101
|
Sinclair J, West NP, Cox AJ. Comparison of four DNA extraction methods for 16s rRNA microbiota profiling of human faecal samples. BMC Res Notes 2023; 16:169. [PMID: 37568179 PMCID: PMC10422837 DOI: 10.1186/s13104-023-06451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVE Growth in large population-based studies assessing contributions of the gut microbiota to health and disease requires high-throughput sample processing and analysis methods. This study assessed the impact that modifications to a commercially available magnetic bead based, semi-automated DNA extraction kit had on determination of microbial composition, relative to an established in-house method involving a combination of mechanical and chemical lysis. DNA was extracted from faecal samples from healthy adults (n = 12; 34-69 years), microbial composition was determined by V3-V4 16s rRNA sequencing and compared between extraction methods. RESULTS Diversity metrics did not differ between extraction methods. Differences in the relative abundance of key phyla, including a significantly lower abundance of the Firmicutes (p = 0.004) and higher relative abundance of the Bacteroidetes (p = 0.005) and Proteobacteria (p = 0.008) phyla were noted where the DNA extraction did not include additional chemical and mechanical lysis. Principal coordinate analysis of family and genera level data also suggested a potential for sample pre-processing to impact microbial composition. Observations of the potential for skewed microbial composition profiles from samples prepared using a semi-automated DNA extraction kit without additional sample pre-processing highlights a need for consideration of standardisation of methodological approaches to increase the comparability of microbial compositional data.
Collapse
Affiliation(s)
- James Sinclair
- Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, QLD 4215 Australia
| | - Nicholas P West
- Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, QLD 4215 Australia
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4215 Australia
| | - Amanda J Cox
- Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, QLD 4215 Australia
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4215 Australia
| |
Collapse
|
102
|
Paul SS, Rama Rao SV, Chatterjee RN, Raju MVLN, Mahato AK, Prakash B, Yadav SP, Kannan A, Reddy GN, Kumar V, Kumar PSP. An Immobilized Form of a Blend of Essential Oils Improves the Density of Beneficial Bacteria, in Addition to Suppressing Pathogens in the Gut and Also Improves the Performance of Chicken Breeding. Microorganisms 2023; 11:1960. [PMID: 37630519 PMCID: PMC10459846 DOI: 10.3390/microorganisms11081960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial growth promoters (AGP) are used in chicken production to suppress pathogens in the gut and improve performance, but such products tend to suppress beneficial bacteria while favoring the development and spread of antimicrobial resistance. A green alternative to AGP with the ability to suppress pathogens, but with an additional ability to spare beneficial gut bacteria and improve breeding performance is urgently required. We investigated the effect of supplementation of a blend of select essential oils (cinnamon oil, carvacrol, and thyme oil, henceforth referred to as EO; at two doses: 200 g/t and 400 g/t feed) exhibiting an ability to spare Lactobacillus while exhibiting strong E. coli inhibition ability under in vitro tests and immobilized in a sunflower oil and calcium alginate matrix, to broiler chickens and compared the effects with those of a probiotic yeast (Y), an AGP virginiamycin (V), and a negative control (C). qPCR analysis of metagenomic DNA from the gut content of experimental chickens indicated a significantly (p < 0.05) lower density of E. coli in the EO groups as compared to other groups. Amplicon sequence data of the gut microbiome indicated that all the additives had specific significant effects (DESeq2) on the gut microbiome, such as enrichment of uncultured Clostridia in the V and Y groups and uncultured Ruminococcaceae in the EO groups, as compared to the control. LEfSe analysis of the sequence data indicated a high abundance of beneficial bacteria Ruminococcaceae in the EO groups, Faecalibacterium in the Y group, and Blautia in the V group. Supplementation of the immobilized EO at the dose rate of 400 g/ton feed improved body weight gain (by 64 g/bird), feed efficiency (by 5 points), and cellular immunity (skin thickness response to phytoheamagglutinin lectin from Phaseolus vulgaris by 58%) significantly (p < 0.05), whereas neither yeast nor virginiamycin showed a significant effect on performance parameters. Expression of genes associated with gut barrier and immunity function such as CLAUDIN1, IL6, IFNG, TLR2A, and NOD1 were significantly higher in the EO groups. This study showed that the encapsulated EO mixture can improve the density of beneficial microbes in the gut significantly, with concomitant suppression of potential pathogens such as E.coli and improved performance and immunity, and hence, has a high potential to be used as an effective alternative to AGP in poultry.
Collapse
Affiliation(s)
- Shyam Sundar Paul
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Savaram Venkata Rama Rao
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Rudra Nath Chatterjee
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Mantena Venkata Lakshmi Narasimha Raju
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Department of Biotechnology, Hyderabad 500039, India;
| | - Bhukya Prakash
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Satya Pal Yadav
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Alagarsamy Kannan
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Godumagadda Narender Reddy
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Vikas Kumar
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Prakki Santosh Phani Kumar
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| |
Collapse
|
103
|
Vandoni G, D'Amico F, Fabbrini M, Mariani L, Sieri S, Casirati A, Di Guardo L, Del Vecchio M, Anichini A, Mortarini R, Sgambelluri F, Celano G, Serale N, De Angelis M, Brigidi P, Gavazzi C, Turroni S. Gut Microbiota, Metabolome, and Body Composition Signatures of Response to Therapy in Patients with Advanced Melanoma. Int J Mol Sci 2023; 24:11611. [PMID: 37511376 PMCID: PMC10380337 DOI: 10.3390/ijms241411611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement.
Collapse
Affiliation(s)
- Giulia Vandoni
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luigi Mariani
- Data Science Unit, Fondazione IRCCS Istituito Nazionale dei Tumori, 20133 Milan, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenza Di Guardo
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Del Vecchio
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Francesco Sgambelluri
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nadia Serale
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cecilia Gavazzi
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
104
|
Yamada H, Miura H, Suzuki Y, Koike S, Shimamoto S, Kobayashi Y. In vitro Effects of Cellulose Acetate on Fermentation Profiles, the Microbiome, and Gamma-aminobutyric Acid Production in Human Stool Cultures. Curr Microbiol 2023; 80:284. [PMID: 37450067 DOI: 10.1007/s00284-023-03383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Gamma-aminobutyric acid (GABA) is considered as a potential candidate substance that mediates the effects of intestinal bacteria on human mental health. In the present study, we evaluated the effect of water-soluble cellulose acetate (WSCA), a type of cellulose ester, on fermentation and microbial profiles, and GABA production in human stool cultures prepared from fresh feces from volunteers. In addition, the GABA-producing ability of Bacteroides uniformis, which can utilize WSCA, was evaluated in a pure-culture study. All incubations were conducted anaerobically. WSCA supplementation increased (P < 0.05) acetate and propionate production and decreased (P < 0.05) the pH in human fecal cultures. WSCA significantly altered the microbiota, selectively increasing the relative abundance of B. uniformis (P < 0.05). Pure-culture study results revealed that B. uniformis produces GABA, possibly via a glutamate-dependent acid resistance system under low pH conditions. In conclusion, WSCA could be a potential prebiotic material that is fermented by intestinal bacteria and increases short-chain fatty acid and GABA production in the human gut. Bacteroides uniformis might play an important role in both WSCA degradation and GABA production in the intestine.
Collapse
Affiliation(s)
- Hiroaki Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Hiroto Miura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Shu Shimamoto
- Daicel Corporation, Tokyo Head Office Satellite, Tokyo, 108-0075, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
105
|
Torres Manno MA, Gizzi FO, Martín M, Espariz M, Magni C, Blancato VS. Metagenomic approach to infer rumen microbiome derived traits of cattle. World J Microbiol Biotechnol 2023; 39:250. [PMID: 37439894 DOI: 10.1007/s11274-023-03694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Ruminants enable the conversion of indigestible plant material into animal consumables, including dairy products, meat, and valuable fibers. Microbiome research is gaining popularity in livestock species because it aids in the knowledge of illnesses and efficiency processes in animals. In this study, we use WGS metagenomic data to thoroughly characterize the ruminal ecosystem of cows to infer positive and negative livestock traits determined by the microbiome. The rumen of cows from Argentina were described by combining different gene biomarkers, pathways composition and taxonomic information. Taxonomic characterization indicated that the two major phyla were Bacteroidetes and Firmicutes; in third place, Proteobacteria was highly represented followed by Actinobacteria; Prevotella, and Bacteroides were the most abundant genera. Functional profiling of carbohydrate-active enzymes indicated that members of the Glycoside Hydrolase (GH) class accounted for 52.2 to 55.6% of the total CAZymes detected, among them the most abundant were the oligosaccharide degrading enzymes. The diversity of GH families found suggested efficient hydrolysis of complex biomass. Genes of multidrug, macrolides, polymyxins, beta-lactams, rifamycins, tetracyclines, and bacitracin resistance were found below 0.12% of relative abundance. Furthermore, the clustering analysis of genera and genes that correlated to methane emissions or feed efficiency, suggested that the cows analysed could be regarded as low methane emitters and clustered with high feed efficiency reference animals. Finally, the combination of bioinformatic analyses used in this study can be applied to assess cattle traits difficult to measure and guide enhanced nutrition and breeding methods.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Fernán O Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - UNR, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina
| | - Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina.
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina.
| |
Collapse
|
106
|
Fresno Rueda A, Griffith JE, Kruse C, St-Pierre B. Effects of grain-based diets on the rumen and fecal bacterial communities of the North American bison ( Bison bison). Front Microbiol 2023; 14:1163423. [PMID: 37485522 PMCID: PMC10359189 DOI: 10.3389/fmicb.2023.1163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
To overcome the challenges of pasture-finishing of bison, producers commonly feed them with higher energy, grain-based diets to reach the desired market weight. However, decades of research on domesticated ruminants have shown that such diets can have profound effects on the composition of gut microbial communities. To gain further insight, the 16S rRNA gene-based study described in this report aimed to compare the composition of ruminal and fecal bacterial communities from two herds of bison heifers (n = 20/herd) raised on different ranches that were both transitioned from native pasture to a grain-based, free-choice diet for ~100 days prior to slaughter. Comparative analyses of operational taxonomic unit (OTU) composition, either by alpha diversity indices, principal coordinate analysis (PCoA), or on the most abundant individual OTUs, showed the dramatic effect of a diet on the composition of both rumen and fecal bacterial communities in bison. Indeed, feeding a grain-based diet resulted in a lower number of rumen and fecal bacterial OTUs, respectively, compared to grazing on pasture (p < 0.05). PCoA revealed that the composition of the rumen and fecal bacterial communities from the two herds was more similar when they were grazing on native pastures compared to when they were fed a grain-based, free-choice diet. Finally, a comparative analysis of the 20 most abundant OTUs from the rumen and fecal communities further showed that the representation of all these species-level bacterial groups differed (p < 0.05) between the two dietary treatments. Together, these results provide further insights into the rumen and fecal microbiomes of grazing bison and their response to grain-based diet regimens commonly used in intensive ruminant production systems.
Collapse
Affiliation(s)
- Anlly Fresno Rueda
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Jason Eric Griffith
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Carter Kruse
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
- Turner Institute of Ecoagriculture, Bozeman, MT, United States
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
107
|
Wasson DE, Stefenoni H, Cueva SF, Lage C, Räisänen SE, Melgar A, Fetter M, Hennessy M, Narayan K, Indugu N, Pitta D, Yarish C, Hristov AN. Screening macroalgae for mitigation of enteric methane in vitro. Sci Rep 2023; 13:9835. [PMID: 37330586 PMCID: PMC10276865 DOI: 10.1038/s41598-023-36359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
This study investigated the effects of 67 species of macroalgae on methanogenesis and rumen fermentation in vitro. Specimens were analyzed for their effect on ruminal fermentation and microbial community profiles. Incubations were carried out in an automated gas production system for 24-h and macroalgae were tested at 2% (feed dry matter basis) inclusion rate. Methane yield was decreased 99% by Asparagopsis taxiformis (AT) when compared with the control. Colpomenia peregrina also decreased methane yield 14% compared with control; no other species influenced methane yield. Total gas production was decreased 14 and 10% by AT and Sargassum horneri compared with control, respectively. Total volatile fatty acid (VFA) concentration was decreased between 5 and 8% by 3 macroalgae, whereas AT reduced it by 10%. Molar proportion of acetate was decreased 9% by AT, along with an increase in propionate by 14%. Asparagopsis taxiformis also increased butyrate and valerate molar proportions by 7 and 24%, respectively, whereas 3 macroalgae species decreased molar proportion of butyrate 3 to 5%. Vertebrata lanosa increased ammonia concentration, whereas 3 other species decreased it. Inclusion of AT decreased relative abundance of Prevotella, Bacteroidales, Firmicutes and Methanobacteriaceae, whereas Clostridium, Anaerovibrio and Methanobrevibacter were increased. Specific gene activities for Methanosphaera stadtmane and Methanobrevibacter ruminantium were decreased by AT inclusion. In this in vitro study, Asparagopsis taxiformis was most effective in decreasing methane concentration and yield, but also decreased total gas production and VFA concentration which indicates overall inhibition of ruminal fermentation. No other macroalgae were identified as potential mitigants of enteric methane.
Collapse
Affiliation(s)
- D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - H Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - C Lage
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Environmental Sciences, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Agricultural Innovation Institute of Panama (IDIAP), 161 Carlos Lara Street, City of Knowledge, 07144, Panama
| | - M Fetter
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - M Hennessy
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, USA
| | - K Narayan
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, USA
| | - N Indugu
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, USA
| | - D Pitta
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, USA
| | - C Yarish
- Department of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, 06901, USA
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
108
|
Strain R, Tran TT, Mills S, Stanton C, Ross RP. A pilot study of dietary fibres on pathogen growth in an ex vivo colonic model reveals their potential ability to limit vancomycin-resistant Enterococcus expansion. MICROBIOME RESEARCH REPORTS 2023; 2:22. [PMID: 38046819 PMCID: PMC10688796 DOI: 10.20517/mrr.2022.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary fibre is important for shaping gut microbiota. The aim of this pilot study was to investigate the impact of dietary fibres on pathogen performance in the presence of gut microbiota. Methods: In an ex vivo gut model, pooled faecal samples were spiked with a cocktail of representative gastrointestinal pathogens and fermented with yeast β-glucan for 24 hours, after which 16S rRNA amplicon sequencing and short-chain and branched-chain fatty acid (SCFA and BCFA) analyses were performed. In addition, oat β-glucan, arabinoxylan, yeast β-glucan, and galactooligosaccharides were each tested against individual representative pathogens and pathogen growth was assessed via qPCR. Glucose served as a control carbon source. Results: Based on 16S rRNA amplicon sequencing, yeast β-glucan selected for higher proportions of Bacteroides (P = 0.0005, ~6 fold) and Clostridia (P = 0.005, ~3.6 fold) while species of Escherichia/Shigella (P = 0.021, ~2.8 fold) and Lactobacillus (P = 0.007, ~ 15.7-fold) were higher in glucose. Pathogen relative abundance did not differ between glucose and yeast β-glucan. In the absence of pathogens, higher production of BCFAs (P = 0.002) and SCFAs (P = 0.002) fatty acids was observed for fibre group(s). For individual pathogens, yeast β-glucan increased growth of Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes (P < 0.05), arabinoxylan increased S. typhimurium (P < 0.05). Tested fibres decreased vancomycin-resistant Enterococcus faecium (P < 0.05), with yeast β-glucan causing a 1-log reduction (P < 0.01), while galactooligosaccharides decreased L. monocytogenes (P < 0.05). Conclusion: Tested fibres differentially influenced the growth of pathogens, but yeast β-glucan could represent a dietary strategy to help limit vancomycin-resistant enterococci (VRE) expansion in the gut.
Collapse
Affiliation(s)
- Ronan Strain
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Tam T.T. Tran
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
| |
Collapse
|
109
|
Wang Q, Cui Y, Indugu N, Loor JJ, Jiang Q, Yu Z, Baker L, Pitta D, Deng Z, Xu C. Integrated meta-omics analyses reveal a role of ruminal microorganisms in ketone body accumulation and ketosis in lactating dairy cows. J Dairy Sci 2023:S0022-0302(23)00327-2. [PMID: 37296048 DOI: 10.3168/jds.2022-22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
The extent to which a nutrition-related disorder such as ketosis alters the ruminal microbiota or whether microbiota composition is related to ketosis and potential associations with host metabolism is unknown. We aimed to evaluate variations occurring in the ruminal microbiota of ketotic and nonketotic cows in the early postpartum period, and how those changes may affect the risk of developing the disease. Data on milk yield, dry matter intake (DMI), body condition score, and blood β-hydroxybutyrate (BHB) concentrations at 21 d postpartum were used to select 27 cows, which were assigned (n = 9 per group) to a clinical ketotic (CK, 4.10 ± 0.72 mmol BHB/L, DMI 11.61 ± 0.49 kg/d, ruminal pH 7.55 ± 0.07), subclinical ketotic (SK, 1.36 ± 0.12 mmol BHB/L, DMI 15.24 ± 0.34 kg/d, ruminal pH 7.58 ± 0.08), or control (NK, 0.88 ± 0.14 mmol BHB/L, DMI 16.74 ± 0.67/d, ruminal pH 7.61 ± 0.03) group. Cows averaged 3.6 ± 0.5 lactations and a body condition score of 3.11 ± 0.34 at the time of sampling. After blood serum collection for metabolomics analysis (1H nuclear magnetic resonance spectra), 150 mL of ruminal digesta was collected from each cow using an esophageal tube, paired-end (2 × 300 bp) sequencing of isolated DNA from ruminal digesta was performed via Illumina MiSeq, and sequencing data were analyzed using QIIME2 (v 2020.6) to measure the ruminal microbiota composition and relative abundance. Spearman correlation coefficients were used to evaluate relationships between relative abundance of bacterial genera and concentrations of serum metabolites. There were more than 200 genera, with approximately 30 being significant between NK and CK cows. Succinivibrionaceae UCG 1 taxa decreased in CK compared with NK cows. Christensenellaceae (Spearman correlation coefficient = 0.6), Ruminococcaceae (Spearman correlation coefficient = 0.6), Lachnospiraceae (Spearman correlation coefficient = 0.5), and Prevotellaceae (Spearman correlation coefficient = 0.6) genera were more abundant in the CK group and were highly positively correlated with plasma BHB. Metagenomic analysis indicated a high abundance of predicted functions related to metabolism (37.7%), genetic information processing (33.4%), and Brite hierarchies (16.3%) in the CK group. The 2 most important metabolic pathways for butyrate and propionate production were enriched in CK cows, suggesting increased production of acetyl coenzyme A and butyrate and decreased production of propionate. Overall, the combined data suggested that microbial populations may be related to ketosis by affecting short-chain fatty acid metabolism and BHB accumulation even in cows with adequate feed intake in the early postpartum period.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, New Development District, Daqing, Heilongjiang, China 163319; Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, China 163319
| | - Yizhe Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, New Development District, Daqing, Heilongjiang, China 163319
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square 19348
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Linda Baker
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square 19348
| | - Dipti Pitta
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square 19348
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China 100083
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China 100083.
| |
Collapse
|
110
|
Choudhury R, Gu Y, Bolhuis JE, Kleerebezem M. Early feeding leads to molecular maturation of the gut mucosal immune system in suckling piglets. Front Immunol 2023; 14:1208891. [PMID: 37304274 PMCID: PMC10248722 DOI: 10.3389/fimmu.2023.1208891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diet-microbiota-host interactions are increasingly studied to comprehend their implications in host metabolism and overall health. Keeping in mind the importance of early life programming in shaping intestinal mucosal development, the pre-weaning period can be utilised to understand these interactions in suckling piglets. The objective of this study was to investigate the consequences of early life feeding on the time-resolved mucosal transcriptional program as well as mucosal morphology. Methods A customised fibrous feed was provided to piglets (early-fed or EF group; 7 litters) from five days of age until weaning (29 days of age) in addition to sow's milk, whereas control piglets (CON; 6 litters) suckled mother's milk only. Rectal swabs, intestinal content, and mucosal tissues (jejunum, colon) were obtained pre- and post-weaning for microbiota analysis (16S amplicon sequencing) and host transcriptome analysis (RNA sequencing). Results Early feeding accelerated both microbiota colonisation as well as host transcriptome, towards a more "mature state", with a more pronounced response in colon compared to jejunum. Early feeding elicited the largest impact on the colon transcriptome just before weaning (compared to post-weaning time-points), exemplified by the modulation of genes involved in cholesterol and energy metabolism and immune response. The transcriptional impact of early feeding persisted during the first days post-weaning and was highlighted by a stronger mucosal response to the weaning stress, via pronounced activation of barrier repair reactions, which is a combination of immune activation, epithelial migration and "wound-repair" like processes, compared to the CON piglets. Discussion Our study demonstrates the potential of early life nutrition in neonatal piglets as a means to support their intestinal development during the suckling period, and to improve adaptation during the weaning transition.
Collapse
Affiliation(s)
- Raka Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuner Gu
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
111
|
Fowler EC, Samuel RS, St-Pierre B. A Comparative Analysis of the Fecal Bacterial Communities of Light and Heavy Finishing Barrows Raised in a Commercial Swine Production Environment. Pathogens 2023; 12:pathogens12050738. [PMID: 37242408 DOI: 10.3390/pathogens12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
For commercial swine producers, the natural variation in body weight amongst pigs in a herd presents a challenge in meeting the standards of meat processors who incentivize target carcass weights by offering more favorable purchase prices. Body weight variation in a swine herd is evident as early as birth, and it is typically maintained throughout the entire production cycle. Amongst the various factors that can affect growth performance, the gut microbiome has emerged as an important factor that can affect efficiency, as it contributes to vital functions such as providing assimilable nutrients from feed ingredients that are inedible to the host, as well as resistance to infection by a pathogen. In this context, the objective of the study described in this report was to compare the fecal microbiomes of light and heavy barrows (castrated male finishing pigs) that were part of the same research herd that was raised under commercial conditions. Using high-throughput sequencing of amplicons generated from the V1-V3 regions of the 16S rRNA gene, two abundant candidate bacterial species identified as operational taxonomic units (OTUs), Ssd-1085 and Ssd-1144, were found to be in higher abundance in the light barrows group. Ssd-1085 was predicted to be a potential strain of Clostridium jeddahitimonense, a bacterial species capable of utilizing tagatose, a monosaccharide known to act as a prebiotic that can enhance the proliferation of beneficial microorganisms while inhibiting the growth of bacterial pathogens. OTU Ssd-1144 was identified as a candidate strain of C. beijerinckii, which would be expected to function as a starch utilizing symbiont in the swine gut. While it remains to be determined why putative strains of these beneficial bacterial species would be in higher abundance in lower weight pigs, their overall high levels in finishing pigs could be the result of including ingredients such as corn and soybean-based products in swine diets. Another contribution from this study was the determination that these two OTUs, along with five others that were also abundant in the fecal bacterial communities of the barrows that were analyzed, had been previously identified in weaned pigs, suggesting that these OTUs can become established as early as the nursery phase.
Collapse
Affiliation(s)
- Emily C Fowler
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
112
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Park T, Lee Y, Lee SS, Lee SS. Oral administration of Pinus koraiensis cone essential oil reduces rumen methane emission by altering the rumen microbial composition and functions in Korean native goat ( Capra hircus coreanae). Front Vet Sci 2023; 10:1168237. [PMID: 37275608 PMCID: PMC10234127 DOI: 10.3389/fvets.2023.1168237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
This study aimed to investigate Pinus koraiensis cone essential oil (PEO) as a methane (CH4) inhibitor and determine its impact on the taxonomic and functional characteristics of the rumen microbiota in goats. A total of 10 growing Korean native goats (Capra hircus coreanae, 29.9 ± 1.58 kg, male) were assigned to different dietary treatments: control (CON; basal diet without additive) and PEO (basal diet +1 g/d of PEO) by a 2 × 2 crossover design. Methane measurements were conducted every 4 consecutive days for 17-20 days using a laser CH4 detector. Samples of rumen fluid and feces were collected during each experimental period to evaluate the biological effects and dry matter (DM) digestibility after PEO oral administration. The rumen microbiota was analyzed via 16S rRNA gene amplicon sequencing. The PEO oral administration resulted in reduced CH4 emission (eructation CH4/body weight0.75, p = 0.079) without affecting DM intake; however, it lowered the total volatile fatty acids (p = 0.041), molar proportion of propionate (p = 0.075), and ammonia nitrogen (p = 0.087) in the rumen. Blood metabolites (i.e., albumin, alanine transaminase/serum glutamic pyruvate transaminase, creatinine, and triglyceride) were significantly affected (p < 0.05) by PEO oral administration. The absolute fungal abundance (p = 0.009) was reduced by PEO oral administration, whereas ciliate protozoa, total bacteria, and methanogen abundance were not affected. The composition of rumen prokaryotic microbiota was altered by PEO oral administration with lower evenness (p = 0.054) observed for the PEO group than the CON group. Moreover, PICRUSt2 analysis revealed that the metabolic pathways of prokaryotic bacteria, such as pyruvate metabolism, were enriched in the PEO group. We also identified the Rikenellaceae RC9 gut group as the taxa potentially contributing to the enriched KEGG modules for histidine biosynthesis and pyruvate oxidation in the rumen of the PEO group using the FishTaco analysis. The entire co-occurrence networks showed that more nodes and edges were detected in the PEO group. Overall, these findings provide an understanding of how PEO oral administration affects CH4 emission and rumen prokaryotic microbiota composition and function. This study may help develop potential manipulation strategies to find new essential oils to mitigate enteric CH4 emissions from ruminants.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
113
|
Matthews C, Walsh AM, Gordon SV, Markey B, Cotter PD, O' Mahony J. Differences in Faecal Microbiome Taxonomy, Diversity and Functional Potential in a Bovine Cohort Experimentally Challenged with Mycobacterium avium subsp. paratuberculosis (MAP). Animals (Basel) 2023; 13:ani13101652. [PMID: 37238082 DOI: 10.3390/ani13101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, a chronic enteritis which results in emaciation and eventual loss of the animal. Recent advances in metagenomics have allowed a more in-depth study of complex microbiomes, including that of gastrointestinal tracts, and have the potential to provide insights into consequences of the exposure of an animal to MAP or other pathogens. This study aimed to investigate taxonomic diversity and compositional changes of the faecal microbiome of cattle experimentally challenged with MAP compared to an unexposed control group. Faecal swab samples were collected from a total of 55 animals [exposed group (n = 35) and a control group (n = 20)], across three time points (months 3, 6 and 9 post-inoculation). The composition and functional potential of the faecal microbiota differed across time and between the groups (p < 0.05), with the primary differences, from both a taxonomic and functional perspective, occurring at 3 months post inoculation. These included significant differences in the relative abundance of the genera Methanobrevibacter and Bifidobacterium and also of 11 other species (4 at a higher relative abundance in the exposed group and 7 at a higher relative abundance in the control group). Correlations were made between microbiome data and immunopathology measurements and it was noted that changes in the microbial composition correlated with miRNA-155, miR-146b and IFN-ɣ. In summary, this study illustrates the impact of exposure to MAP on the ruminant faecal microbiome with a number of species that may have relevance in veterinary medicine for tracking exposure to MAP.
Collapse
Affiliation(s)
- Chloe Matthews
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Bryan Markey
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 R229 Cork, Ireland
| | - Jim O' Mahony
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
114
|
Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E, Keogh K, Martin C, Bernard L, Morgavi DP, Park T, Li Z, Jiang Y, Firkins JL, Yu Z, Hvidsten TR, Waters SM, Popova M, Arntzen MØ, Hagen LH, Pope PB. Metabolic influence of core ciliates within the rumen microbiome. THE ISME JOURNAL 2023:10.1038/s41396-023-01407-y. [PMID: 37169869 DOI: 10.1038/s41396-023-01407-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Collapse
Affiliation(s)
- Thea O Andersen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ianina Altshuler
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Kate Keogh
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Cécile Martin
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Laurence Bernard
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Diego P Morgavi
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yu Jiang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sinead M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Milka Popova
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
115
|
Zhang C, Wang M, Liu H, Jiang X, Chen X, Liu T, Yin Q, Wang Y, Deng L, Yao J, Wu S. Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows. J Anim Sci Biotechnol 2023; 14:63. [PMID: 37158919 PMCID: PMC10169493 DOI: 10.1186/s40104-023-00862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Dairy cows' lactation performance is the outcome of the crosstalk between ruminal microbial metabolism and host metabolism. However, it is still unclear to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to regulating the milk protein yield (MPY). METHODS The rumen fluid, serum and milk of 12 Holstein cows with the same diet (45% coarseness ratio), parity (2-3 fetuses) and lactation days (120-150 d) were used for the microbiome and metabolome analysis. Rumen metabolism (rumen metabolome) and host metabolism (blood and milk metabolome) were connected using a weighted gene co-expression network (WGCNA) and the structural equation model (SEM) analyses. RESULTS Two different ruminal enterotypes, with abundant Prevotella and Ruminococcus, were identified as type1 and type2. Of these, a higher MPY was found in cows with ruminal type2. Interestingly, [Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae (the differential bacteria) were the hub genera of the network. In addition, differential ruminal, serum and milk metabolome between enterotypes were identified, where the cows with type2 had higher L-tyrosine of rumen, ornithine and L-tryptophan of serum, and tetrahydroneopterin, palmitoyl-L-carnitine, S-lactoylglutathione of milk, which could provide more energy and substrate for MPY. Further, based on the identified modules of ruminal microbiome, as well as ruminal serum and milk metabolome using WGCNA, the SEM analysis indicated that the key ruminal microbial module1, which contains the hub genera of the network ([Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae) and high abundance of bacteria (Prevotella and Ruminococcus), could regulate the MPY by module7 of rumen, module2 of blood, and module7 of milk, which contained L-tyrosine and L-tryptophan. Therefore, in order to more clearly reveal the process of rumen bacterial regulation of MPY, we established the path of SEM based on the L-tyrosine, L-tryptophan and related components. The SEM based on the metabolites suggested that [Ruminococcus] gauvreauii group could inhibit the energy supply of serum tryptophan to MPY by milk S-lactoylglutathione, which could enhance pyruvate metabolism. Norank_f_Ruminococcaceae could increase the ruminal L-tyrosine, which could provide the substrate for MPY. CONCLUSION Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus, and the hub genera of [Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis by affecting the ruminal L-tyrosine and L-tryptophan. Moreover, the combined analysis of enterotype, WGCNA and SEM could be used to connect rumen microbial metabolism with host metabolism, which provides a fundamental understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Qingyan Yin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
116
|
Baek R, Tsuruta T, Nishino N. Modulatory Effects of A1 Milk, A2 Milk, Soy, and Egg Proteins on Gut Microbiota and Fermentation. Microorganisms 2023; 11:1194. [PMID: 37317168 DOI: 10.3390/microorganisms11051194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Milk can be divided into A1 and A2 types according to β-casein variants, and there is a debate about whether A1 milk consumption exacerbates gut environments. This study examined the cecum microbiota and fermentation in mice fed A1 casein, A2 casein, mixed casein (commercial casein), soy protein isolate, and egg white. The cecum acetic acid concentration was higher, and the relative abundances of Muribaculaceae and Desulfovibrionaceae were greater in mice fed A1 versus A2 casein. The other parameters of cecum fermentation and microbiota composition were similar among the mice fed A1, A2, and mixed caseins. The differences were more distinctive among the three caseins, soy, and egg feedings. Chao 1 and Shannon indices of the cecum microbiota were lowered in egg white-fed mice, and the microbiota of mice fed milk, soy, and egg proteins were separately grouped by principal coordinate analysis. Mice fed the three caseins were characterized by a high abundance of Lactobacillaceae and Clostridiaceae, those fed soy were characterized by Corynebacteriaceae, Muribaculaceae, and Ruminococcaceae, and those fed egg white were characterized by Eggerthellaceae, Rikenellaceae, and Erysipelatoclostridiaceae. Thus, although several differences can arise between A1 and A2 caseins in terms of their modulatory effects on gut environments, the differences between milk, soy, and egg proteins can be more distinctive and are worth further consideration.
Collapse
Affiliation(s)
- Riyang Baek
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takeshi Tsuruta
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Naoki Nishino
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
117
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Lee Y, Song T, Lee SS. Assessment of the Pinus koraiensis cone essential oil on methane production and microbial abundance using in vitro evaluation system. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
118
|
Tian G, Zhang X, Hao X, Zhang J. Effects of Curcumin on Growth Performance, Ruminal Fermentation, Rumen Microbial Protein Synthesis, and Serum Antioxidant Capacity in Housed Growing Lambs. Animals (Basel) 2023; 13:ani13091439. [PMID: 37174476 PMCID: PMC10177206 DOI: 10.3390/ani13091439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
This experiment was conducted to investigate growth performance, ruminal fermentation, rumen microbial protein synthesis, and serum antioxidant capacity with different doses of curcumin (CUR) included in the diet of housed growing lambs. Forty-eight four-month-old Dorper × Thin-tailed Han F1 crossbred male lambs (body weight = 20.89 ± 1.15 kg, age = 120 ± 10 days; mean ± SD) were randomly divided into four groups for a single-factor, completely randomized experiment. Treatments comprised the following: the basal diet supplemented with 0 (Control), 300 mg/kg (300 CUR), 600 mg/kg (600 CUR), or 900 mg/kg (900 CUR) CUR, respectively. The results showed that dietary CUR increased average daily gain (ADG), and the 300 CUR group evidenced the highest value. There were no significant effects on dry matter intake (DMI) and DMI/ADG. Lambs in the 300 CUR group showed higher totals of volatile fatty acids (VFA) and acetate than other groups, while decreased valerate was observed with supplementary CUR. The ruminal pH and ammonia N (NH3-N) concentration decreased with increasing CUR, with the greatest effect in the 300 CUR group. The quadratic effects were found in pectinase, carboxymethyl cellulose, and protease, with the greatest value in the 300 CUR group. The microbial populations of total bacteria and Ruminococcus albus also responded quadratically, and the methanogens, protozoan, and Fibrobacter succinogenes populations decreased linearly with increasing CUR. Lambs receiving additional CUR showed increased Prevotella ruminicola population. Microbial protein (MCP) synthesis was promoted by supplementary CUR. As supplementation with CUR increased, the serum activity of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was enhanced, with the greatest value in the 300 CUR group. In conclusion, dietary CUR improved ruminal fermentation, promoted rumen microbial protein (MCP) synthesis, and enhanced serum antioxidant activity, as well as promoting growth performance in housed growing lambs.
Collapse
Affiliation(s)
- Guangyuan Tian
- College of Animal Science, Shanxi Agriculture University, Jinzhong 030801, China
| | - Xuanzi Zhang
- College of Animal Science, Shanxi Agriculture University, Jinzhong 030801, China
| | - Xiaoyan Hao
- College of Animal Science, Shanxi Agriculture University, Jinzhong 030801, China
| | - Jianxin Zhang
- College of Animal Science, Shanxi Agriculture University, Jinzhong 030801, China
| |
Collapse
|
119
|
Magner C, Jenkins D, Koc F, Tan MH, O'Toole M, Boyle J, Maguire N, Duignan S, Murphy K, Ross P, Stanton C, McMahon CJ. Protocol for a prospective cohort study exploring the gut microbiota of infants with congenital heart disease undergoing cardiopulmonary bypass (the GuMiBear study). BMJ Open 2023; 13:e067016. [PMID: 37001916 PMCID: PMC10069492 DOI: 10.1136/bmjopen-2022-067016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
INTRODUCTION The gut microbiota develops from birth and matures significantly during the first 24 months of life, playing a major role in infant health and development. The composition of the gut microbiota is influenced by several factors including mode of delivery, gestational age, feed type and treatment with antibiotics. Alterations in the pattern of gut microbiota development and composition can be associated with illness and compromised health outcomes.Infants diagnosed with 'congenital heart disease' (CHD) often require surgery involving cardiopulmonary bypass (CPB) early in life. The impact of this type of surgery on the integrity of the gut microbiome is poorly understood. In addition, these infants are at significant risk of developing the potentially devastating intestinal condition necrotising enterocolitis. METHODS AND ANALYSIS This study will employ a prospective cohort study methodology to investigate the gut microbiota and urine metabolome of infants with CHD undergoing surgery involving CPB. Stool and urine samples, demographic and clinical data will be collected from eligible infants based at the National Centre for Paediatric Cardiac Surgery in Ireland. Shotgun metagenome sequencing will be performed on stool samples and urine metabolomic analysis will identify metabolic biomarkers. The impact of the underlying diagnosis, surgery involving CPB, and the influence of environmental factors will be explored. Data from healthy age-matched infants from the INFANTMET study will serve as a control for this study. ETHICS AND DISSEMINATION This study has received full ethical approval from the Clinical Research Ethics Committee of Children's Health Ireland, GEN/826/20.
Collapse
Affiliation(s)
- Claire Magner
- School of Nursing, Midwifery and Health Systems, University College Dublin, Dublin, Ireland
| | - Dominic Jenkins
- Laboratory, Children's Health Ireland at Crumlin, Crumlin, Ireland
| | - Fatma Koc
- School of Microbiology, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre, Cork, Ireland
| | - Mong Hoi Tan
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Molly O'Toole
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jordan Boyle
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Niamh Maguire
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sophie Duignan
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Kiera Murphy
- University College Cork APC Microbiome Institute, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre, Moorepark, Ireland
| | - Paul Ross
- University College Cork College of Science Engineering and Food Science, Cork, Ireland
| | - Catherine Stanton
- University College Cork APC Microbiome Institute, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Ireland
| | - Colin J McMahon
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
- University College Dublin School of Medicine, Dublin, Ireland
| |
Collapse
|
120
|
Sikder MAA, Rashid RB, Ahmed T, Sebina I, Howard DR, Ullah MA, Rahman MM, Lynch JP, Curren B, Werder RB, Simpson J, Bissell A, Morrison M, Walpole C, Radford KJ, Kumar V, Woodruff TM, Ying TH, Ali A, Kaiko GE, Upham JW, Hoelzle RD, Cuív PÓ, Holt PG, Dennis PG, Phipps S. Maternal diet modulates the infant microbiome and intestinal Flt3L necessary for dendritic cell development and immunity to respiratory infection. Immunity 2023; 56:1098-1114.e10. [PMID: 37003256 DOI: 10.1016/j.immuni.2023.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/28/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.
Collapse
Affiliation(s)
- Md Al Amin Sikder
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ridwan B Rashid
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tufael Ahmed
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ismail Sebina
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Daniel R Howard
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Muhammed Mahfuzur Rahman
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jason P Lynch
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Bodie Curren
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Rhiannon B Werder
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jennifer Simpson
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | - Alec Bissell
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Mark Morrison
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Carina Walpole
- Mater Research Institute, The University of Queensland, Translational Research Institute, Wolloongabba, Brisbane, QLD 4102, Australia
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Wolloongabba, Brisbane, QLD 4102, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Tan Hui Ying
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gerard E Kaiko
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - John W Upham
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia; Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Robert D Hoelzle
- The School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Páraic Ó Cuív
- Mater Research Institute, The University of Queensland, Translational Research Institute, Wolloongabba, Brisbane, QLD 4102, Australia; Microba Life Sciences, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Paul G Dennis
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia; The School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
121
|
Pardo Z, Mateos I, Saro C, Campos R, Argüello H, Lachica M, Ranilla MJ, Fernández-Fígares I. The Effect of Supplementation with Betaine and Zinc on In Vitro Large Intestinal Fermentation in Iberian Pigs under Heat Stress. Animals (Basel) 2023; 13:ani13061102. [PMID: 36978642 PMCID: PMC10044697 DOI: 10.3390/ani13061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
We investigated the effects of betaine and zinc on the in vitro fermentation of pigs under heat stress (HS). Twenty-four Iberian pigs (43.4 ± 1.2 kg) under HS (30 °C) were assigned to treatments for 4 weeks: control (unsupplemented), betaine (5 g/kg), and zinc (0.120 g/kg) supplemented diet. Rectal content was used as the inoculum in 24-hincubations with pure substrates (starch, pectin, inulin, cellulose). Total gas, short-chain fatty acid (SCFA), and methane production and ammonia concentration were measured. The abundance of total bacteria and several bacterial groups was assessed. Betaine increased the acetate production with pectin and inulin, butyrate production with starch and inulin, and ammonia concentration, and decreased propionate production with pectin and inulin. The abundance of Bifidobacterium and two groups of Clostridium decreased with betaine supplementation. Zinc decreased the production of SCFA and gas with starch and inulin, associated with diminished bacterial activity. Propionate production decreased with starch, pectin, and inulin while butyrate production increased with inulin, and isoacid production increased with cellulose and inulin in pigs supplemented with zinc. The ammonia concentration increased for all substrates. The Clostridium cluster XIV abundance decreased in pigs fed zinc supplemented diets. The results reported were dependent on the substrate fermented, but the augmented butyrate production with both betaine and zinc could be of benefit for the host.
Collapse
Affiliation(s)
- Zaira Pardo
- Departamento de Nutrición y Producción Animal Sostenible, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, (CSIC) Profesor Albareda 1, 18008 Granada, Spain
| | - Iván Mateos
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain
| | - Cristina Saro
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain
| | - Rómulo Campos
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Departamento de Ciencia Animal, Universidad Nacional de Colombia, Carrera 32 # 12-00, Palmira 76531, Colombia
| | - Héctor Argüello
- Departamento de Sanidad Animal, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Manuel Lachica
- Departamento de Nutrición y Producción Animal Sostenible, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, (CSIC) Profesor Albareda 1, 18008 Granada, Spain
| | - María José Ranilla
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain
| | - Ignacio Fernández-Fígares
- Departamento de Nutrición y Producción Animal Sostenible, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, (CSIC) Profesor Albareda 1, 18008 Granada, Spain
- Correspondence: or
| |
Collapse
|
122
|
Gall-David SL, Boudry G, Buffet-Bataillon S. Comparison of four DNA extraction kits efficiency for 16SrDNA microbiota profiling of diverse human samples. Future Sci OA 2023; 9:FSO837. [PMID: 37006230 PMCID: PMC10051199 DOI: 10.2144/fsoa-2022-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Aim: The current study investigated the performance of 4 widely used DNA extraction kits using different types of high (stool) and low biomass samples (chyme, broncho alveolar lavage and sputum). Methods: Qiagen Powerfecal Pro DNA kit, Macherey Nucleospin Soil kit, Macherey Nucleospin Tissue Kit and MagnaPure LC DNA isolation kit III were evaluated in terms of DNA quantity, quality, diversity and composition profiles. Results: The quantity and quality of DNA varied among the four kits. The microbiota of the stool samples showed similar diversity and compositional profiles for the 4 kits. Conclusion: Despite differences in DNA quality and quantity, the 4 kits yielded similar results for stool samples, while all kits were not sensitive enough for low biomass samples.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
| | - Sylvie Buffet-Bataillon
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
- Bacteriology, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
123
|
Guo Y, Fan Z, Li M, Xie H, Peng L, Yang C. Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes. Microorganisms 2023; 11:675. [PMID: 36985248 PMCID: PMC10057408 DOI: 10.3390/microorganisms11030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased (p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased (p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups (p > 0.05). Group SN+MET had a decreased rumen propionate and valerate (p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased (p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased (p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter, Lactococcus, Microbacterium, Chryseobacterium, and Klebsiella, which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter, Kurthia, Bacillus, and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
124
|
Bandarupalli VVK, St-Pierre B. Metagenomics-Based Analysis of Candidate Lactate Utilizers from the Rumen of Beef Cattle. Microorganisms 2023; 11:microorganisms11030658. [PMID: 36985231 PMCID: PMC10054779 DOI: 10.3390/microorganisms11030658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In ruminant livestock production, ruminal acidosis is an unintended consequence of the elevated dietary intake of starch-rich feedstuffs. The transition from a state of subacute acidosis (SARA) to acute acidosis is due in large part to the accumulation of lactate in the rumen, which is a consequence of the inability of lactate utilizers to compensate for the increased production of lactate. In this report, we present the 16S rRNA gene-based identification of two bacterial operational taxonomic units (OTUs), Bt-01708_Bf (89.0% identical to Butyrivibrio fibrisolvens) and Bt-01899_Ap (95.3% identical to Anaerococcus prevotii), that were enriched from rumen fluid cultures in which only lactate was provided as an exogenous substrate. Analyses of in-silico-predicted proteomes from metagenomics-assembled contigs assigned to these candidate ruminal bacterial species (Bt-01708_Bf: 1270 annotated coding sequences, 1365 hypothetical coding sequences; Bt-01899_Ap: 871 annotated coding sequences, 1343 hypothetical coding sequences) revealed genes encoding lactate dehydrogenase, a putative lactate transporter, as well as pathways for the production of short chain fatty acids (formate, acetate and butyrate) and for the synthesis of glycogen. In contrast to these shared functions, each OTU also exhibited distinct features, such as the potential for the utilization of a diversified set of small molecules as substrates (Bt-01708_Bf: malate, quinate, taurine and polyamines) or for the utilization of starch (Bt-01899_Ap: alpha-amylase enzymes). Together, these results will contribute to the continued characterization of ruminal bacterial species that can metabolize lactate into distinct subgroups based on other metabolic capabilities.
Collapse
Affiliation(s)
- Venkata Vinay Kumar Bandarupalli
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
- GenMark Diagnostics, 5964 La Place Ct, Carlsbad, CA 92008, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
125
|
Aguilar-González M, Buitrón G, Shimada A, Ayala-Sumuano J, González-Dávalos L, Varela-Echavarría A, Mora O. Study on manipulation of ruminal fermentation using a bioelectrochemical system. J Anim Physiol Anim Nutr (Berl) 2023; 107:357-366. [PMID: 35500040 DOI: 10.1111/jpn.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
Abstract
The purpose of this work was to develop a two-chamber bioelectrochemical cell to modify the metabolic activity of rumen microorganisms by applying an electric potential to the ruminal liquid. Carbohydrate fermentation changes were evaluated along with a molecular characterization by DNA sequencing of the ruminal microbial community. We observed that an electrochemical stimulation potential of 0.75 V enhanced basal acetate, propionate, and butyrate production by 71%, 86%, and 63%, respectively, with no detectable effects on grass substrate disappearance. The applied electric potential also led to changes in the volatile fatty acids production but not on the core microbiome.
Collapse
Affiliation(s)
- Mariana Aguilar-González
- Posgrado en Ciencias de la Producción y la Salud Animal, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán, UNAM, Querétaro, México
| | | | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán, UNAM, Querétaro, México
| | | | - Ofelia Mora
- Instituto de Neurobiología, UNAM, Querétaro, México
| |
Collapse
|
126
|
Breed and ruminal fraction effects on bacterial and archaeal community composition in sheep. Sci Rep 2023; 13:3336. [PMID: 36849493 PMCID: PMC9971215 DOI: 10.1038/s41598-023-28909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
While the breed of cattle can impact on the composition and structure of microbial communities in the rumen, breed-specific effects on rumen microbial communities have rarely been examined in sheep. In addition, rumen microbial composition can differ between ruminal fractions, and be associated with ruminant feed efficiency and methane emissions. In this study, 16S rRNA amplicon sequencing was used to investigate the effects of breed and ruminal fraction on bacterial and archaeal communities in sheep. Solid, liquid and epithelial rumen samples were obtained from a total of 36 lambs, across 4 different sheep breeds (Cheviot (n = 10), Connemara (n = 6), Lanark (n = 10) and Perth (n = 10)), undergoing detailed measurements of feed efficiency, who were offered a nut based cereal diet ad-libitum supplemented with grass silage. Our results demonstrate that the feed conversion ratio (FCR) was lowest for the Cheviot (most efficient), and highest for the Connemara breed (least efficient). In the solid fraction, bacterial community richness was lowest in the Cheviot breed, while Sharpea azabuensis was most abundant in the Perth breed. Lanark, Cheviot and Perth breeds exhibited a significantly higher abundance of epithelial associated Succiniclasticum compared to the Connemara breed. When comparing ruminal fractions, Campylobacter, Family XIII, Mogibacterium, and Lachnospiraceae UCG-008 were most abundant in the epithelial fraction. Our findings indicate that breed can impact the abundance of specific bacterial taxa in sheep while having little effect on the overall composition of the microbial community. This finding has implications for genetic selection breeding programs aimed at improving feed conversion efficiency of sheep. Furthermore, the variations in the distribution of bacterial species identified between ruminal fractions, notably between solid and epithelial fractions, reveals a rumen fraction bias, which has implications for sheep rumen sampling techniques.
Collapse
|
127
|
Jin S, Zhang Z, Zhang G, He B, Qin Y, Yang B, Yu Z, Wang J. Maternal Rumen Bacteriota Shapes the Offspring Rumen Bacteriota, Affecting the Development of Young Ruminants. Microbiol Spectr 2023; 11:e0359022. [PMID: 36809041 PMCID: PMC10100811 DOI: 10.1128/spectrum.03590-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
The maternal rumen microbiota can affect the infantile rumen microbiota and likely offspring growth, and some rumen microbes are heritable and are associated with host traits. However, little is known about the heritable microbes of the maternal rumen microbiota and their role in and effect on the growth of young ruminants. From analyzing the ruminal bacteriota from 128 Hu sheep dams and their 179 offspring lambs, we identified the potential heritable rumen bacteria and developed random forest prediction models to predict birth weight, weaning weight, and preweaning gain of the young ruminants using rumen bacteria as predictors. We showed that the dams tended to shape the bacteriota of the offspring. About 4.0% of the prevalent amplicon sequence variants (ASVs) of rumen bacteria were heritable (h2 > 0.2 and P < 0.05), and together they accounted for 4.8% and 31.5% of the rumen bacteria in relative abundance in the dams and the lambs, respectively. Heritable bacteria classified to Prevotellaceae appeared to play a key role in the rumen niche and contribute to rumen fermentation and the growth performance of lambs. Lamb growth traits could be successfully predicted using some maternal ASVs, and the accuracy of the predictive models was improved when some ASVs from both dams and their offspring were included. IMPORTANCE Using a study design that enabled direct comparison of the rumen microbiota between sheep dams and their lambs, between littermates, and between sheep dams and lambs from other mothers, we identified the heritable subsets of rumen bacteriota in Hu sheep, some of which may play important roles in affecting the growth traits of young lambs. Some maternal rumen bacteria could help predict the growth traits of the young offspring, and they may assist in breeding of and selection for high-performance sheep.
Collapse
Affiliation(s)
- Shuwen Jin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Institute of Animal Breeding, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gonghai Zhang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Bo He
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Yilang Qin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
128
|
Invited Review: Novel methods and perspectives for modulating the rumen microbiome through selective breeding as a means to improve complex traits: implications for methane emissions in cattle. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
129
|
Hennessy M, Kristula M, Cady S, Smith B, Indugu N, Vecchiarelli B, Pitta D. Acidification of colostrum affects the fecal microbiota of preweaning dairy calves. JDS COMMUNICATIONS 2023; 4:80-85. [PMID: 36974227 PMCID: PMC10039250 DOI: 10.3168/jdsc.2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/04/2022] [Indexed: 02/11/2023]
Abstract
Calf diarrhea is a leading cause of death in preweaning calves and it causes major economic losses to producers. Acidified milk has been shown to have beneficial effects on health and growth parameters in calves but there is little research into its effects on the microbiota, and few studies on the use of acidified colostrum. The purpose of this study was to compare how feeding acidified colostrum to calves at birth affects fecal microbiota from birth through 8 wk of age compared with calves fed nonacidified colostrum. In this study, 5 calves received acidified colostrum (treated group) and 5 calves received nonacidified colostrum (control group) at birth and at 12 h of age. All calves were subsequently fed acidified whole milk until weaning at 8 wk of age and had access to starter grain starting at d 3 and throughout the study. Fecal samples were collected at 24 h, 48 h, and at 1, 2, 3, 4, 5, 6, 7, and 8 wk of age. Samples were extracted for genomic DNA, PCR-amplified for the V1-V2 region of the 16S rRNA bacteria gene, sequenced, and analyzed using QIIME2. Bacterial richness (estimated by number of observed species) and bacterial diversity (estimated by Shannon diversity index) differed between time points but not between treatment groups, and both increased over time. Weighted and unweighted UniFrac analysis showed differences between bacterial communities across time points and treatments. Across all time points (lmer test), 6 bacterial genera were different between treatments: Faecalibacterium and unclassified Clostridiaceae were more abundant, whereas Atopobium, Collinsella, CF231, and unclassified Veillonellaceae were less abundant in treated versus control calves. Faecalibacterium is a butyrate-producing bacterium that has been linked to decreased prevalence of diarrhea in calves. Our results indicate that there is considerable flux in the calf microbiome through the neonatal period and weaning transition but that feeding acidified colostrum followed by acidified whole milk allowed early colonization of Faecalibacterium. Further studies are needed to verify the positive benefits of promoting Faecalibacterium on improving the health of preweaning calves.
Collapse
|
130
|
Liu Y, Zhang J, Wang C, Guo G, Huo W, Xia C, Chen L, Zhang Y, Pei C, Liu Q. Effects of guanidinoacetic acid supplementation on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1522-1529. [PMID: 36184578 DOI: 10.1002/jsfa.12249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 08/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Considering the high energy demand of lactation and the potential of guanidinoacetic acid (GAA) addition on the increase in creatine supply for cows, the present study investigated the effects of 0, 0.3, 0.6 and 0.9 g kg-1 dry matter (DM) of GAA supplementation on lactation performance, nutrient digestion and ruminal fermentation in dairy cows. The study used 40 mid-lactation multiparous Holstein cows and the study duration was 100 days. RESULTS DM intake was not affected, but milk and milk component yields and feed efficiency increased linearly with increasing GAA addition. The total-tract digestibility of DM, organic matter, neutral detergent fibre, acid detergent fibre and non-fibre carbohydrates increased linearly and that of crude protein increased quadratically with increasing GAA addition. When the addition level of GAA increased, ruminal pH, molar percentages of butyrate, isobutyrate and isovalerate and the acetate-to-propionate ratio decreased linearly, and the total volatile fatty acids concentration and propionate molar percentage also increased linearly, whereas the acetate molar percentage and ammonia-N concentration were unaltered. The activities of fibrolytic enzymes, α-amylase and protease increased linearly. The populations of total bacteria, fungi, Ruminococcus albus, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminobacter amylophilus and Prevotella ruminicola increased linearly, whereas protozoa and methanogens decreased linearly with increasing GAA addition. As for the blood metabolites, concentrations of glucose, urea nitrogen and methionine were unchanged, total protein, albumin, creatine and homocysteine increased linearly, and folate decreased linearly with increasing GAA supply. CONCLUSION The results of the present study indicate that supplementation of GAA improved milk performance and rumen fermentation in lactating dairy cows. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjia Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Jing Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Cong Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Gang Guo
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Wenjie Huo
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Chengqiang Xia
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Lei Chen
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yawei Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Caixia Pei
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Qiang Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
131
|
Kim M. - Invited Review - Assessment of the gastrointestinal microbiota using 16S ribosomal RNA gene amplicon sequencing in ruminant nutrition. Anim Biosci 2023; 36:364-373. [PMID: 36701925 PMCID: PMC9899581 DOI: 10.5713/ab.22.0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The gastrointestinal (GI) tract of ruminants contains diverse microbes that ferment various feeds ingested by animals to produce various fermentation products, such as volatile fatty acids. Fermentation products can affect animal performance, health, and well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly contribute to fermentation, and are the most important in ruminant nutrition. Although traditional cultivation methods provided knowledge of the metabolism of GI microbes, most of the GI microbes could not be cultured on standard culture media. By contrast, amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. Using this approach, ruminant nutritionists and microbiologists have conducted a plethora of nutritional studies, many including dietary interventions, to improve fermentation efficiency and nutrient utilization, which has greatly expanded knowledge of the GI microbiota. This review addresses the GI content sampling method, 16S rRNA gene amplicon sequencing, and bioinformatics analysis and then discusses recent studies on the various factors, such as diet, breed, gender, animal performance, and heat stress, that influence the GI microbiota and thereby ruminant nutrition.
Collapse
Affiliation(s)
- Minseok Kim
- Division of Animal Science, Chonnam National University, Gwangju 61186,
Korea,Corresponding Author: Minseok Kim, Tel: +82-62-530-2128, Fax: +82-62-530-2129, E-mail:
| |
Collapse
|
132
|
Berding K, Bastiaanssen TFS, Moloney GM, Boscaini S, Strain CR, Anesi A, Long-Smith C, Mattivi F, Stanton C, Clarke G, Dinan TG, Cryan JF. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol Psychiatry 2023; 28:601-610. [PMID: 36289300 PMCID: PMC9908549 DOI: 10.1038/s41380-022-01817-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.
Collapse
Affiliation(s)
| | | | - Gerard M Moloney
- APC Microbiome Ireland, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Conall R Strain
- APC Microbiome Ireland, Cork, Ireland.,Teagsac Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Andrea Anesi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Fulvio Mattivi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland.,Teagsac Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
133
|
Vázquez L, Cabrera-Rubio R, Tamames J, Mayo B, Flórez AB. Assessment of short-read shotgun sequencing and microbiome analysis of faecal samples to discriminate between equol producers and non-producers. Benef Microbes 2023; 14:255-268. [PMID: 37078124 DOI: 10.3920/bm2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/17/2023] [Indexed: 04/21/2023]
Abstract
Among the isoflavones and isoflavone-derived metabolites, equol, which in the human gut is synthesised from daidzein by minority bacterial populations, shows the strongest estrogenic and antioxidant activity. The beneficial effects on human health of isoflavone consumption might be partially or indeed totally attributable to this equol. Although some of the bacterial strains involved in its formation have been identified, the interplay between the composition and functionality of the gut microbiota and equol producer phenotype has hardly been studied. In this study, after shotgun metagenomic sequencing, different pipelines for the taxonomic and functional annotation of sequencing data were used in the search for similarities and differences in the faecal metagenome of equol-producing (n=3) and non-producing (n=2) women, with special focus on equol-producing taxa and their equol-associated genes. The taxonomic profiles of the samples differed significantly depending on the analytical method followed, although the microbial diversity detected by each tool was very similar at the phylum, genus and species levels. Equol-producing taxa were detected in both equol producers and non-producers, but no correlation between the abundance of equol-producing taxa and the equol producing/non-producing phenotype was found. Indeed, functional metagenomic analysis was unable to identify the genes involved in equol production, even in samples from equol producers. By aligning equol operons with the collected metagenomics data, a small number of reads mapping to equol-associated sequences were recognised in samples from both equol producers and equol non-producers, but only two reads mapping onto equol reductase-encoding genes in a sample from an equol producer. In conclusion, the taxonomic analysis of metagenomic data might not be suitable for detecting and quantifying equol-producing microbes in human faeces. Functional analysis of the data might provide an alternative. However, to detect the genetic makeup of the minority gut populations, more extensive sequencing than that achieved in the present study might be required.
Collapse
Affiliation(s)
- L Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| | - R Cabrera-Rubio
- Alimentary Pharmabiotic Centre (APC), Microbiome Institute, University College Cork, Cork, Ireland
- Moorepark Teagasc Food Research Centre, Fermoy, Ireland
| | - J Tamames
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - B Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| | - A B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Asturias, Spain
| |
Collapse
|
134
|
Gut Microbiome Composition in Dystonia Patients. Int J Mol Sci 2023; 24:ijms24032383. [PMID: 36768705 PMCID: PMC9916458 DOI: 10.3390/ijms24032383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Dystonia is a movement disorder in which patients have involuntary abnormal movements or postures. Non-motor symptoms, such as psychiatric symptoms, sleep problems and fatigue, are common. We hypothesise that the gut microbiome might play a role in the pathophysiology of the (non-)motor symptoms in dystonia via the gut-brain axis. This exploratory study investigates the composition of the gut microbiome in dystonia patients compared to healthy controls. Furthermore, the abundance of neuro-active metabolic pathways, which might be implicated in the (non-)motor symptoms, was investigated. We performed both metagenomic and 16S rRNA sequencing on the stool samples of three subtypes of dystonia (27 cervical dystonia, 20 dopa-responsive dystonia and 24 myoclonus-dystonia patients) and 25 controls. While microbiome alpha and beta diversity was not different between dystonia patients and controls, dystonia patients had higher abundances of Ruminococcus torques and Dorea formicigenerans, and a lower abundance of Butyrivibrio crossotus compared to controls. For those with dystonia, non-motor symptoms and the levels of neurotransmitters in plasma explained the variance in the gut microbiome composition. Several neuro-active metabolic pathways, especially tryptophan degradation, were less abundant in the dystonia patients compared to controls. This suggest that the gut-brain axis might be involved in the pathophysiology of dystonia. Further studies are necessary to confirm our preliminary findings.
Collapse
|
135
|
Wanyan R, Pan M, Mai Z, Xiong X, Su W, Yang J, Yu Q, Wang X, Han Q, Li H, Wang G, Wu S. Distribution and influencing factors of antibiotic resistance genes of crayfish (Procambarus clarkii) intestine in main crayfish breeding provinces in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159611. [PMID: 36273569 DOI: 10.1016/j.scitotenv.2022.159611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) has become a global public health concern. However, the distribution and influencing factors of ARGs, especially high-risk ARGs, in the gut of aquaculture animals remain unclear. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to determine crayfish gut microbiota and ARGs collected from 40 culture ponds in major crayfish farming provinces of China. We detected 74 ARGs in crayfish gut. Among them, the beta-lactamase and tetracycline resistance genes were dominant. The total ARG abundance was the highest in Hubei Province. High-risk ARGs were also found in crayfish gut, and ermB had the highest abundance and distributed in Anhui, Hubei, Henan and Jiangxi Province. In addition, opportunistic pathogens (Streptococcus, Aeromonas and Acinetobacter) might be potential hosts for ARGs, including high-risk ARGs. Finally, habitat, environmental factors (NO3-N, pH and temperature), microbial alpha diversity and mobile genetic elements (MGEs) showed significant influence on ARGs profiles. Generally, our results illustrate that ARGs are prevalent in crayfish gut and may pose potential risk to human health, which will help develop targeted strategies for the risk management and assessment of ARGs in the aquaculture.
Collapse
Affiliation(s)
- Ruijun Wanyan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
136
|
Lin L, Lai Z, Zhang J, Zhu W, Mao S. The gastrointestinal microbiome in dairy cattle is constrained by the deterministic driver of the region and the modified effect of diet. MICROBIOME 2023; 11:10. [PMID: 36670455 PMCID: PMC9863278 DOI: 10.1186/s40168-022-01453-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/19/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Dairy cattle (Bos taurus), especially Holstein cows, which are the highest-producing dairy animals and are widely bred to provide milk products to humans, rely critically on their associated gastrointestinal tract (GIT) microbiota to digest plant feed. However, the region-specific taxonomic composition and function of the GIT microbiome in dairy cattle and the mechanistic basis for the diet-induced effects remain to be elucidated. RESULTS: We collected 120 digesta samples from 10 GIT regions of 12 Holstein cows fed forage- and grain-based diets and characterized their GIT microbiome via functional shotgun metagenomics and the resolution of metagenome-assembled genomes. Our results demonstrated that the GIT microbiome was mainly partitioned into three distinct clusters, four-chambered stomach, small intestine, and large intestine. Moreover, we found that the four-chambered stomach microbiome with the highest diversity had a strong ability to degrade recalcitrant polysaccharide substrates, underpinned by the prevalence of potential cellulosome--producing and plant-derived polysaccharide utilization loci-encoding consortia. In contrast, the post-gastric intestinal microbiome orchestrated alternative fermentation pathways to adapt to nutrient availability and energy acquisition. Diet shifts selectively modified the metabolic cascades of the microbiome in specific GIT regions, evidenced by the loss of fiber-degrading taxa and increased hydrogen sinks in propionate after grain introduction. CONCLUSIONS Our findings provide new insights into GIT microbial organization and function in dairy cattle by GIT regions and diet regimes, which offers clues for improving animal production and health in the future. Video Abstract.
Collapse
Affiliation(s)
- Limei Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Lai
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiyou Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
137
|
Wang C, Zhang J, Guo G, Huo W, Xia CQ, Chen L, Zhang Y, Pei C, Liu Q. Effects of folic acid and riboflavin on growth performance, nutrient digestion and rumen fermentation in Angus bulls. Br J Nutr 2023; 129:1-9. [PMID: 35225178 DOI: 10.1017/s0007114522000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examined the influences of coated folic acid (CFA) and coated riboflavin (CRF) on bull performance, nutrients digestion and ruminal fermentation. Forty-eight Angus bulls based on a randomised block and 2 × 2 factorial design were assigned to four treatments. The CFA of 0 or 6 mg of folic acid/kg DM was supplemented in diets with CRF 0 or 60 mg riboflavin (RF)/kg DM. Supplementation of CRF in diets with CFA had greater increase in daily weight gain and feed efficiency than in diets without CFA. Supplementation with CFA or CRF enhanced digestibility of DM, organic matter, crude protein, neutral-detergent fibre and non-fibre carbohydrate. Ruminal pH and ammonia N content decreased and total volatile fatty acids concentration and acetate to propionate ratio elevated for CFA or CRF addition. Supplement of CFA or CRF increased the activities of fibrolytic enzymes and the numbers of total bacteria, protozoa, fungi, dominant fibrolytic bacteria and Prevotella ruminicola. The activities of α-amylase, protease and pectinase and the numbers of Butyrivibrio fibrisolvens and Ruminobacter amylophilus were increased by CFA but were unaffected by CRF. Blood concentration of folate elevated and homocysteine decreased for CFA addition. The CRF supplementation elevated blood concentrations of folate and RF. These findings suggested that CFA or CRF inclusion had facilitating effects on performance and ruminal fermentation, and combined addition of CFA and CRF had greater increase in performance than CFA or CRF addition alone in bulls.
Collapse
Affiliation(s)
- Cong Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Cheng Qiang Xia
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Lei Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Yawei Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| |
Collapse
|
138
|
Gaire TN, Scott HM, Noyes NR, Ericsson AC, Tokach MD, Menegat MB, Vinasco J, Roenne B, Ray T, Nagaraja TG, Volkova VV. Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. Anim Microbiome 2023; 5:2. [PMID: 36624546 PMCID: PMC9830919 DOI: 10.1186/s42523-022-00222-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.
Collapse
Affiliation(s)
- Tara N. Gaire
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - H. Morgan Scott
- grid.264756.40000 0004 4687 2082Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Noelle R. Noyes
- grid.17635.360000000419368657Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Aaron C. Ericsson
- grid.134936.a0000 0001 2162 3504Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael D. Tokach
- grid.36567.310000 0001 0737 1259Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506 USA
| | - Mariana B. Menegat
- grid.36567.310000 0001 0737 1259Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506 USA
| | - Javier Vinasco
- grid.264756.40000 0004 4687 2082Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Boyd Roenne
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Tui Ray
- grid.17635.360000000419368657Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - T. G. Nagaraja
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Victoriya V. Volkova
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
139
|
Pu XX, Zhang XM, Li QS, Wang R, Zhang M, Zhang SZ, Lin B, Tan B, Tan ZL, Wang M. Comparison of in situ ruminal straw fiber degradation and bacterial community between buffalo and Holstein fed with high-roughage diet. Front Microbiol 2023; 13:1079056. [PMID: 36699590 PMCID: PMC9868309 DOI: 10.3389/fmicb.2022.1079056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Buffalo exhibits great efficiency in utilizing low-quality roughage, which can be due to the combined effect of host physiological feature and roughage diet fed. The present study was designed to compare the ruminal fiber degradation and the bacterial community attached to straws in buffalo and Holstein when fed with the same high-roughage diet using in situ ruminal incubation technique. Rice and wheat straws were selected as the incubation substrates and sampled at 0, 4, 12, 24, 48, 72, 120, and 216 h of incubation time to measure the kinetics of dry matter (DM) and neutral detergent fiber (NDF) disappearance. Additional two bags were incubated and sampled at 4 and 48 h of incubation time to evaluate the bacterial community attached to straws. The results showed that buffalo exhibited a greater (p ≤ 0.05) fraction of rapidly soluble and washout nutrients and effective ruminal disappearance for both DM and NDF of straw than Holstein, together with a greater (p ≤ 0.05) disappearance rate of potentially degradable nutrient fraction for NDF. Principal coordinate analysis indicated that both host and incubation time altered the bacterial communities attached to straws. Buffalo exhibited greater (p ≤ 0.05) 16S rRNA gene copies of bacteria and greater (p ≤ 0.05) relative abundance of Ruminococcus attached to straw than Holstein. Prolonging incubation time increased (p ≤ 0.05) the 16S rRNA gene copies of bacteria, and the relative abundance of phyla Proteobacteria and Fibrobacters by comparing 4 vs. 48 h of incubation time. In summary, buffalo exhibits greater ruminal fiber degradation than Holstein through increasing bacterial population and enriching Ruminococcus, while prolonging incubation time facilitates fiber degradation through enriching phyla Proteobacteria and Fibrobacteres.
Collapse
Affiliation(s)
- Xuan Xuan Pu
- Department of Animal Science and Technology, University of Hunan Agricultural University, Changsha, Hunan, China,CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiu Min Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qiu Shuang Li
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Rong Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Min Zhang
- Department of Animal Science and Technology, University of Guangxi, Nanning, Guangxi, China
| | - Shi Zhe Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bo Lin
- Department of Animal Science and Technology, University of Guangxi, Nanning, Guangxi, China
| | - Bie Tan
- Department of Animal Science and Technology, University of Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi Liang Tan
- Department of Animal Science and Technology, University of Hunan Agricultural University, Changsha, Hunan, China,CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,*Correspondence: Zhi Liang Tan,
| | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,Min Wang,
| |
Collapse
|
140
|
Yu S, Li L, Zhao H, Zhang S, Tu Y, Liu M, Zhao Y, Jiang L. Dietary citrus flavonoid extract improves lactational performance through modulating rumen microbiome and metabolites in dairy cows. Food Funct 2023; 14:94-111. [PMID: 36484332 DOI: 10.1039/d2fo02751h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of dietary supplementation with citrus flavonoid extract (CFE) on milk performance, rumen fermentation, rumen microbiome, rumen metabolome, and serum antioxidant indexes were evaluated. Eight multiparous lactating cows were allocated to a replicated 4 × 4 Latin square with 25-d periods consisting of 20 d of adaptation and 5 d of sampling. Experimental treatments included a control diet (CON) and CON supplemented with 50 g d-1 (CFE50), 100 g d-1 (CFE100), and 150 g d-1 (CFE150). Feeding CFE to dairy cows increased milk production and milk lactose. Milk somatic cell count linearly reduced with increasing CFE amount. Supplementing CFE linearly increased the ruminal concentrations of total volatile fatty acids, acetate, propionate, butyrate, and microbial crude protein. Ruminal lipopolysaccharide linearly decreased with increasing CFE amount. Compared with CON, CFE150 cows exhibited a greater abundance of Firmicutes and a low abundance of Bacteroidetes. Cellulolytic bacteria (genera Ruminococcus, Clostridium, and Butyrivibrio) and carbohydrate metabolism were enriched in the CFE150 cows. For archaea and viruses, major methanogens (genera Methanobacterium and Methanosarcina) and phylum Uroviricota were inhibited in the CFE150 cows. Compared with CON, the ruminal concentrations of tyrosine, proline, pyruvate, glucose, and glucose-6-phosphate were higher in the CFE150 cows. The metabolites of citrus flavonoids, such as hippuric acid, hesperetin, and naringenin, were increased in the CFE150 cows. Supplementing CFE significantly improved the antioxidant capacity of the dairy cows. This study highlighted that dietary supplementation with CFE led to significant changes in the rumen microbial composition and metabolites, and consequently resulted in an improved lactational performance of dairy cows.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Shuyue Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China. .,Beijing Beinong Enterprise Management Co., Ltd, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
141
|
Freetly HC, Lindholm-Perry AK. Rumen and cecum bacteria of beef cattle that differ in feed efficiency fed a forage diet. J Anim Sci 2023; 101:skad292. [PMID: 37666002 PMCID: PMC10552577 DOI: 10.1093/jas/skad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Most of the research addressing feed efficiency and the microbiota has been conducted in cattle fed grain diets, although cattle evolved to consume forage diets. Our hypothesis was that the bacteria in the rumen and cecum differed in cattle that have a common feed intake but had different ^average daily body weight gains (ADG) on a forage diet. Heifers (n = 134) were 606 ± 1 d of age and weighed 476 ± 3 kg at the start of the 84-d feeding study. Heifers were offered ad libitum access to a totally mixed ration that consisted of 86% ground brome hay, 10% wet distillers grains with solubles, and 4% mineral supplement as dry matter. Feed intake and body weight gain were measured, and gain was calculated. Heifers with the least (n = 8) and greatest (n = 8) ADG within 0.32 SD of the mean daily dry matter intake were selected for sampling. Digesta samples from the rumen and cecum were collected, and subsequent 16S analysis was conducted to identify Amplicon Sequence Variants. There were no differences in Alpha and Beta diversity between ADG classification within sample sites (P > 0.05). Both sample sites contained calculated balances of sister clades using phylogenetic isometric log ratio transferred data that differed across ADG classification. These findings suggest that bacteria did not differ at the community level, but there was structural difference at the clade level.
Collapse
Affiliation(s)
- Harvey C Freetly
- Nutrition, Growth & Physiology Research Unit, USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - Amanda K Lindholm-Perry
- Nutrition, Growth & Physiology Research Unit, USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| |
Collapse
|
142
|
Waclawiková B, Cesar Telles de Souza P, Schwalbe M, Neochoritis CG, Hoornenborg W, Nelemans SA, Marrink SJ, El Aidy S. Potential binding modes of the gut bacterial metabolite, 5-hydroxyindole, to the intestinal L-type calcium channels and its impact on the microbiota in rats. Gut Microbes 2023; 15:2154544. [PMID: 36511640 PMCID: PMC9754111 DOI: 10.1080/19490976.2022.2154544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal microbiota and microbiota-derived metabolites play a key role in regulating the host physiology. Recently, we have identified a gut-bacterial metabolite, namely 5-hydroxyindole, as a potent stimulant of intestinal motility via its modulation of L-type voltage-gated calcium channels located on the intestinal smooth muscle cells. Dysregulation of L-type voltage-gated calcium channels is associated with various gastrointestinal motility disorders, including constipation, making L-type voltage-gated calcium channels an important target for drug development. Nonetheless, the majority of currently available drugs are associated with alteration of the gut microbiota. Using 16S rRNA sequencing this study shows that, when administered orally, 5-hydroxyindole has only marginal effects on the rat cecal microbiota. Molecular dynamics simulations propose potential-binding pockets of 5-hydroxyindole in the α1 subunit of the L-type voltage-gated calcium channels and when its stimulatory effect on the rat colonic contractility was compared to 16 different analogues, ex-vivo, 5-hydroxyindole stood as the most potent enhancer of the intestinal contractility. Overall, the present findings imply a potential role of microbiota-derived metabolites as candidate therapeutics for targeted treatment of slow intestinal motility-related disorders including constipation.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Paulo Cesar Telles de Souza
- Molecular Microbiology and Structural Biochemistry (MMSB - UMR 5086), CNRS & University of Lyon, Lyon, France
| | - Markus Schwalbe
- Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Warner Hoornenborg
- Department of Behavioral Neurosciences, Cluster Neurobiology, Groningen Institute of for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Sieger A. Nelemans
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Siewert J. Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Sahar El Aidy
- Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands,CONTACT Sahar El Aidy Host-Microbe Metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
143
|
Märtson AG, da Silva Ferreira AR, Veringa A, Liu L, Wardill HR, Junier LAT, van der Werf TS, Harmsen HJM, Sturkenboom MGG, Span LF, Tissing WJE, Alffenaar JWC. Exposure of anti-infective drugs and the dynamic changes of the gut microbiota during gastrointestinal mucositis in autologous stem cell transplant patients: a pilot study. Ann Hematol 2023; 102:421-427. [PMID: 36648505 PMCID: PMC9844184 DOI: 10.1007/s00277-023-05091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Abstract
Gastrointestinal mucositis could potentially compromise drug absorption due to functional loss of mucosa and other pathophysiological changes in the gastrointestinal microenvironment. Little is known about this effect on commonly used anti-infectives. This study aimed to explore the association between different stages of gastrointestinal mucositis, drug exposure, and gut microbiota. A prospective, observational pilot study was performed in HSCT patients aged ≥ 18 years receiving anti-infectives orally. Left-over blood samples and fecal swabs were collected from routine clinical care until 14 days after HSCT to analyze drug and citrulline concentrations and to determine the composition of the gut microbiota. 21 patients with a median age of 58 (interquartile range 54-64) years were included with 252 citrulline, 155 ciprofloxacin, 139 fluconazole, and 76 acyclovir concentrations and 48 fecal swabs obtained. Severe gastrointestinal mucositis was observed in all patients. Due to limited data correlation analysis was not done for valacyclovir and fluconazole, however we did observe a weak correlation between ciprofloxacin and citrulline concentrations. This could suggest that underexposure of ciprofloxacin can occur during severe mucositis. A follow-up study using frequent sampling rather than the use of left-over would be required to investigate the relationship between gastrointestinal mucositis, drug exposure, and gut microbiome.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Rita da Silva Ferreira
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anette Veringa
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lei Liu
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hannah R. Wardill
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia ,Precision Medicine (Cancer), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lenneke A. T. Junier
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tjip S. van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marieke G. G. Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lambert F. Span
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim J. E. Tissing
- Department of Pediatrics (Oncology and Hematology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,Princess Maxima Centre for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan-Willem C. Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW Australia ,Westmead Hospital, Sydney, NSW Australia ,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
144
|
Yamada K, Iwamae K, Suzuki Y, Koike S, Kobayashi Y. Batch culture analysis to identify potent organic acids for suppressing ruminal methane production. Anim Sci J 2023; 94:e13873. [PMID: 37721187 DOI: 10.1111/asj.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
We performed an in vitro rumen batch culture study to screen 11 commercially available organic acids for methane-suppressing ability and analyzed the rumen microbiota to determine the mode of action of the acids that showed potent methane-suppressing activity. Nine of the 11 acids showed methane-suppressing activity. Maleic anhydride, itaconate, citrate, and fumarate, which showed the highest activity, were further examined. These four acids showed methane-suppressing activity irrespective of the hay-to-concentrate ratios of the substrate. Maleic anhydride and itaconate decreased total gas and short-chain fatty acid production. Maleic anhydride and fumarate increased propionate production, while itaconate increased butyrate production. Maleic anhydride, itaconate, and citrate increased lactate production. Fumarate increased the abundance of bacteria involved in propionate production. Maleic anhydride, itaconate, and citrate increased the abundance of bacteria involved in lactate production. Thus, the results indicate that maleic anhydride, itaconate, and citrate may decrease methane in part by stimulating the acrylate pathway.
Collapse
Affiliation(s)
- Kyouko Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
145
|
Lin L, Lai Z, Yang H, Zhang J, Qi W, Xie F, Mao S. Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications. THE ISME JOURNAL 2023; 17:172-184. [PMID: 36261508 PMCID: PMC9750977 DOI: 10.1038/s41396-022-01333-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Although the importance of bile acid (BA)-related microbial strains and enzymes is increasingly recognized for monogastric animals, a lack of knowledge about BA metabolism in dairy cows limits functional applications aimed at the targeted modulation of microbe-host interactions for animal production and health. In the present study, 108 content samples from six intestinal regions of dairy cows were used for shotgun metagenomic sequencing. Overall, 372 high-quality metagenome-assembled genomes (MAGs) were involved in BA deconjugation, oxidation, and dehydroxylation pathways. Furthermore, the BA-metabolizing microbiome predominately occurred in the large intestine, resulting in the accumulation of secondary unconjugated BAs. Comparative genomic analysis revealed that the bile salt hydrolase (BSH)-carrying microbial populations managed with the selective environment of the dairy cow intestine by adopting numerous host mucin glycan-degrading abilities. A sequence similarity network analysis classified 439 BSH homologs into 12 clusters and identified different clusters with diverse evolution, taxonomy, signal peptides, and ecological niches. Our omics data further revealed that the strains of Firmicutes bacterium CAG-110 processed the increased abundance of BSHs from Cluster 1, coinciding with the changes in the colon cholic acid concentration after grain introduction, and were intricately related to intestinal inflammation. This study is the first to use a genome-centric approach and whole intestine-targeted metabolomics to reveal microbial BA metabolism and its diet-induced functional implications in dairy cows. These findings provide insight into the manipulation of intestinal microorganisms for improving host health.
Collapse
Affiliation(s)
- Limei Lin
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zheng Lai
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huisheng Yang
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiyou Zhang
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weibiao Qi
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fei Xie
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. .,Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
146
|
Rodríguez-González S, González-Dávalos L, Robles-Rodríguez C, Lozano-Flores C, Varela-Echavarría A, Shimada A, Mora-Izaguirre O. Isolation of bacterial consortia with probiotic potential from the rumen of tropical calves. J Anim Physiol Anim Nutr (Berl) 2023; 107:62-76. [PMID: 35253270 PMCID: PMC10078749 DOI: 10.1111/jpn.13699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/10/2022] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Probiotics are live microorganisms that confer health benefits to their animal host by balancing the composition of its gastrointestinal microbiota and modulating its immune response. In this work, we studied bacterial consortia isolated from the rumen of 28- and 42-day-old calves to select those showing probiotic capacity. Consortia were characterized and their growth dynamics were determined in several growth media. The number of viable bacteria was larger in the Man, Rogosa and Sharpe broth (MRS) than in nutritive medium A (MNA) and the largest was for A3D42. Antibiotic susceptibility of bacterial consortia in MRS was higher than in MNA and the most susceptible samples were A1D28 and A3D42. In turn, A3D42 showed the highest tolerance to bile salts in MRS and MNA. Moreover, all bacterial consortia showed optimal growth at pH 5, 5.5, 6 and 7 in both media, while their temperature tolerance was higher in MRS. The antagonistic activity of bacterial consortia in MNA was higher than in MRS with A2D42 showing the best antagonistic activity for Pseudomona aureginosa (ATCC 9027) and Staphylococcus aureus (ATCC 6538) in MNA. Additionally, A1D42 and A2D42 in MRS and A3D42 in MNA had significant adhesion to mucins, and A1D42 in MRS had the highest. Regarding their species composition, all bacterial consortia in MRS belonged to the phylum Firmicutes, and the class Bacilli and bacterial consortia in MNA belonged to three phyla; Proteobacteria, Firmicutes, and Bacteroidetes. Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus fermentum, and Lactobacillus johnsonii were identified in all bacterial consortia in MRS broth. Based on these results, A1D42 and A3D42 grown in MRS showed the best potential as probiotics for calves, which could result in health benefits and improve their production.
Collapse
Affiliation(s)
- Sarahí Rodríguez-González
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carolina Robles-Rodríguez
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Lozano-Flores
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Ofelia Mora-Izaguirre
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
147
|
Jansma J, Thome NU, Schwalbe M, Chatziioannou AC, Elsayed SS, van Wezel GP, van den Abbeele P, van Hemert S, El Aidy S. Dynamic effects of probiotic formula ecologic®825 on human small intestinal ileostoma microbiota: a network theory approach. Gut Microbes 2023; 15:2232506. [PMID: 37417553 PMCID: PMC10332219 DOI: 10.1080/19490976.2023.2232506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Nicola U. Thome
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Somayah S. Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P. van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
148
|
Miller GA, Auffret MD, Roehe R, Nisbet H, Martínez-Álvaro M. Different microbial genera drive methane emissions in beef cattle fed with two extreme diets. Front Microbiol 2023; 14:1102400. [PMID: 37125186 PMCID: PMC10133469 DOI: 10.3389/fmicb.2023.1102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
The ratio of forage to concentrate in cattle feeding has a major influence on the composition of the microbiota in the rumen and on the mass of methane produced. Using methane measurements and microbiota data from 26 cattle we aimed to investigate the relationships between microbial relative abundances and methane emissions, and identify potential biomarkers, in animals fed two extreme diets - a poor quality fresh cut grass diet (GRASS) or a high concentrate total mixed ration (TMR). Direct comparisons of the effects of such extreme diets on the composition of rumen microbiota have rarely been studied. Data were analyzed considering their multivariate and compositional nature. Diet had a relevant effect on methane yield of +10.6 g of methane/kg of dry matter intake for GRASS with respect to TMR, and on the centered log-ratio transformed abundance of 22 microbial genera. When predicting methane yield based on the abundance of 28 and 25 selected microbial genera in GRASS and TMR, respectively, we achieved cross-validation prediction accuracies of 66.5 ± 9% and 85 ± 8%. Only the abundance of Fibrobacter had a consistent negative association with methane yield in both diets, whereas most microbial genera were associated with methane yield in only one of the two diets. This study highlights the stark contrast in the microbiota controlling methane yield between animals fed a high concentrate diet, such as that found on intensive finishing units, and a low-quality grass forage that is often found in extensive grazing systems. This contrast must be taken into consideration when developing strategies to reduce methane emissions by manipulation of the rumen microbial composition.
Collapse
Affiliation(s)
- Gemma A. Miller
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
- Gemma A. Miller,
| | | | - Rainer Roehe
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | - Holly Nisbet
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | - Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Marina Martínez-Álvaro,
| |
Collapse
|
149
|
Robles-Rodríguez C, Muley VY, González-Dávalos ML, Shimada A, Varela-Echavarría A, Mora O. Microbial colonization dynamics of the postnatal digestive tract of Bos indicus calves. Anim Sci J 2023; 94:e13872. [PMID: 37666790 DOI: 10.1111/asj.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
The rumen and the jejunum of calves have distinct functional roles; the former is in the storage and fermentation of feed, and the latter is in transporting digesta to the ileum. It is unknown how nutrition changes the evolution of the microbiome of these organs after birth. We sequenced and characterized the entire microbiome of the rumen and the jejunum from Bos indicus calves of the Mexican Tropics to study their dynamics at Days 0, 7, 28, and 42 after birth. Operational taxonomic units (OTUs) belonging to 185 and 222 genera from 15 phylum were observed in the organs, respectively. The most abundant OTUs were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. We observed that proteobacterial species were outcompeted after the first week of life by Bacteroidetes and Firmicutes in the rumen and the jejunum, respectively. Moreover, Prevotella species were found to predominate in the rumen (36% of total OTUs), while the jejunum microbiome is composed of small proportions of several genera. Presumably, their high relative abundance assists in specialized functions and is more likely in fermentation since they are anaerobes. In summary, the rumen and the jejunum microbiomes were outcompeted by new microbiomes in a dynamic process that begins at birth.
Collapse
Affiliation(s)
- Carolina Robles-Rodríguez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
150
|
Abstract
Experiments involving metagenomics data are become increasingly commonplace. Processing such data requires a unique set of considerations. Quality control of metagenomics data is critical to extracting pertinent insights. In this chapter, we outline some considerations in terms of study design and other confounding factors that can often only be realized at the point of data analysis.In this chapter, we outline some basic principles of quality control in metagenomics, including overall reproducibility and some good practices to follow. The general quality control of sequencing data is then outlined, and we introduce ways to process this data by using bash scripts and developing pipelines in Snakemake (Python).A significant part of quality control in metagenomics is in analyzing the data to ensure you can spot relationships between variables and to identify when they might be confounded. This chapter provides a walkthrough of analyzing some microbiome data (in the R statistical language) and demonstrates a few days to identify overall differences and similarities in microbiome data. The chapter is concluded by discussing remarks about considering taxonomic results in the context of the study and interrogating sequence alignments using the command line.
Collapse
Affiliation(s)
- Abraham Gihawi
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ryan Cardenas
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rachel Hurst
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Daniel S Brewer
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|