101
|
Marcos Santos L, da Silveira NJF. Current Fragment-to-lead Approaches Starting from the 7-azaindole: The Pharmacological Versatility of a Privileged Molecular Fragment. Curr Top Med Chem 2023; 23:2116-2130. [PMID: 37461366 DOI: 10.2174/1568026623666230718100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Fragment-based drug discovery is one of the most powerful paradigms in the recent context of medicinal chemistry and is being widely practiced by academic and industrial researchers. Currently, azaindoles are among the most exploited molecular fragments in pharmaceutical innovation projects inspired by fragment-to-lead strategies. The 7-azaindole is the most prominent representative within this remarkable family of pyrrolopyridine fragments, as it is present in the chemical structure of several approved antitumor drugs and also of numerous therapeutic candidates. In this paper, a brief overview on existing proofs of concept in the literature will be presented, as well as some recent works that corroborate 7-azaindole as a privileged and pharmacologically versatile molecular fragment.
Collapse
Affiliation(s)
- Leandro Marcos Santos
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
- Pharmaceutical Chemistry Research Laboratory / LQFar (D202A), Department of Food and Medicines, Faculty of Pharmaceutical Sciences, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| |
Collapse
|
102
|
Garkusha NA, Anikeeva OP, Bayıl I, Taskin-Tok T, Safin DA. DFT, ADMET, molecular docking and molecular dynamics studies of pyridoxal. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
103
|
Khan FA, Yaqoob S, Ali S, Tanveer N, Wang Y, Ashraf S, Hasan KA, Khalifa SAM, Shou Q, Ul-Haq Z, Jiang ZH, El-Seedi HR. Designing Functionally Substituted Pyridine-Carbohydrazides for Potent Antibacterial and Devouring Antifungal Effect on Multidrug Resistant (MDR) Strains. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010212. [PMID: 36615406 PMCID: PMC9822510 DOI: 10.3390/molecules28010212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of Candida spp., with minimum inhibitory concentration (MIC) values being in the range of 16-24 µg/mL and percentage inhibition up to 92.57%, which was exceptional when compared to broad-spectrum antifungal drug fluconazole (MIC = 20 µg/mL, 81.88% inhibition). Substitution of the octyl chain in 6 with a shorter butyl chain resulted in a significant anti-bacterial effect of 4 against Pseudomonas aeruginosa (ATCC 27853), the MIC value being 2-fold superior to the standard combination of ampicillin/cloxacillin. Time-kill kinetics assays were used to discern the efficacy and pharmacodynamics of the potent compounds. Further, hemolysis tests confirmed that both compounds had better safety profiles than the standard drugs. Besides, molecular docking simulations were used to further explore their mode of interaction with target proteins. Overall results suggest that these compounds have the potential to become promising antimicrobial drugs against MDR strains.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| | - Sana Yaqoob
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shujaat Ali
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nimra Tanveer
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yan Wang
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| |
Collapse
|
104
|
Xu M, Wang Z, Sun Z, Ouyang Y, Ding Z, Yu T, Xu L, Li P. Diboron(4)-Catalyzed Remote [3+2] Cycloaddition of Cyclopropanes via Dearomative/Rearomative Radical Transmission through Pyridine. Angew Chem Int Ed Engl 2022; 61:e202214507. [PMID: 36344444 DOI: 10.1002/anie.202214507] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/09/2022]
Abstract
Ring structures such as pyridine, cyclopentane or their combinations are important motifs in bioactive molecules. In contrast to previous cycloaddition reactions that necessitated a directly bonded initiating functional group, this work demonstrated a novel through-(hetero)arene radical transmission concept for selective activation of a remote bond. An efficient, metal-free and atom-economical [3+2] cycloaddition between 4-pyridinyl cyclopropanes and alkenes or alkynes has been developed for modular synthesis of pyridine-substituted cyclopentanes, cyclopentenes and bicyclo[2.1.1]hexanes that are difficult to access using known methods. This complexity-building reaction was catalyzed by a very simple and inexpensive diboron(4) compound and took place via dearomative/rearomative processes. The substrate scope was broad and more than 100 new compounds were prepared in generally high yields. Mechanistic experiments and density function theory (DFT) investigation supported a radical relay catalytic cycle involving alkylidene dihydropyridine radical intermediates and boronyl radical transfer.
Collapse
Affiliation(s)
- Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhaohui Sun
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
105
|
Kumar S L, Tabassum S, K S S, Govindaraju S. A Mini Review on the Multicomponent Synthesis of Pyridine Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202203668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lokesh Kumar S
- Department of Chemistry CHRIST – Deemed to be University Bengaluru Karnataka India 560029
| | - Sumaiya Tabassum
- Department of Chemistry Surana College Bengaluru Karnataka India
| | - Sagar K S
- Yuvaraja's College (Autonomous) University of Mysore Mysuru Karnataka India
| | - Santhosh Govindaraju
- Department of Sciences & Humanities CHRIST – Deemed to be University Bengaluru Karnataka India
| |
Collapse
|
106
|
Kishore PS, Gujjarappa R, Putta VPRK, Polina S, Singh V, Malakar CC, Pujar PP. Potassium
tert
‐Butoxide‐Mediated Synthesis of 2‐Aminoquinolines from Alkylnitriles and 2‐Aminobenzaldehyde Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | | - Saibabu Polina
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 India
| | - Virender Singh
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | |
Collapse
|
107
|
Design, Synthesis and Anticancer Screening of Cu-Catalyzed SnAr Substituted Pyridine Bridged Ring Systems. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
108
|
Yang S, Wang C, Shi L, Chang J, Zhang Y, Meng J, Liu W, Zeng J, Zhang R, Shao Y, Xing D. Design, synthesis and biological evaluation of novel diarylpyridine derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2022; 37:2755-2764. [PMID: 36196773 PMCID: PMC9553186 DOI: 10.1080/14756366.2022.2130284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A set of novel diarylpyridines as anti-tubulin agents were designed, synthesised using a rigid pyridine as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro antiproliferative activities. Among them, 10t showed remarkable antiproliferative activities against three cancer cell lines (HeLa, MCF-7 and SGC-7901) in sub-micromolar concentrations. Consistent with its potent antiproliferative activity, 10t also displayed potent anti-tubulin activity. Cellular mechanism investigation elucidated 10t disrupted the cellular microtubule structure, arrested cell cycle at G2/M phase and induces apoptosis. Molecular modelling studies showed that 10t could bind to the colchicine binding site on microtubules. These results provide motivation and further guidance for the development of new CA-4 analogues.
Collapse
Affiliation(s)
- Shanbo Yang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jingsen Meng
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
109
|
N2,N6-Bis(6-iodo-2-methyl-4-oxoquinazolin-3(4H)-yl)pyridine-2,6-dicarboxamide. MOLBANK 2022. [DOI: 10.3390/m1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A green chemistry method was applied in the synthesis of N2,N6-bis(6-iodo-2-methyl-4-oxoquinazolin-3(4H)-yl)pyridine-2,6-dicarboxamide. The desired compound was synthesized mechanochemically, using a choline chloride-based deep eutectic solvent as a catalyst. The synthesis took 20 min and the new compound was characterized using different spectral methods.
Collapse
|
110
|
Kumar R, Kumar D, Upadhyay RK, Deswal N, Takkar P, Kareem A, Kumar V, Kumar LS. Design, Synthesis, Antimicrobial Screening and Docking Studies of Newer 1,4‐Dihydropyridine tethered Chalcone Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry Bio-organic Laboratory University of Delhi Delhi 110007
| | - Dhiraj Kumar
- IndiaDepartment of Chemistry Bio-organic Laboratory Kirori Mal College University of Delhi Delhi 110 007 India
| | | | - Nidhi Deswal
- Department of Chemistry Bio-organic Laboratory University of Delhi Delhi 110007
| | - Priya Takkar
- Department of Chemistry Bio-organic Laboratory University of Delhi Delhi 110007
| | | | - Vinod Kumar
- Department of Microbiology University of Delhi, South Campus Benito Juarez Marg Delhi 110021 India
| | | |
Collapse
|
111
|
Sanjosé-Orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chem Sci 2022; 13:12527-12532. [PMID: 36382292 PMCID: PMC9629060 DOI: 10.1039/d2sc04990b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
The efficient C-4 selective modification of pyridines is a major challenge for the synthetic community. Current strategies are plagued with at least one drawback regarding functional group-tolerant electronic activation of the heteroarene, mild generation of the required alkyl radicals, regioselectivity, safety and/or scalability. Herein, we describe a fast, safe and scalable flow process which allows preparation of said C-4 alkylated pyridines. The process involves a photochemical hydrogen atom transfer (HAT) event to generate the carbon-centered radicals needed to alkylate the C-2 blocked pyridine. In a two-step streamlined flow process, this light-mediated alkylation step is combined with a nearly instantaneous inline removal of the blocking group. Notably, cheap benzophenone plays a dual role in the pyridine alkylation mechanism by activating the hydrocarbon feedstock reagents via a HAT mechanism, and by acting as a benign, terminal oxidant. The key role of benzophenone in the operative reaction mechanism has also been revealed through a combination of experimental and computational studies.
Collapse
Affiliation(s)
- Jesús Sanjosé-Orduna
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Rodrigo C Silva
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
- Departamento de Química, Universidade Federal de São Carlos SP 13565-905 Brazil
| | - Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Bente Reus
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Jannik Thaens
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| |
Collapse
|
112
|
Lv G, Shi Q, Zhang T, Li J, Kalashova J, Long Y, Sun Y, Li C, Choudhry N, Li H, Yang C, Zhou X, Reddy MC, Anantoju KK, Jupelli R, Zhang S, Zhang J, Allen T, Liu H, Nimishetti N, Yang D. 2-Phenoxy-3, 4′-bipyridine derivatives inhibit AURKB-dependent mitotic processes by disrupting its localization. Eur J Med Chem 2022; 245:114904. [DOI: 10.1016/j.ejmech.2022.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
113
|
Wu P, Cao F, Zhou Y, Xue Z, Zhang N, Shi L, Luo G. Substrate Facilitating Roles in Rare-Earth-Catalyzed C-H Alkenylation of Pyridines with Allenes: Mechanism and Origins of Regio- and Stereoselectivity. Inorg Chem 2022; 61:17330-17341. [PMID: 36259978 DOI: 10.1021/acs.inorgchem.2c02953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although considerable progress has been achieved in C-H functionalization by cationic rare-earth alkyl complexes, the potential facilitating roles of heteroatom-containing substrates during the catalytic cycle remain highly underestimated. Herein, theoretical studies on the model reaction of C(sp2)-H addition of pyridines to allenes by scandium catalyst were carefully carried out to reveal the detailed mechanism. A coordinating pyridine substrate as a ligand can effectively stabilize some key structures. An obvious facilitating role delivered by the coordinating pyridine was found for allene insertion, while the pyridine-free mechanism prefers to occur for C(sp2)-H activation processes. Importantly, the elusive role of heteroatom-containing substrates was systematically revealed for the C-H activation event by designing a metal/ligand combination of catalysts and substrates. We found that the pyridyl C(sp2)-H activation would be switched to the pyridine-coordinated mechanism in the cases of the designed Y and La catalysts. To date, this is the first time to realize the potential substrate-facilitating role in cationic rare-earth-catalyzed C-H activation processes. Moreover, theoretical predictions show that similar switchable mechanisms also work for other types of C-H bonds and other heteroatom-involved substrates by fine-adjusting the steric surroundings of catalysts. The two C-H activation mechanisms are mainly the result of the delicate balance between electronic and steric factors. In general, the catalytic system with less steric hindrance prefers to undergo the substrate-coordinated mechanism. In contrast, the substrate-free mechanism is favorable due to steric repulsion. These results are helpful for us to better understand the variant mechanisms in rare-earth-catalyzed C-H functionalization at the atomistic level and may help guide the rational design of new catalytic reactions. In addition, the origins of the regio- and stereoselectivity were discussed through geometric parameters and distortion/interaction analysis.
Collapse
Affiliation(s)
- Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
114
|
3-Methyl 5-{3-[(4-Methylbenzenesulfonyl)oxy]propyl} 4-(2,3-Dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. MOLBANK 2022. [DOI: 10.3390/m1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1,4-dihydropyridine is a ubiquitous scaffold employed not only in medicinal chemistry but also in organic synthesis, given its ability to act as a hydrogen transfer reagent, thus emulating NAD(P)H reducing agents. In this work, we describe the synthesis of 3-methyl 5-{3-[(4-methylbenzenesulfonyl)oxy]propyl} 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate as scaffold, which enables downstream derivatization towards new 1,4-dihydropyridine molecules. Inspired by the literature, a new two-step synthesis was planned that involved: (i) synthesis of a silylated 1,4-dihydropyridine derivative and (ii) deprotection and tosylation in one step using tosyl fluoride.
Collapse
|
115
|
Structure and optical properties of new nitro-derivatives of 2-N-alkiloamino-picoline N-oxide isomers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
116
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
117
|
Ramalingam A, Kuppusamy M, Sambandam S, Medimagh M, Oyeneyin OE, Shanmugasundaram A, Issaoui N, Ojo ND. Synthesis, spectroscopic, topological, hirshfeld surface analysis, and anti-covid-19 molecular docking investigation of isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Heliyon 2022; 8:e10831. [PMID: 36211997 PMCID: PMC9526874 DOI: 10.1016/j.heliyon.2022.e10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (IDPC) was synthesized and characterized via spectroscopic (FT-IR and NMR) techniques. Hirshfeld surface and topological analyses were conducted to study structural and molecular properties. The energy gap (Eg), frontier orbital energies (EHOMO, ELUMO) and reactivity parameters (like chemical hardness and global hardness) were calculated using density functional theory with B3LYP/6-311++G (d,p) level of theory. Molecular docking of IDPC at the active sites of SARS-COVID receptors was investigated. IDPC molecule crystallized in the centrosymmetric triclinic ( P 1 ¯ ) space group. The topological and Hirshfeld surface analysis revealed that covalent, non-covalent and intermolecular H-bonding interactions, and electron delocalization exist in the molecular framework. Higher binding score (-6.966 kcal/mol) of IDPC at the active site of SARS-COVID main protease compared to other proteases suggests that IDPC has the potential of blocking polyprotein maturation. H-bonding and π-cationic and interactions of the phenyl ring and carbonyl oxygen of the ligand indicate the effective inhibiting potential of the compound against the virus.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, 117583, Singapore
| | - Murugavel Kuppusamy
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, Tamil Nadu, India
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mouna Medimagh
- University of Monastir, Faculty of Sciences, Laboratory of Quantum and Statistical Physics (LR18ES18), Monastir, 5079, Tunisia
| | - Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | | | - Noureddine Issaoui
- University of Monastir, Faculty of Sciences, Laboratory of Quantum and Statistical Physics (LR18ES18), Monastir, 5079, Tunisia
| | | |
Collapse
|
118
|
Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R, Perveen S, Al-Taweel A, Iqbal J, Shahzad SA. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules 2022; 27:molecules27196235. [PMID: 36234774 PMCID: PMC9570995 DOI: 10.3390/molecules27196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure–activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.
Collapse
Affiliation(s)
- Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
- Correspondence: or
| |
Collapse
|
119
|
Sim K, ul Ansari T, Park Y, Jeong Y, Oh S, Min H, Jeon D, Kim H, Cho C. A Regio‐ and Diastereoselective Stille Coupling/Intramolecular Diels–Alder Cascade for the Generation of Fused Pyridines and Application in the Synthesis of (+)‐Lycopladine A and (−)‐Lycoposerramine R. Angew Chem Int Ed Engl 2022; 61:e202212016. [DOI: 10.1002/anie.202212016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Kyu‐Hyun Sim
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Thameem ul Ansari
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Yong‐Gyu Park
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Yeolib Jeong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sang‐Ha Oh
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Hye‐Won Min
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Da‐Yoon Jeon
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Hyunwoo Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Cheon‐Gyu Cho
- Department of Chemistry Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
120
|
Molecular and Electronic Structures, Spectra, Electrochemistry and Anti‐bacterial Efficacy of Novel Heterocyclic Hydrazones of Phenanthrenequinone and Their Nickel(II) Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
121
|
Patel AK, Rathor SS, Samanta S. Regioselective access to di- and trisubstituted pyridines via a metal-oxidant-solvent-free domino reaction involving 3-chloropropiophenones. Org Biomol Chem 2022; 20:6759-6765. [PMID: 35972042 DOI: 10.1039/d2ob01193j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A remarkable metal-oxidant-solvent- and base-free domino route for regioselective access to a wide range of 2,4-di- and 2,3,4/6-trisubstituted pyridines including carbo- and heterocyclic fused pyridines is reported. This [3C + 2C + 1N] cyclization reaction occurs between 3-chloropropiophenones (3C units), enolizable acyclic/cyclic ketones (2C sources) and NH4OAc as a robust N source under neat conditions under an open atmosphere, producing new C=C and C=N-C bonds in highly chemo- and regioselective manners. Interestingly, this eco-friendly method has many positive features: excellent functional group tolerance, broad substrate scope, good to excellent regioselectivities, promising yields, no-unwanted products, neutral reaction conditions and appropriateness for large-scale synthesis. Mechanism studies reveal that the in situ generated β-amino ketone from 3-chloropropiophenone and an ammonium salt undergoes C=N bond formation with a ketone followed by an intramolecular cyclization process (C=C bond), which are the decisive steps for pyridine synthesis.
Collapse
Affiliation(s)
- Ashvani Kumar Patel
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, India.
| | - Shikha Singh Rathor
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, India.
| |
Collapse
|
122
|
Shim KH, Ansari TU, Park YG, Jeong Y, Oh SH, Min HW, Jeon DY, Kim H, Cho CG. A Regio‐ and Diastereoselective Stille Coupling/IMDA Cascade for the Generation of Fused Pyridines and Application in the Synthesis of (+)‐Lycopladine A and (‐)‐Lycoposerramine R. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyu-Hyun Shim
- Hanyang University - Seoul Campus: Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Thameem ul Ansari
- Hanyang University - Seoul Campus: Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Yong-Gyu Park
- Hanyang University - Seoul Campus: Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Yeolib Jeong
- Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Sang-Ha Oh
- Hanyang University - Seoul Campus: Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Hye-Won Min
- Hanyang University - Seoul Campus: Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Da-Yoon Jeon
- Hanyang University - Seoul Campus: Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Hyunwoo Kim
- Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Cheon-Gyu Cho
- Hanyang University - Seoul Campus: Hanyang University Chemistry 222 Wangsimni-roSeongdong-gu 04763 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
123
|
Durmaz Ş, Evren AE, Sağlık BN, Yurttaş L, Tay NF. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives. Arch Pharm (Weinheim) 2022; 355:e2200294. [PMID: 35972839 DOI: 10.1002/ardp.202200294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Two new series of 1,3,4-oxadiazoles bearing pyridine and thiazole heterocycles (4a-h and 5a-h) were synthesized (2,5-disubstituted-1,3,4-oxadiazoles). The structures of these newly synthesized compounds were confirmed by 1 H nuclear magnetic resonance (NMR), 13 C NMR, high-resolution mass spectrometric and Fourier transform infrared spectroscopic methods. All these compounds were evaluated for their enzyme inhibitory activities against two cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the studies, we identified compounds 4a, 4h, 5a, 5d, and 5e as selective AChE inhibitors, with IC50 values ranging from 0.023 to 0.037 μM. Furthermore, docking studies of these compounds were performed at the active sites of their target enzymes. The molecular docking study showed that 5e possessed an ideal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Şeyma Durmaz
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Begüm N Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naime F Tay
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
124
|
Ma JB, Zhao X, Zhang D, Shi SL. Enantio- and Regioselective Ni-Catalyzed para-C-H Alkylation of Pyridines with Styrenes via Intermolecular Hydroarylation. J Am Chem Soc 2022; 144:13643-13651. [PMID: 35857884 DOI: 10.1021/jacs.2c04043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct asymmetric functionalization of the pyridyl C-H bond represents a longstanding challenge in organic chemistry. We herein describe the first enantioselective para-C-H activation of pyridines through the use of a Ni-Al bimetallic catalyst system and N-heterocyclic carbene (NHC) ligand for intermolecular hydroarylation of styrenes. The reaction procceds in high to excellent enantioselectivities (up to 98.5:1.5 er) and high site-selectivities for both styrene and pyridine components (up to >98:2). Consequently, a broad range of enantioenriched 1,1-diarylalkanes containing pyridine moieties could be prepared in a single step with 100% atom economy. Computational studies supported a mechanism involving a ligand-to-ligand H-transfer (LLHT) and reductive elimination sequence, with LLHT being the rate- and enantioselectivity-determining step. DFT studies indicate that the π-π stacking interaction between the NHC aryl fragment and trans-styrenes is critical for high reactivity and enantiocontrol.
Collapse
Affiliation(s)
- Jun-Bao Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xia Zhao
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
125
|
Synthesis and Evaluation of Self-Assembling Properties of 3-(3,5-Difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium Iodides. MOLBANK 2022. [DOI: 10.3390/m1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A synthesis of 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides with ethyl or nonyl ester groups at positions 3 and 5 was performed. Treatment of the corresponding 2’,6’-dimethyl-1’,4’-dihydro-[3,4’-bipyridine]-3’,5’-dicarboxylates with Selectfluor® followed by quaternization of pyridine moiety in the obtained dialkyl 2,4-diacetyl-2,4-difluoro-3-(pyridin-3-yl)pentanedioates with methyl iodide gave the desired 3-(3,5-difluoro-3,5-bis((alkoxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodides. This type of compound would be useful as synthetic lipids for further development of the delivery systems. The obtained target compounds were fully characterized by 1H NMR, 19F NMR, 13C NMR, HRMS, IR and UV data. The estimation of self-assembling properties and characterization of the nanoparticles obtained by ethanol solution injection in an aqueous media were performed by dynamic light scattering (DLS) measurements. DLS measurement data showed that 3-(3,5-difluoro-3,5-bis((nonyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide created liposomes with the average diameter of 300–400 nm and polydispersity index (PDI) value around 0.30–0.40, while 3-(3,5-difluoro-3,5-bis((ethyloxy)carbonyl)-2,6-dioxoheptan-4-yl)-1-methylpyridin-1-ium iodide formed a heterogeneous sample with PDI value 1, which was not prospective for delivery system development.
Collapse
|
126
|
El‐Zemity SR, Badawy MEI, Esmaiel KEE, Badr MM. Synthesis, computer‐aided
ADMET
prediction, and molecular docking of novel 3,5,6‐trichloropyridin‐2‐yl derivatives as potential antimicrobial agents. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Saad R. El‐Zemity
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Mohamed E. I. Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Kareem E. E. Esmaiel
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Mai M. Badr
- Department of Environmental Health, High Institute of Public Health Alexandria University Alexandria Egypt
| |
Collapse
|
127
|
Zanakhov TO, Galenko EE, Novikov MS, Khlebnikov AF. An isoxazole strategy for the synthesis of 4-oxo-1,4-dihydropyridine-3-carboxylates. Beilstein J Org Chem 2022; 18:738-745. [PMID: 35821697 PMCID: PMC9235835 DOI: 10.3762/bjoc.18.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
A method has been developed for the preparation of 2-alkyl-6-aryl-, 2-aryl-6-aryl and 2,6-diaryl-5-aryl/hetaryl-substituted methyl 4-oxo-1,4-dihydropyridine-3-carboxylates by Mo(CO)6-mediated ring expansion of methyl 2-(isoxazol-5-yl)-3-oxopropanoates. The high reactivity of 4-oxo-1,4-dihydropyridine-3-carboxylates synthesized provide easy access to 2,4,6-triaryl-substituted and 1,2,5,6-tetrasubstituted nicotinates.
Collapse
Affiliation(s)
- Timur O Zanakhov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Ekaterina E Galenko
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
128
|
Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
129
|
González A, Casado J, Gündüz MG, Santos B, Velázquez-Campoy A, Sarasa-Buisan C, Fillat MF, Montes M, Piazuelo E, Lanas Á. 1,4-Dihydropyridine as a Promising Scaffold for Novel Antimicrobials Against Helicobacter pylori. Front Microbiol 2022; 13:874709. [PMID: 35694298 PMCID: PMC9174938 DOI: 10.3389/fmicb.2022.874709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022] Open
Abstract
The increasing occurrence of multidrug-resistant strains of the gastric carcinogenic bacterium Helicobacter pylori threatens the efficacy of current eradication therapies. In a previous work, we found that several 1,4-dihydropyridine (DHP)-based antihypertensive drugs exhibited strong bactericidal activities against H. pylori by targeting the essential response regulator HsrA. To further evaluate the potential of 1,4-DHP as a scaffold for novel antimicrobials against H. pylori, we determined the antibacterial effects of 12 novel DHP derivatives that have previously failed to effectively block L- and T-type calcium channels. Six of these molecules exhibited potent antimicrobial activities (MIC ≤ 8 mg/L) against three different antibiotic-resistant strains of H. pylori, while at least one compound resulted as effective as metronidazole. Such antimicrobial actions appeared to be specific against Epsilonproteobacteria, since no deleterious effects were appreciated on Escherichia coli and Staphylococcus epidermidis. The new bactericidal DHP derivatives targeted the H. pylori regulator HsrA and inhibited its DNA binding activity according to both in vitro and in vivo analyses. Molecular docking predicted a potential druggable binding pocket in HsrA, which could open the door to structure-based design of novel anti-H. pylori drugs.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Brisa Santos
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - María F. Fillat
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Milagrosa Montes
- Department of Microbiology, Donostia University Hospital-Biodonostia Health Research Institute, San Sebastian, Spain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Piazuelo
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Aragón Health Sciences Institute (IACS), Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
130
|
Zhang P, Wang J, Robertson ZR, Newhouse TR. Coordination‐Controlled Nickel‐Catalyzed Benzylic Allylation of Unactivated Electron‐Deficient Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202200602. [DOI: 10.1002/anie.202200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Pengpeng Zhang
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| | - Jin Wang
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| | - Zoe R. Robertson
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| | - Timothy R. Newhouse
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| |
Collapse
|
131
|
Pyridine Compounds with Antimicrobial and Antiviral Activities. Int J Mol Sci 2022; 23:ijms23105659. [PMID: 35628466 PMCID: PMC9147400 DOI: 10.3390/ijms23105659] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
In the context of the new life-threatening COVID-19 pandemic caused by the SARS-CoV-2 virus, finding new antiviral and antimicrobial compounds is a priority in current research. Pyridine is a privileged nucleus among heterocycles; its compounds have been noted for their therapeutic properties, such as antimicrobial, antiviral, antitumor, analgesic, anticonvulsant, anti-inflammatory, antioxidant, anti-Alzheimer’s, anti-ulcer or antidiabetic. It is known that a pyridine compound, which also contains a heterocycle, has improved therapeutic properties. The singular presence of the pyridine nucleus, or its one together with one or more heterocycles, as well as a simple hydrocarbon linker, or grafted with organic groups, gives the key molecule a certain geometry, which determines an interaction with a specific protein, and defines the antimicrobial and antiviral selectivity for the target molecule. Moreover, an important role of pyridine in medicinal chemistry is to improve water solubility due to its poor basicity. In this article, we aim to review the methods of synthesis of pyridine compounds, their antimicrobial and antiviral activities, the correlation of pharmaceutical properties with various groups present in molecules as well as the binding mode from Molecular Docking Studies.
Collapse
|
132
|
Kumar R, Yadav N, Jain H, Deswal N, Upadhyay RK, Leekha A, Verma AK, Kareem A, Chikati R, Kumar LS. Microwave‐Assisted Synthesis of 4‐Aryl‐1,4‐dihydropyridines as Potent Anticancer Agent and Their
In‐Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rakesh Kumar
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Neha Yadav
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Harshita Jain
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Nidhi Deswal
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ankita Leekha
- Nano Biotech Laboratory Department of Zoology Kirori Mal College University of Delhi Delhi 110007 India
| | - Anita Kamra Verma
- Nano Biotech Laboratory Department of Zoology Kirori Mal College University of Delhi Delhi 110007 India
| | | | - Rajasekhar Chikati
- Department of Biochemistry Yogivemana University Kadpa- 516005 Andhra Pradesh India
| | | |
Collapse
|
133
|
Bhajammanavar V, Sureshbabu P, Reddy MK, Baidya M. Organocatalyzed Modular Synthesis of Polycyclic Dihydropyridines and Pyridines through Sulfamate Linchpin. Chem Asian J 2022; 17:e202200400. [PMID: 35575143 DOI: 10.1002/asia.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Indexed: 11/09/2022]
Abstract
The cascade annulation between alkylidene malononitriles and cyclic sulfamidate imines has been controlled by leveraging the sulfamate functionality under organocatalysis, which allows selective access to polycyclic and densely functionalized dihydropyridines and pyridines in high yields. The protocol is scalable and shows broad substrate scope. The products were also engaged in the preparation of tetracyclic pyridopyrimidines, showcasing the synthetic versatility.
Collapse
Affiliation(s)
| | | | | | - Mahiuddin Baidya
- Indian Institute of Technology Madras, Chemistry, IIT Madras, India, Chennai, India, 600036, Chennai, INDIA
| |
Collapse
|
134
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
135
|
Zhang P, Wang J, Robertson ZR, Newhouse TR. Coordination‐Controlled Nickel‐Catalyzed Benzylic Allylation of Unactivated Electron‐Deficient Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jin Wang
- Yale University Department of Chemistry UNITED STATES
| | | | - Timothy R. Newhouse
- Yale University Department of Chemistry 225 Prospect St. 06511 New Haven UNITED STATES
| |
Collapse
|
136
|
Proniewicz E, Olszewski TK. SERS/TERS Characterization of New Potential Therapeutics: The Influence of Positional Isomerism, Interface Type, Oxidation State of Copper, and Incubation Time on Adsorption on the Surface of Copper(I) and (II) Oxide Nanoparticles. J Med Chem 2022; 65:4387-4400. [PMID: 35230122 PMCID: PMC8919263 DOI: 10.1021/acs.jmedchem.2c00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The aim of this study
was to investigate how the oxidation state
of copper (Cu(I) vs Cu(II)), the nature of the interface (solid/aqueous
vs solid/air), positional isomerism, and incubation time affect the
functionalization of the surface of copper oxide nanostructures by
[(butylamino)(pyridine)methyl]phenylphosphinic acid (PyPA). For this
purpose, 2-, 3-, and 4-isomers of PyPA and the nanostructures were
synthesized. The nanostructure were characterized by UV-visible spectroscopy
(UV–vis), scanning electron microscopy (SEM), Raman spectroscopy
(RS), and X-ray diffraction (XRD) analysis, which proved the formation
of spherical Cu2O nanoparticles (Cu2ONPs; 1500–600
nm) and leaf-like CuO nanostructures (CuONSs; 80–180/400–700
nm, width/length). PyPA isomers were deposited on the surface of NSs,
and adsorption was investigated by surface-enhanced Raman scattering
(SERS) and tip-enhanced Raman scattering (TERS). The changes of adsorption
on the surface of copper oxide NSs caused by the above-mentioned factors
were described and the enhancement factor on this substrate was calculated.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, ul. Reymonta 23, 30-059 Kraków, Poland.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-137, Japan
| | - Tomasz K Olszewski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
137
|
Krivokolysko DS, Dotsenko VV, Bibik EY, Myazina AV, Krivokolysko SG, Vasilin VK, Pankov AA, Aksenov NA., Aksenova IV. Synthesis, Structure, and Analgesic Activity of 4-(5-Cyano-{4-(fur-2-yl)-1,4-dihydropyridin-3-yl}carboxamido)benzoic Acids Ethyl Esters. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221120306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
138
|
De S, Kumar S K A, Shah SK, Kazi S, Sarkar N, Banerjee S, Dey S. Pyridine: the scaffolds with significant clinical diversity. RSC Adv 2022; 12:15385-15406. [PMID: 35693235 PMCID: PMC9121228 DOI: 10.1039/d2ra01571d] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
The nitrogen-bearing heterocycle pyridine in its several analogous forms occupies an important position as a precious source of clinically useful agents in the field of medicinal chemistry research. This privileged scaffold has been consistently incorporated in a diverse range of drug candidates approved by the FDA (Food and Drug Administration). This moiety has attracted increasing attention from several disease states owing to its ease of parallelization and testing potential pertaining to the chemical space. In the next few years, a larger share of novel pyridine-based drug candidates is expected. This review unifies the current advances in novel pyridine-based molecular frameworks and their unique clinical relevance as reported over the last two decades. It highlights an inclination to the use of pyridine-based molecules in drug crafting and the subsequent emergence of several potent and eligible candidates against a range of diversified diseases. The nitrogen-bearing heterocycle pyridine in its several analogous forms occupies an important position as a precious source of clinically useful agents in the field of medicinal chemistry research.![]()
Collapse
Affiliation(s)
- Sourav De
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, India
| | - Suraj Kumar Shah
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Sabnaz Kazi
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Nandan Sarkar
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol-713301, West Bengal, India
| | - Sanjay Dey
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| |
Collapse
|