.9 mg L-1) concentrations were also higher at Low-BMP #11 than at High-BMP #12. High-BMP #12 had lower TP (0.36 vs. 0.59 kg ha-1 yr-1) and TSS (253 vs. 1,961 kg ha-1 yr-1) loading than Low-BMP #11. The lower TP export at High-BMP #12 was likely attributed to the effectiveness of stacked erosion control BMPs and nutrient management plans. Overall, lower P and sediment loading was observed when a greater areal extent of stacked practices was implemented at the catchment level. This finding provides vital information to encourage wider BMP adoption at the watershed scale.
Collapse
Affiliation(s)
- Ji Yeow Law
- Dep. of Agricultural & Biosystems Engineering, Iowa State Univ., Ames, IA, 50010, USA
| | - Conrad Brendel
- The Charles E. Via, Jr. Dep. of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leigh Ann Long
- Dep. of Agricultural & Biosystems Engineering, Iowa State Univ., Ames, IA, 50010, USA
| | - Matthew Helmers
- Dep. of Agricultural & Biosystems Engineering, Iowa State Univ., Ames, IA, 50010, USA
| | - Amy Kaleita
- Dep. of Agricultural & Biosystems Engineering, Iowa State Univ., Ames, IA, 50010, USA
| | - Michelle Soupir
- Dep. of Agricultural & Biosystems Engineering, Iowa State Univ., Ames, IA, 50010, USA
| |
Collapse
|
131
|
Jarvie HP, Pallett DW, Schäfer SM, Macrae ML, Bowes MJ, Farrand P, Warwick AC, King SM, Williams RJ, Armstrong L, Nicholls DJE, Lord WD, Rylett D, Roberts C, Fisher N. Biogeochemical and climate drivers of wetland phosphorus and nitrogen release: Implications for nutrient legacies and eutrophication risk. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1703-1716. [PMID: 33459392 DOI: 10.1002/jeq2.20155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
The dynamics and processes of nutrient cycling and release were examined for a lowland wetland-pond system, draining woodland in southern England. Hydrochemical and meteorological data were analyzed from 1997 to 2017, along with high-resolution in situ sensor measurements from 2016 to 2017. The results showed that even a relatively pristine wetland can become a source of highly bioavailable phosphorus (P), nitrogen (N), and silicon (Si) during low-flow periods of high ecological sensitivity. The drivers of nutrient release were primary production and accumulation of biomass, which provided a carbon (C) source for microbial respiration and, via mineralization, a source of bioavailable nutrients for P and N co-limited microorganisms. During high-intensity nutrient release events, the dominant N-cycling process switched from denitrification to nitrate ammonification, and a positive feedback cycle of P and N release was sustained over several months during summer and fall. Temperature controls on microbial activity were the primary drivers of short-term (day-to-day) variability in P release, with subdaily (diurnal) fluctuations in P concentrations driven by water body metabolism. Interannual relationships between nutrient release and climate variables indicated "memory" effects of antecedent climate drivers through accumulated legacy organic matter from the previous year's biomass production. Natural flood management initiatives promote the use of wetlands as "nature-based solutions" in climate change adaptation, flood management, and soil and water conservation. This study highlights potential water quality trade-offs and shows how the convergence of climate and biogeochemical drivers of wetland nutrient release can amplify background nutrient signals by mobilizing legacy nutrients, causing water quality impairment and accelerating eutrophication risk.
Collapse
Affiliation(s)
- Helen P Jarvie
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Water Institute, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | | | - Merrin L Macrae
- Dep. of Geography and Environmental Management, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Water Institute, Univ. of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Michael J Bowes
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Philip Farrand
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Alan C Warwick
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Stephen M King
- STFC Rutherford Appleton Lab., Harwell Campus, Didcot, OX11 0QX, UK
| | | | - Linda Armstrong
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | - William D Lord
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Daniel Rylett
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Colin Roberts
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Nigel Fisher
- Wytham Woods, Univ. of Oxford, Oxford, OX2 8QQ, UK
| |
Collapse
|
132
|
Ros MBH, Koopmans GF, van Groenigen KJ, Abalos D, Oenema O, Vos HMJ, van Groenigen JW. Towards optimal use of phosphorus fertiliser. Sci Rep 2020; 10:17804. [PMID: 33082411 PMCID: PMC7576788 DOI: 10.1038/s41598-020-74736-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/06/2020] [Indexed: 11/20/2022] Open
Abstract
Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40-100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5-6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.
Collapse
Affiliation(s)
- Mart B H Ros
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, Wageningen, The Netherlands.
- Soil Biology Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Gerwin F Koopmans
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Diego Abalos
- Soil Biology Group, Wageningen University & Research, Wageningen, The Netherlands
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Oene Oenema
- Soil Biology Group, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Hannah M J Vos
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, Wageningen, The Netherlands
- Soil Biology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
133
|
Metson GS, MacDonald GK, Leach AM, Compton JE, Harrison JA, Galloway JN. The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge? ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2020; 15:1-15. [PMID: 35990174 PMCID: PMC9389546 DOI: 10.1088/1748-9326/aba781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phosphorus (P) and nitrogen (N) are essential nutrients for food production but their excess use in agriculture can have major social costs, particularly related to water quality degradation. Nutrient footprint approaches estimate N and P release to the environment through food production and waste management and enable linking these emissions to particular consumption patterns. Following an established method for quantifying a consumer-oriented N footprint for the United States (U.S.), we calculate an analogous P footprint and assess the N:P ratio across different stages of food production and consumption. Circa 2012, the average consumer's P footprint was 4.4 kg P capita-1 yr-1 compared to 22.4 kg N capita-1 yr-1 for the food portion of the N footprint. Animal products have the largest contribution to both footprints, comprising >70% of the average per capita N and P footprints. The N:P ratio of environmental release based on virtual nutrient factors (kilograms N or P per kilogram of food consumed) varies considerably across food groups and stages. The overall N:P ratio of the footprints was lower (5.2 by mass) than for that of U.S. food consumption (8.6), reinforcing our finding that P is managed less efficiently than N in food production systems but more efficiently removed from wastewater. While strategies like reducing meat consumption will effectively reduce both N and P footprints by decreasing overall synthetic fertilizer nutrient demands, consideration of how food production and waste treatment differentially affect N and P releases to the environment can also inform eutrophication management.
Collapse
Affiliation(s)
- Geneviève S Metson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
- National Research Council, National Academies of Science, Washington, DC, United States of America
- Pacific Ecological Systems Division, US Environmental Protection Agency, Corvallis, OR, United States of America
- School of the Environment, Washington State University, Vancouver, WA, United States of America
| | | | - Allison M Leach
- The Sustainability Institute, University of New Hampshire, Durham, NH, United States of America
| | - Jana E Compton
- Pacific Ecological Systems Division, US Environmental Protection Agency, Corvallis, OR, United States of America
| | - John A Harrison
- School of the Environment, Washington State University, Vancouver, WA, United States of America
| | - James N Galloway
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
134
|
Timescale Methods for Simplifying, Understanding and Modeling Biophysical and Water Quality Processes in Coastal Aquatic Ecosystems: A Review. WATER 2020. [DOI: 10.3390/w12102717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article, we describe the use of diagnostic timescales as simple tools for illuminating how aquatic ecosystems work, with a focus on coastal systems such as estuaries, lagoons, tidal rivers, reefs, deltas, gulfs, and continental shelves. Intending this as a tutorial as well as a review, we discuss relevant fundamental concepts (e.g., Lagrangian and Eulerian perspectives and methods, parcels, particles, and tracers), and describe many of the most commonly used diagnostic timescales and definitions. Citing field-based, model-based, and simple algebraic methods, we describe how physical timescales (e.g., residence time, flushing time, age, transit time) and biogeochemical timescales (e.g., for growth, decay, uptake, turnover, or consumption) are estimated and implemented (sometimes together) to illuminate coupled physical-biogeochemical systems. Multiple application examples are then provided to demonstrate how timescales have proven useful in simplifying, understanding, and modeling complex coastal aquatic systems. We discuss timescales from the perspective of “holism”, the degree of process richness incorporated into them, and the value of clarity in defining timescales used and in describing how they were estimated. Our objective is to provide context, new applications and methodological ideas and, for those new to timescale methods, a starting place for implementing them in their own work.
Collapse
|
135
|
Combining Laser-Induced Breakdown Spectroscopy (LIBS) and Visible Near-Infrared Spectroscopy (Vis-NIRS) for Soil Phosphorus Determination. SENSORS 2020; 20:s20185419. [PMID: 32967345 PMCID: PMC7571271 DOI: 10.3390/s20185419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
Conventional wet chemical methods for the determination of soil phosphorus (P) pools, relevant for environmental and agronomic purposes, are labor-intensive. Therefore, alternative techniques are needed, and a combination of the spectroscopic techniques—in this case, laser-induced breakdown spectroscopy (LIBS)—and visible near-infrared spectroscopy (vis-NIRS) could be relevant. We aimed at exploring LIBS, vis-NIRS and their combination for soil P estimation. We analyzed 147 Danish agricultural soils with LIBS and vis-NIRS. As reference measurements, we analyzed water-extractable P (Pwater), Olsen P (Polsen), oxalate-extractable P (Pox) and total P (TP) by conventional wet chemical protocols, as proxies for respectively leachable, plant-available, adsorbed inorganic P, and TP in soil. Partial least squares regression (PLSR) models combined with interval partial least squares (iPLS) and competitive adaptive reweighted sampling (CARS) variable selection methods were tested, and the relevant wavelengths for soil P determination were identified. LIBS exhibited better results compared to vis-NIRS for all P models, except for Pwater, for which results were comparable. Model performance for both the LIBS and vis-NIRS techniques as well as the combined LIBS-vis-NIR approach was significantly improved when variable selection was applied. CARS performed better than iPLS in almost all cases. Combined LIBS and vis-NIRS models with variable selection showed the best results for all four P pools, except for Pox where the results were comparable to using the LIBS model with CARS. Merging LIBS and vis-NIRS with variable selection showed potential for improving soil P determinations, but larger and independent validation datasets should be tested in future studies.
Collapse
|
136
|
Wang Z, Zhang T, Tan CS, Qi Z. Modeling of phosphorus loss from field to watershed: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1203-1224. [PMID: 33016450 DOI: 10.1002/jeq2.20109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) losses from nonpoint sources into surface water resources through surface runoff and tile drainage play a significant role in eutrophication. Accordingly, the number of studies involving the modeling of agricultural P losses, the uncertainties of such models, and the best management practices (BMPs) supported by the modeling of hypothetical P loss reduction scenarios has increased significantly around the world. Many improvements have been made to these models: separate manure P pools, variable source areas allowing the determination of critical source areas of P loss, analyses of modeling uncertainties, and understanding of legacy P. However, several elements are still missing or have yet to be sufficiently addressed: the incorporation of preferential flow into models, the modification of P sorption-desorption processes considering recent research data (e.g., pedotransfer functions for labile, active, or stable P, along with P sorption coefficients), BMP parameterization, and scale-up issues, as well as stakeholder-scientist and experimentalist-modeler interactions. The accuracy of P loss modeling can be improved by (a) incorporating dynamic P sorption-desorption processes and new P subroutines for direct P loss from manure, fertilizer, and dung, (b) modeling preferential flow, connectivity between field and adjacent water bodies, and P in-stream processes, (c) including an assessment of model uncertainty, (d) integrating field and watershed models for BMP calibration and scaling field results up to larger areas, and (e) building a holistic interaction between stakeholders, experimentalists, and modelers.
Collapse
Affiliation(s)
- Zhaozhi Wang
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, N0R1G0, Canada
| | - Tiequan Zhang
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, N0R1G0, Canada
| | - Chin S Tan
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, N0R1G0, Canada
| | - Zhiming Qi
- Dep. of Bioresource Engineering, McGill Univ., Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
137
|
Andino LF, Gentry LE, Fraterrigo JM. Closed depressions and soil phosphorus influence subsurface phosphorus losses in a tile-drained field in Illinois. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1273-1285. [PMID: 33016436 DOI: 10.1002/jeq2.20120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Artificial subsurface (tile) drainage systems can convey phosphorus (P) from agricultural fields to surface waters; however, controls of subsurface dissolved reactive P (DRP) losses at the sub-field scale are not fully understood. We characterized subsurface DRP loads and flow-weighted mean concentration (FWMC) from January 2015 through September 2017 to determine seasonal (growing vs. non-growing) patterns from 36 individually monitored plots across a farm under a corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotation in east-central Illinois. Using linear mixed models, we investigated the effects of soil test P (STP), depression depth, and their interaction with precipitation and P fertilization on subsurface DRP losses. Dissolved reactive P loads in drainage tiles increased with precipitation and were greatest during the non-growing season (NGS) in 2016 and 2017. Annual subsurface DRP loads were positively related to STP, and during the NGS, there was a positive relationship between depression depth quantified at the plot-scale and subsurface DRP loads and FWMC. Along a depression-depth gradient, piecewise regression displayed a threshold at a depth of 0.38 m at which STP increased, indicating soil P accumulation in deeper closed depressions. Our study highlights the need to identify areas with the greatest risk of subsurface P losses to implement sub-field scale nutrient management practices.
Collapse
Affiliation(s)
- Luis F Andino
- Dep. of Natural Resources and Environmental Sciences, Univ. of Illinois, 1102 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Lowell E Gentry
- Dep. of Natural Resources and Environmental Sciences, Univ. of Illinois, 1102 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Jennifer M Fraterrigo
- Dep. of Natural Resources and Environmental Sciences, Univ. of Illinois, 1102 S. Goodwin Ave., Urbana, IL, 61801, USA
- Program in Ecology, Evolution, and Conservation Biology, Univ. of Illinois, 1102 S. Goodwin Ave., Urbana, IL, 61801, USA
| |
Collapse
|
138
|
Lintern A, McPhillips L, Winfrey B, Duncan J, Grady C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems Across Urban and Agricultural Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9159-9174. [PMID: 32644784 DOI: 10.1021/acs.est.9b07511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive time and financial resources have been dedicated to address nonpoint sources of nitrogen and phosphorus in watersheds. Despite these efforts, many watersheds have not seen substantial improvement in water quality. The objective of this study is to review the literature and investigate key factors affecting the lack of improvement in nutrient levels in waterways in urban and agricultural regions. From 94 studies identified in the academic literature, we found that, although 60% of studies found improvements in water quality after implementation of Best Management Practices (BMPs) within the watershed, these studies were mostly modeling studies rather than field monitoring studies. For studies that were unable to find improvements in water quality after the implementation of BMPs, the lack of improvement was attributed to lack of knowledge about BMP functioning, lag times, nonoptimal placement and distribution of BMPs in the watershed, postimplementation BMP failure, and socio-political and economic challenges. We refer to these limiting factors as known unknowns. We also acknowledge the existence of unknown unknowns that hinder further improvement in BMP effectiveness and suggest that machine learning, approaches from the field of business and operations management, and long-term convergent studies could be used to resolve these unknown unknowns.
Collapse
Affiliation(s)
- Anna Lintern
- Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lauren McPhillips
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania United States
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania United States
| | - Brandon Winfrey
- Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jonathan Duncan
- Department of Ecosystem Science & Management, The Pennsylvania State University, University Park 16802, Pennsylvania United States
| | - Caitlin Grady
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania United States
- Rock Ethics Institute, The Pennsylvania State University, University Park 16802, Pennsylvania United States
| |
Collapse
|
139
|
Abstract
Excess nitrogen (N) in freshwaters is problematic due to its impacts on eutrophication, biodiversity losses, and harmful algal blooms. Some microbial processes such as denitrification and anammox can remove N from systems while others such as N-fixation can add a usable form of N. However, not enough is known about when and where these competing processes are occurring in lakes, and understanding this can provide insight to management. Here, we determined that nearly all of the 34 lakes that we examined in the upper Midwest had a net loss of N2 that must be compensated by watershed inputs to maintain steady state. These results suggest that N-fixation in these lakes was not enough to offset denitrification and anammox. Little is known about the exchange of gaseous nitrogen (N2) with the atmosphere in freshwater systems. Although the exchange of N2, driven by excess or deficiencies relative to saturation values, has little relevance to the atmospheric N2 pool due to its large size, it does play an important role in freshwater and marine nitrogen (N) cycling. N-fixation converts N2 to ammonia, which can be used by microbes and phytoplankton, while denitrification/anammox effectively removes it by converting oxidized, inorganic N to N2. We examined N2 saturation to infer net biological nitrogen processes in 34 lakes across 5° latitude varying in trophic status, mixing regime, and bathymetry. Here, we report that nearly all lakes examined in the upper Midwest (USA) were supersaturated with N2 (>85% of samples, n = 248), suggesting lakes are continuously releasing nitrogen to the atmosphere. The traditional paradigm is that freshwaters compensate for N-limitation through N-fixation, but these results indicate that lakes were constantly losing N to the atmosphere via denitrification and/or anammox, suggesting that terrestrial N inputs are needed to balance the internal N cycle.
Collapse
|
140
|
Schilling KE, Jacobson PJ, St Clair M, Jones CS. Dissolved phosphate concentrations in Iowa shallow groundwater. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:909-920. [PMID: 33016492 DOI: 10.1002/jeq2.20073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/07/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Regional groundwater phosphorus (P) concentrations are rarely reported, and it is important to develop a better understanding of background concentrations in shallow groundwater to help develop strategies to mitigate environmental risks. In this study, results collected from 17 different Iowa-based studies conducted from 2006 to 2019 and a total of 210 discrete locations of water table dissolved phosphate (DPO4 3- ) measurements are summarized (a) to assess the occurrence, range, and statistical distribution of groundwater DPO4 3- concentrations in Iowa and (b) to evaluate statewide patterns of DPO4 3- concentrations related to land use or land cover and landscape position. The DPO4 3- concentrations ranged from 0.02 to 1.56 mg L-1 and averaged 0.15 ± 0.19 mg L-1 with a median value of 0.10 mg L-1 (95% confidence interval of 0.08-0.11 mg L-1 ). Although minor variations were observed among land cover class and landscape position, concentrations exhibited uniformity across the state, likely attesting to the legacy of P from historical agricultural management. Median concentrations are higher than typical water quality criteria used to assess risk to surface water systems, implying that simply discharging groundwater DPO4 3- to streams, rivers, and lakes would be sufficient to cause environmental degradation.
Collapse
Affiliation(s)
| | | | - Marty St Clair
- Dep. of Chemistry, Coe College, Cedar Rapids, IA, 52402, USA
| | | |
Collapse
|
141
|
Ator SW, Blomquist JD, Webber JS, Chanat JG. Factors driving nutrient trends in streams of the Chesapeake Bay watershed. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:812-834. [PMID: 33016477 DOI: 10.1002/jeq2.20101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/11/2020] [Indexed: 05/23/2023]
Abstract
Despite decades of effort toward reducing nitrogen and phosphorus flux to Chesapeake Bay, water-quality and ecological responses in surface waters have been mixed. Recent research, however, provides useful insight into multiple factors complicating the understanding of nutrient trends in bay tributaries, which we review in this paper, as we approach a 2025 total maximum daily load (TMDL) management deadline. Improvements in water quality in many streams are attributable to management actions that reduced point sources and atmospheric nitrogen deposition and to changes in climate. Nutrient reductions expected from management actions, however, have not been fully realized in watershed streams. Nitrogen from urban nonpoint sources has declined, although water-quality responses to urbanization in individual streams vary depending on predevelopment land use. Evolving agriculture, the largest watershed source of nutrients, has likely contributed to local nutrient trends but has not affected substantial changes in flux to the bay. Changing average nitrogen yields from farmland underlain by carbonate rocks, however, may suggest future trends in other areas under similar management, climatic, or other influences, although drivers of these changes remain unclear. Regardless of upstream trends, phosphorus flux to the bay from its largest tributary has increased due to sediment infill in the Conowingo Reservoir. In general, recent research emphasizes the utility of input reductions over attempts to manage nutrient fate and transport at limiting nutrients in surface waters. Ongoing research opportunities include evaluating effects of climate change and conservation practices over time and space and developing tools to disentangle and evaluate multiple influences on regional water quality.
Collapse
Affiliation(s)
- Scott W Ator
- USGS, 5522 Research Park Dr., Baltimore, MD, 21228, USA
| | | | | | | |
Collapse
|
142
|
Paerl HW, Barnard MA. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. HARMFUL ALGAE 2020; 96:101845. [PMID: 32560828 PMCID: PMC7334832 DOI: 10.1016/j.hal.2020.101845] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 05/03/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are a major threat to human and environmental health. As global proliferation of CyanoHABs continues to increase in prevalence, intensity, and toxicity, it is important to identify and integrate the underlying causes and controls of blooms in order to develop effective short- and long-term mitigation strategies. Clearly, nutrient input reductions should receive high priority. Legacy effects of multi-decadal anthropogenic eutrophication have altered limnetic systems such that there has been a shift from exclusive phosphorus (P) limitation to nitrogen (N) limitation and N and P co-limitation. Additionally, climate change is driving CyanoHAB proliferation through increasing global temperatures and altered precipitation patterns, including more extreme rainfall events and protracted droughts. These scenarios have led to the "perfect storm scenario"; increases in pulsed nutrient loading events, followed by persistent low-flow, long water residence times, favoring bloom formation and proliferation. To meet the CyanoHAB mitigation challenge, we must: (1) Formulate watershed and airshed-specific N and P input reductions on a sliding scale to meet anthropogenic and climatic forcings. (2) Develop CyanoHAB management strategies that incorporate current and anticipated climatic changes and extremes. (3) Make nutrient management strategies compatible with other physical-chemical-biological mitigation approaches, such as altering freshwater flow and flushing, dredging, chemical applications, introduction of selective grazers, etc. (4) Target CyanoHAB toxin production and developing management approaches to reduce toxin production. (5) Develop broadly applicable long-term strategies that incorporate the above recommendations.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St, Morehead City, NC, USA.
| | - Malcolm A Barnard
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St, Morehead City, NC, USA.
| |
Collapse
|
143
|
Abstract
Streambank legacy sediments can contribute substantial amounts of sediments to Mid-Atlantic waterways. However, there is uncertainty about the sediment-bound P inputs and the fate of legacy sediment P in surface waters. We compared legacy sediment P concentrations against other streambank sediments and upland soils and evaluated a variety of P indices to determine if legacy sediments are a source or sink of P to surface waters. Legacy sediments were collected from 15 streambanks in the mid-Atlantic USA. Total P and M3P concentrations and % degree of phosphorus saturation (DPS) values for legacy sediments were lower than those for upland soils. % DPS values for legacy sediments were below the water quality threshold for P leaching. Phosphorus sorption index (PSI) values for legacy sediments indicated a large capacity for P sorption. On the other hand, equilibrium phosphorus concentration (EPC0) for legacy sediments suggested that they could be a source or a sink depending on stream water P concentrations. Anoxic conditions resulted in a greater release of P from legacy sediments compared to oxic conditions. These results suggest that legacy sediment P behavior could be highly variable and watershed models will need to account for this variability to reliably quantify the source-sink behavior of legacy sediments in surface waters.
Collapse
|
144
|
Autogenous Eutrophication, Anthropogenic Eutrophication, and Climate Change: Insights from the Antrift Reservoir (Hesse, Germany). SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is projected to aggravate water quality impairment and to endanger drinking water supply. The effects of global warming on water quality must be understood better to develop targeted mitigation strategies. We conducted water and sediment analyses in the eutrophicated Antrift catchment (Hesse, Germany) in the uncommonly warm years 2018/2019 to take an empirical look into the future under climate change conditions. In our study, algae blooms persisted long into autumn 2018 (November), and started early in spring 2019 (April). We found excessive phosphorus (P) concentrations throughout the year. At high flow in winter, P desorption from sediments fostered high P concentrations in the surface waters. We lead this back to the natural catchment-specific geochemical constraints of sediment P reactions (dilution- and pH-driven). Under natural conditions, the temporal dynamics of these constraints most likely led to high P concentrations, but probably did not cause algae blooms. Since the construction of a dammed reservoir, frequent algae blooms with sporadic fish kills have been occurring. Thus, management should focus less on reducing catchment P concentrations, but on counteracting summerly dissolved oxygen (DO) depletion in the reservoir. Particular attention should be paid to the monitoring and control of sediment P concentrations, especially under climate change.
Collapse
|
145
|
Osterholz WR, Hanrahan BR, King KW. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:675-687. [PMID: 33016383 DOI: 10.1002/jeq2.20070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Legacy phosphorus (P) in agricultural soils can be transported to surface waters via runoff and tile drainage, where it contributes to the development of harmful and nuisance algal blooms and hypoxia. However, a limited understanding of legacy P loss dynamics impedes the identification of mitigation strategies. Edge-of-field data from 41 agricultural fields in northwestern Ohio, USA, were used to develop regressions between legacy P concentrations (C) and discharge (Q) for two P fractions: total P (TP) and dissolved reactive P (DRP). Tile drainage TP concentration (CTP ) and DRP concentration (CDRP ) both increased as Q increased, and CTP tended to increase at a greater rate than CDRP . Surface runoff showed greater variation in C-Q regressions, indicating that the response of TP and DRP to elevated Q was field specific. The relative variability of C and Q was explored using a ratio of CVs (CVC /CVQ ), which indicated that tile drainage TP and DRP losses were chemodynamic, whereas losses via surface runoff demonstrated both chemodynamic and chemostatic behavior. The chemodynamic behavior indicated that legacy P losses were strongly influenced by variation in P source availability and transport pathways. In addition, legacy P source size influenced C, as demonstrated by a positive relationship between soil-test P and the CTP and CDRP in both tile drainage and surface runoff. Progress towards legacy P mitigation will require further characterization of the drivers of variability in CTP and CDRP , including weather-, soil-, and management-related factors.
Collapse
Affiliation(s)
- William R Osterholz
- USDA-ARS, Soil Drainage Research Unit, 590 Woody Hayes Dr., Columbus, OH, 43210, USA
| | - Brittany R Hanrahan
- USDA-ARS, Soil Drainage Research Unit, 590 Woody Hayes Dr., Columbus, OH, 43210, USA
| | - Kevin W King
- USDA-ARS, Soil Drainage Research Unit, 590 Woody Hayes Dr., Columbus, OH, 43210, USA
| |
Collapse
|
146
|
Ni X, Yuan Y, Liu W. Impact factors and mechanisms of dissolved reactive phosphorus (DRP) losses from agricultural fields: A review and synthesis study in the Lake Erie basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136624. [PMID: 32018948 PMCID: PMC8268061 DOI: 10.1016/j.scitotenv.2020.136624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Dissolved Reactive Phosphorus (DRP) losses from agricultural fields promote algae growth in water bodies, and may increase the risk of Harmful Algal Blooms (HABs). Using existing data from the Lake Erie Basin, we applied multiple regression analysis to better understand the impacts of both site-specific conditions (e.g., soil types/properties) and management practices (e.g., Agricultural Conservation Practices [ACP]) on annual DRP losses in subsurface and surface runoff. Results showed that soil properties significantly impact DRP losses. Greater DRP losses were associated with increased soil pH and Soil Test Phosphorus (STP). By contrast, soil organic matter (SOM) was inversely correlated with DRP losses. Soil clay content was also inversely correlated with DRP subsurface losses, but had no impact on DRP surface losses. The ACPs evaluated had varied effectiveness on DRP loss reduction. Cropping systems involving soybean could reduce DRP subsurface losses, whereas winter cover crops could cause unintended DRP subsurface losses. Cropping systems involving soybean and cover crops, however, had no impact on DRP surface losses. In addition, no-till and conservation tillage also enhanced DRP losses compared to conventional tillage, particularly for soils with high SOM and/or high clay content. Precipitation amount and fertilizer application rate significantly increased DRP surface losses as expected. Fertilizer application rate, however, had no impact on DRP subsurface losses. The impact of precipitation amount on DRP subsurface losses depends on STP levels. Precipitation amount significantly increases DRP subsurface losses when STP is higher (>41 mg kg-1 in this analysis). The optimal STP level for crop growth is 30 to 50 mg kg-1. Results from this study help us to better understand DRP losses and the effectiveness of ACPs for controlling them. We suggest taking soil surveys and soil tests into consideration when designing and/or implementing ACPs to manage DRP losses. Furthermore, the method we used for this study could be applied to other agricultural regions to investigate impacts of site-specific conditions and management practices on water quality.
Collapse
Affiliation(s)
- Xiaojing Ni
- Oak Ridge Institute for Science and Education (ORISE), US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, United States of America.
| | - Yongping Yuan
- U.S. Environmental Protection Agency, Office of Research and Development, Watershed & Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, United States of America.
| | - Wenlong Liu
- Oak Ridge Institute for Science and Education (ORISE), US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, United States of America.
| |
Collapse
|
147
|
Rixon S, Levison J, Binns A, Persaud E. Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136328. [PMID: 31986379 DOI: 10.1016/j.scitotenv.2019.136328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Nutrient imbalance in groundwater and surface water resources can have severe implications on human and aquatic life, including contamination of drinking water sources and the degradation of ecosystems. A field-based watershed-scale study was completed to investigate nutrient dynamics and hydrologic processes in an agriculturally-dominant clay plain system within the Great Lakes Basin. Spatial and temporal variations of nitrogen and phosphorus were examined by sampling groundwater and surface water regularly over a period of one year (June 2017 to July 2018) for nutrients including nitrate, soluble reactive phosphorus, total dissolved phosphorus and total reactive phosphorus. Nitrate transport from surrounding agricultural land to surface water was intensified with an increase in precipitation events in spring and early winter and phosphorus transport to surface water was increased during freeze-thaw cycles in the winter. The results are pertinent to the improvement of current nutrient and water management policies in clay plain systems where nutrient imbalances in surface water are a concern.
Collapse
Affiliation(s)
- Sarah Rixon
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada.
| | - Jana Levison
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| | - Andrew Binns
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| | - Elisha Persaud
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
148
|
Stets EG, Sprague LA, Oelsner GP, Johnson HM, Murphy JC, Ryberg K, Vecchia AV, Zuellig RE, Falcone JA, Riskin ML. Landscape Drivers of Dynamic Change in Water Quality of U.S. Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4336-4343. [PMID: 32216285 DOI: 10.1021/acs.est.9b05344] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water security is a top concern for social well-being, and dramatic changes in the availability of freshwater have occurred as a result of human uses and landscape management. Elevated nutrient loading and perturbations to major ion composition have resulted from human activities and have degraded freshwater resources. This study addresses the emerging nature of streamwater quality in the 21st century through analysis of concentrations and trends in a wide variety of constituents in streams and rivers of the U.S. Concentrations of 15 water quality constituents including nutrients, major ions, sediment, and specific conductance were analyzed over the period 1982-2012 and a targeted trend analysis was performed from 1992 to 2012. Although environmental policy is geared toward addressing the long-standing problem of nutrient overenrichment, these efforts have had uneven success, with decreasing nutrient concentrations at urbanized sites and little to no change at agricultural sites. Additionally, freshwaters are being salinized rapidly in all human-dominated land use types. While efforts to control nutrients are ongoing, rapid salinity increases are ushering in a new set of poorly defined issues. Increasing salinity negatively affects biodiversity, mobilizes sediment-bound contaminants, and increases lead contamination of drinking water, but its effects are not well integrated into current paradigms of water management.
Collapse
Affiliation(s)
- Edward G Stets
- U.S. Geological Survey, Earth System Process Division, 3215 Marine St, Ste E-127, Boulder, Colorado 80303, United States
| | - Lori A Sprague
- U.S. Geological Survey, Earth System Process Division, W Sixth Ave Kipling St 415, Lakewood, Colorado 80225, United States
| | - Gretchen P Oelsner
- U.S. Geological Survey, New Mexico Water Science Center, 6700 Edith Blvd NE, Albuquerque, New Mexico 87113, United States
| | - Hank M Johnson
- U.S. Geological Survey, Oregon Water Science Center, 2130 SW Fifth Ave, Portland, Oregon 97201, United States
| | - Jennifer C Murphy
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, 640 Grassmere Park, Ste. 100, Nashville, Tennessee 37211, United States
| | - Karen Ryberg
- U.S. Geological Survey, Dakota Water Science Center, 821 East Interstate Ave, Bismarck, North Dakota 58503, United States
| | - Aldo V Vecchia
- U.S. Geological Survey, Dakota Water Science Center, 821 East Interstate Ave, Bismarck, North Dakota 58503, United States
| | - Robert E Zuellig
- U.S. Geological Survey, Colorado Water Science Center, Denver Federal Center, W Sixth Ave Kipling St 415, Lakewood, Colorado 80225, United States
| | - James A Falcone
- U.S. Geological Survey, Earth System Process Division, 12201 Sunrise Valley Dr 413 Reston, Virginia 20192, United States
| | - Melissa L Riskin
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike Lawrenceville, New Jersey 08648, United States
| |
Collapse
|
149
|
Sandström S, Futter MN, Kyllmar K, Bishop K, O'Connell DW, Djodjic F. Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134616. [PMID: 31812420 DOI: 10.1016/j.scitotenv.2019.134616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Excessive phosphorus (P) inputs from agriculture are well established as a contributor to freshwater eutrophication. Decreasing these inputs is an important step in improving the ecological state of impaired waters. Particulate P (PP) is a significant contributor to diffuse P inputs in agricultural catchments. Identifying the main correlates for PP losses is an important step in reducing these inputs. However, there are few studies of long term temporal and spatial dynamics of PP in agricultural streams. Here, we investigate the relative importance of hydrology, catchment characteristics and geochemistry on PP concentrations and fluxes in agricultural headwaters. We evaluate long-term monitoring data from eleven small (<35 km2) Swedish catchments with at least seven years of measured flow and flow proportional water quality sampling. Using parametric and non-parametric regression together with principal components analysis (PCA), we identify in-stream and catchment variables relevant for predicting PP concentrations, e.g., suspended solids concentrations (SS), soil texture and average catchment soil P content, measured as ammonium lactate/acetic acid extractable P (P-AL). We show that PP is primarily correlated to SS concentrations, which in turn are correlated to average clay content and land use. However, the SS:PP relationships differ between catchments. No correlation between PP concentrations in the stream and soil P content was found. An increasing clay content decreases the slope of the relationship between SS and PP, i.e., in catchments with higher clay content, less PP is transported per unit SS. The PP/SS ratio increased significantly (p < 0.05) over time in four catchments, despite limited changes in SS or PP concentrations. Our study highlights the importance of long time series since the enrichment of P on SS in the streams is only detected when using long term monitoring data.
Collapse
Affiliation(s)
- Sara Sandström
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, PO Box 7050, SE-750 07 Uppsala, Sweden.
| | - Martyn N Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, PO Box 7050, SE-750 07 Uppsala, Sweden
| | - Katarina Kyllmar
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, SE-750 07 Uppsala, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, PO Box 7050, SE-750 07 Uppsala, Sweden
| | - David W O'Connell
- Department of Civil and Environmental Engineering, Trinity College Dublin, College Green, Museum Building, Dublin 2, Ireland
| | - Faruk Djodjic
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, PO Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
150
|
Ezzati G, Fenton O, Healy MG, Christianson L, Feyereisen GW, Thornton S, Chen Q, Fan B, Ding J, Daly K. Impact of P inputs on source-sink P dynamics of sediment along an agricultural ditch network. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109988. [PMID: 31868644 DOI: 10.1016/j.jenvman.2019.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) loss from intensive dairy farms is a pressure on water quality in agricultural catchments. At farm scale, P sources can enter in-field drains and open ditches, resulting in transfer along ditch networks and delivery into nearby streams. Open ditches could be a potential location for P mitigation if the right location was identified, depending on P sources entering the ditch and the source-sink dynamics at the sediment-water interface. The objective of this study was to identify the right location along a ditch to mitigate P losses on an intensive dairy farm. High spatial resolution grab samples for water quality, along with sediment and bankside samples, were collected along an open ditch network to characterise the P dynamics within the ditch. Phosphorus inputs to the ditch adversely affected water quality, and a step change in P concentrations (increase in mean dissolved reactive phosphorus (DRP) from 0.054 to 0.228 mg L-1) midway along the section of the ditch sampled, signalled the influence of a point source entering the ditch. Phosphorus inputs altered sediment P sorption properties as P accumulated along the length of the ditch. Accumulation of bankside and sediment labile extractable P, Mehlich 3 P (M3P) (from 13 to 97 mg kg-1) resulted in a decrease in P binding energies (k) to < 1 L mg-1 at downstream points and raised the equilibrium P concentrations (EPC0) from 0.07 to 4.61 mg L-1 along the ditch. The increase in EPC0 was in line with increasing dissolved and total P in water, demonstrating the role of sediment downstream in this ditch as a secondary source of P to water. Implementation of intervention measures are needed to both mitigate P loss and remediate sediment to restore the sink properties. In-ditch measures need to account for a physicochemical lag time before improvements in water quality will be observed.
Collapse
Affiliation(s)
- G Ezzati
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland; Civil Engineering, College of Science and Engineering, Ryan Institute, National University of Ireland, Galway, Galway, Ireland
| | - O Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - M G Healy
- Civil Engineering, College of Science and Engineering, Ryan Institute, National University of Ireland, Galway, Galway, Ireland
| | - L Christianson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - G W Feyereisen
- USDA-Agricultural Research Service (ARS), St. Paul, MN, USA
| | - S Thornton
- Groundwater Protection and Restoration Group, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Q Chen
- Beijing Key Larboratory of Farmyard Soil Pollution Prevention-control and Remediation; College of Resourse and Environmental Sciences, China Agricultural Univerisy, Beijing, 100193, PR China
| | - B Fan
- Beijing Key Larboratory of Farmyard Soil Pollution Prevention-control and Remediation; College of Resourse and Environmental Sciences, China Agricultural Univerisy, Beijing, 100193, PR China
| | - J Ding
- Beijing Key Larboratory of Farmyard Soil Pollution Prevention-control and Remediation; College of Resourse and Environmental Sciences, China Agricultural Univerisy, Beijing, 100193, PR China
| | - K Daly
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|