101
|
Uram Ł, Wróbel K, Walczak M, Szymaszek Ż, Twardowska M, Wołowiec S. Exploring the Potential of Lapatinib, Fulvestrant, and Paclitaxel Conjugated with Glycidylated PAMAM G4 Dendrimers for Cancer and Parasite Treatment. Molecules 2023; 28:6334. [PMID: 37687164 PMCID: PMC10489794 DOI: 10.3390/molecules28176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Fulvestrant (F), lapatinib (L), and paclitaxel (P) are hydrophobic, anticancer drugs used in the treatment of estrogen receptor (ER) and epidermal growth factor receptor (EGFR)-positive breast cancer. In this study, glycidylated PAMAM G4 dendrimers, substituted with F, L, and/or P and targeting tumor cells, were synthesized and characterized, and their antitumor activity against glioma U-118 MG and non-small cell lung cancer A549 cells was tested comparatively with human non-tumorogenic keratinocytes (HaCaT). All cell lines were ER+ and EGFR+. In addition, the described drugs were tested in the context of antinematode therapy on C. elegans. The results show that the water-soluble conjugates of G4P, G4F, G4L, and G4PFL actively entered the tested cells via endocytosis due to the positive zeta potential (between 13.57-40.29 mV) and the nanoparticle diameter of 99-138 nm. The conjugates of G4P and G4PFL at nanomolar concentrations were the most active, and the least active conjugate was G4F. The tested conjugates inhibited the proliferation of HaCaT and A549 cells; in glioma cells, cytotoxicity was associated mainly with cell damage (mitochondria and membrane transport). The toxicity of the conjugates was proportional to the number of drug residues attached, with the exception of G4L; its action was two- and eight-fold stronger against glioma and keratinocytes, respectively, than the equivalent of lapatinib alone. Unfortunately, non-cancer HaCaT cells were the most sensitive to the tested constructs, which forced a change in the approach to the use of ER and EGFR receptors as a goal in cancer therapy. In vivo studies on C. elegans have shown that all compounds, most notably G4PFL, may be potentially useful in anthelmintic therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Konrad Wróbel
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| | - Małgorzata Walczak
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Żaneta Szymaszek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Magdalena Twardowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Stanisław Wołowiec
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| |
Collapse
|
102
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
103
|
Pergu R, Shoba VM, Chaudhary SK, Munkanatta Godage DNP, Deb A, Singha S, Dhawa U, Singh P, Anokhina V, Singh S, Siriwardena SU, Choudhary A. Development and Applications of Chimera Platforms for Tyrosine Phosphorylation. ACS CENTRAL SCIENCE 2023; 9:1558-1566. [PMID: 37637727 PMCID: PMC10450875 DOI: 10.1021/acscentsci.3c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/29/2023]
Abstract
Chimeric small molecules that induce post-translational modification (PTM) on a target protein by bringing it into proximity to a PTM-inducing enzyme are furnishing novel modalities to perturb protein function. Despite recent advances, such molecules are unavailable for a critical PTM, tyrosine phosphorylation. Furthermore, the contemporary design paradigm of chimeric molecules, formed by joining a noninhibitory binder of the PTM-inducing enzyme with the binder of the target protein, prohibits the recruitment of most PTM-inducing enzymes as their noninhibitory binders are unavailable. Here, we report two platforms to generate phosphorylation-inducing chimeric small molecules (PHICS) for tyrosine phosphorylation. We generate PHICS from both noninhibitory binders (scantily available, platform 1) and kinase inhibitors (abundantly available, platform 2) using cysteine-based group transfer chemistry. PHICS triggered phosphorylation on tyrosine residues in diverse sequence contexts and target proteins (e.g., membrane-associated, cytosolic) and displayed multiple bioactivities, including the initiation of a growth receptor signaling cascade and the death of drug-resistant cancer cells. These studies provide an approach to induce biologically relevant PTM and lay the foundation for pharmacologic PTM editing (i.e., induction or removal) of target proteins using abundantly available inhibitors of PTM-inducing or -erasing enzymes.
Collapse
Affiliation(s)
- Rajaiah Pergu
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Veronika M. Shoba
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Santosh K. Chaudhary
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Arghya Deb
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Santanu Singha
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Uttam Dhawa
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Prashant Singh
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Viktoriya Anokhina
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sameek Singh
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sachini U. Siriwardena
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions
of Renal Medicine and Engineering, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
104
|
Yang H, Li X, Yang W. Advances in targeted therapy and immunotherapy for esophageal cancer. Chin Med J (Engl) 2023; 136:1910-1922. [PMID: 37403208 PMCID: PMC10431250 DOI: 10.1097/cm9.0000000000002768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 07/06/2023] Open
Abstract
ABSTRACT Esophageal cancer (EC) is one of the most common aggressive malignant tumors in the digestive system with a severe epidemiological situation and poor prognosis. The early diagnostic rate of EC is low, and most EC patients are diagnosed at an advanced stage. Multiple multimodality treatments have gradually evolved into the main treatment for advanced EC, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. And the emergence of targeted therapy and immunotherapy has greatly improved the survival of EC patients. This review highlights the latest advances in targeted therapy and immunotherapy for EC, discusses the efficacy and safety of relevant drugs, summarizes related important clinical trials, and tries to provide references for therapeutic strategy of EC.
Collapse
Affiliation(s)
- Haiou Yang
- Cancer center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
| | - Xuewei Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
105
|
Desel I, Jung S, Purcz N, Açil Y, Sproll C, Kleinheinz J, Sielker S. Analysis of Genes Related to Invadopodia Formation and CTTN in Oral Squamous Cell Carcinoma-A Systematic Gene Expression Analysis. Curr Issues Mol Biol 2023; 45:6927-6940. [PMID: 37623256 PMCID: PMC10453299 DOI: 10.3390/cimb45080437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Successful treatment for any type of carcinoma largely depends on understanding the patterns of invasion and migration. For oral squamous cell carcinoma (OSCC), these processes are not entirely understood as of now. Invadopodia and podosomes, called invadosomes, play an important role in cancer cell invasion and migration. Previous research has established that cortactin (CTTN) is a major inducer of invadosome formation. However, less is known about the expression patterns of CTTN and other genes related to it or invadopodia formation in OSCC during tumor progression in particular. In this study, gene expression patterns of CTTN and various genes (n = 36) associated with invadopodia formation were analyzed to reveal relevant expression patterns and give a comprehensive overview of them. The genes were analyzed from a whole genome dataset of 83 OSCC samples relating to tumor size, grading, lymph node status, and UICC (Union for Internatioanl Cancer Control). The data revealed significant overexpression of 18 genes, most notably CTTN, SRC (SRC proto-onocogene, non-receptor tyrosine kinase), EGFR (epidermal growth factor receptor), SYK (spleen associated tyrosine kinase), WASL (WASP like actin nucleation promotion factor), and ARPC2 (arrestin beta 1) due to their significant correlation with further tumor parameters. This study is one of the first to summarize the expression patterns of CTTN and related genes in a complex group of OSCC samples.
Collapse
Affiliation(s)
- Immanuel Desel
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Susanne Jung
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Nikolai Purcz
- Department of Cranio-Maxillofacial Surgery, University Hospital Kiel, 24105 Kiel, Germany (Y.A.)
| | - Yahya Açil
- Department of Cranio-Maxillofacial Surgery, University Hospital Kiel, 24105 Kiel, Germany (Y.A.)
| | - Christoph Sproll
- Department of Cranio-Maxillofacial Surgery, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Johannes Kleinheinz
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Sonja Sielker
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| |
Collapse
|
106
|
Monti Hughes A, Hu N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers (Basel) 2023; 15:4091. [PMID: 37627119 PMCID: PMC10452654 DOI: 10.3390/cancers15164091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy. It combines preferential boron accumulation in tumors and neutron irradiation. The recent initiation of BNCT clinical trials employing hospital-based accelerators rather than nuclear reactors as the neutron source will conceivably pave the way for new and more numerous clinical trials, leading up to much-needed randomized trials. In this context, it would be interesting to consider the implementation of new boron compounds and strategies that will significantly optimize BNCT. With this aim in mind, we analyzed, in this review, those articles published between 2020 and 2023 reporting new boron compounds and strategies that were proved therapeutically useful in in vitro and/or in vivo radiobiological studies, a critical step for translation to a clinical setting. We also explored new pathologies that could potentially be treated with BNCT and newly developed theranostic boron agents. All these radiobiological advances intend to solve those limitations and questions that arise during patient treatment in the clinical field, with BNCT and other therapies. In this sense, active communication between clinicians, radiobiologists, and all disciplines will improve BNCT for cancer patients, in a cost- and time-effective way.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Radiation Pathology Division, Department Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires B1650KNA, Argentina
- National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
107
|
Choi HJ, Jeong YJ, Kim J, Hoe HS. EGFR is a potential dual molecular target for cancer and Alzheimer's disease. Front Pharmacol 2023; 14:1238639. [PMID: 37601068 PMCID: PMC10433764 DOI: 10.3389/fphar.2023.1238639] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Many researchers are attempting to identify drugs that can be repurposed as effective therapies for Alzheimer's disease (AD). Several recent studies have highlighted epidermal growth factor receptor (EGFR) inhibitors approved for use as anti-cancer drugs as potential candidates for repurposing as AD therapeutics. In cancer, EGFR inhibitors target cell proliferation and angiogenesis, and studies in AD mouse models have shown that EGFR inhibitors can attenuate amyloid-beta (Aβ) pathology and improve cognitive function. In this review, we discuss the different functions of EGFR in cancer and AD and the potential of EGFR as a dual molecular target for AD diseases. In addition, we describe the effects of anti-cancer EGFR tyrosine kinase inhibitors (TKIs) on AD pathology and their prospects as therapeutic interventions for AD. By summarizing the physiological functions of EGFR in cancer and AD, this review emphasizes the significance of EGFR as an important molecular target for these diseases.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
108
|
Spataro S, Guerra C, Cavalli A, Sgrignani J, Sleeman J, Poulain L, Boland A, Scapozza L, Moll S, Prunotto M. CEMIP (HYBID, KIAA1199): structure, function and expression in health and disease. FEBS J 2023; 290:3946-3962. [PMID: 35997767 DOI: 10.1111/febs.16600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.
Collapse
Affiliation(s)
- Sofia Spataro
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS - BIP), Karlsruhe Institute for Technology (KIT), Germany
| | - Lina Poulain
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| |
Collapse
|
109
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
110
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
111
|
Marchioni A, Tonelli R, Samarelli AV, Cappiello GF, Andreani A, Tabbì L, Livrieri F, Bosi A, Nori O, Mattioli F, Bruzzi G, Marchioni D, Clini E. Molecular Biology and Therapeutic Targets of Primitive Tracheal Tumors: Focus on Tumors Derived by Salivary Glands and Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:11370. [PMID: 37511133 PMCID: PMC10379311 DOI: 10.3390/ijms241411370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Primary tracheal tumors are rare, constituting approximately 0.1-0.4% of malignant diseases. Squamous cell carcinoma (SCC) and adenoid cystic carcinoma (ACC) account for about two-thirds of these tumors. Despite most primary tracheal cancers being eligible for surgery and/or radiotherapy, unresectable, recurrent and metastatic tumors may require systemic treatments. Unfortunately, the poor response to available chemotherapy as well as the lack of other real therapeutic alternatives affects the quality of life and outcome of patients suffering from more advanced disease. In this condition, target therapy against driver mutations could constitute an alternative to chemotherapy, and may help in disease control. The past two decades have seen extraordinary progress in developing novel target treatment options, shifting the treatment paradigm for several cancers such as lung cancer. The improvement of knowledge regarding the genetic and biological alterations, of major primary tracheal tumors, has opened up new treatment perspectives, suggesting the possible role of biological targeted therapies for the treatment of these rare tumors. The purpose of this review is to outline the state of knowledge regarding the molecular biology, and the preliminary data on target treatments of the main primary tracheal tumors, focusing on salivary-gland-derived cancers and squamous cell carcinoma.
Collapse
Affiliation(s)
- Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Anna Valeria Samarelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Gaia Francesca Cappiello
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Alessandro Andreani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Francesco Livrieri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Annamaria Bosi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | - Ottavia Nori
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| | | | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
- Otolaryngology Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Daniele Marchioni
- Otolaryngology Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, University Hospital of Modena, 41121 Modena, Italy
| |
Collapse
|
112
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
113
|
Rybak JA, Sahoo AR, Kim S, Pyron RJ, Pitts SB, Guleryuz S, Smith AW, Buck M, Barrera FN. Allosteric inhibition of the epidermal growth factor receptor through disruption of transmembrane interactions. J Biol Chem 2023; 299:104914. [PMID: 37315787 PMCID: PMC10362150 DOI: 10.1016/j.jbc.2023.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR's kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR's ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.
Collapse
Affiliation(s)
- Jennifer A Rybak
- Department of Genome Sciences and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Amita R Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Soyeon Kim
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Robert J Pyron
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Savannah B Pitts
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Saffet Guleryuz
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, USA
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio, USA; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
114
|
Uckun FM, Qazi S. Upregulated Expression of ERBB2/HER2 in Multiple Myeloma as a Predictor of Poor Survival Outcomes. Int J Mol Sci 2023; 24:9943. [PMID: 37373090 DOI: 10.3390/ijms24129943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The main goal of the present study was to examine if the RNA-sequencing (RNAseq)-based ERBB2/HER2 expression level in malignant plasma cells from multiple myeloma (MM) patients has clinical significance for treatment outcomes and survival. We examined the relationship between the RNAseq-based ERBB2 messenger ribonucleic acid (mRNA) levels in malignant plasma cells and survival outcomes in 787 MM patients treated on contemporary standard regimens. ERBB2 was expressed at significantly higher levels than ERBB1 as well as ERBB3 across all three stages of the disease. Upregulated expression of ERBB2 mRNA in MM cells was correlated with amplified expression of mRNAs for transcription factors (TF) that recognize the ERBB2 gene promoter sites. Patients with higher levels of ERBB2 mRNA in their malignant plasma cells experienced significantly increased cancer mortality, shorter progression-free survival, and worse overall survival than other patients. The adverse impact of high ERBB2 expression on patient survival outcomes remained significant in multivariate Cox proportional hazards models that accounted for the effects of other prognostic factors. To the best of our knowledge, this is the first demonstration of an adverse prognostic impact of high-level ERBB2 expression in MM patients. Our results encourage further evaluation of the prognostic significance of high-level ERBB2 mRNA expression and the clinical potential of ERBB2-targeting therapeutics as personalized medicines to overcome cancer drug resistance in high-risk as well as relapsed/refractory MM.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| | - Sanjive Qazi
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| |
Collapse
|
115
|
Deng L, Wang L, Zhang J, Zhao L, Meng Y, Zheng J, Xu W, Zhu Z, Huang H. The mechanism of action and biodistribution of a novel EGFR/VEGF bispecific fusion protein that exhibited superior antitumor activities. Heliyon 2023; 9:e16922. [PMID: 37484224 PMCID: PMC10360952 DOI: 10.1016/j.heliyon.2023.e16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite the promising clinical benefits of therapies targeting epidermal growth factor receptor (EGFR) or vascular endothelial growth factor (VEGF) with antibodies in various cancers, resistance to these therapies will inevitably develop following treatment. Recent studies suggest that crosstalk between the EGFR and VEGF signaling pathways might be involved in the development of resistance. Therefore, simultaneous blockade of EGFR and VEGF signaling may be able to counteract this resistance and improve clinical outcomes. Here, we devised a fusion protein with two copies of VEGFR1 domain 2 connected to the C-terminus of cetuximab that can simultaneously bind to EGFR and VEGF and effectively inhibit target cell growth mediated by these two pathways. Furthermore, the fusion protein could bring soluble VEGF into target cells for degradation through internalization upon binding to EGFR. Tissue distribution in mice confirmed that the fusion protein effectively accumulated in tumors compared to its mAb counterpart cetuximab. These features resulted in stronger antitumor efficacies in vivo than the combination of bevacizumab and cetuximab. Thus, we provide a promising new strategy for the treatment of EGFR-overexpressing cancers.
Collapse
|
116
|
Nascimento DR, Barbalho EC, Gondim Barrozo L, de Assis EIT, Costa FC, Silva JRV. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro. ZYGOTE 2023:1-11. [PMID: 37221099 DOI: 10.1017/s0967199423000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Preantral to early antral follicles transition is a complex process regulated by endocrine and paracrine factors, as well as by a precise interaction among oocyte, granulosa cells and theca cells. Understanding the mechanisms that regulate this step of folliculogenesis is important to improve in vitro culture systems, and opens new perspectives to use oocytes from preantral follicles for assisted reproductive technologies. Therefore, this review aims to discuss the endocrine and paracrine mechanisms that control granulosa cell proliferation and differentiation, formation of the antral cavity, estradiol production, atresia, and follicular fluid production during the transition from preantral to early antral follicles. The strategies that promote in vitro growth of preantral follicles are also discussed.
Collapse
Affiliation(s)
- D R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - L Gondim Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - F C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| |
Collapse
|
117
|
Pawluczuk E, Łukaszewicz-Zając M, Mroczko B. The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24108833. [PMID: 37240178 DOI: 10.3390/ijms24108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients' survival.
Collapse
Affiliation(s)
- Elżbieta Pawluczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
118
|
Zhao XP, Zheng XL, Huang M, Xie YJ, Nie XW, Nasim AA, Yao XJ, Fan XX. DMU-212 against EGFR-mutant non-small cell lung cancer via AMPK/PI3K/Erk signaling pathway. Heliyon 2023; 9:e15812. [PMID: 37305501 PMCID: PMC10256861 DOI: 10.1016/j.heliyon.2023.e15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
Although some important advances have been achieved in clinical and diagnosis in the past few years, the management of non-small cell lung cancer (NSCLC) is ultimately dissatisfactory due to the low overall cure and survival rates. Epidermal growth factor (EGFR) has been recognized as a carcinogenic driver and is a crucial pharmacological target for NSCLC. DMU-212, an analog of resveratrol, has been reported to have significant inhibitory effects on several types of cancer. However, the effect of DMU-212 on lung cancer remains unclear. Therefore, this study aims to determine the effects and underlying mechanism of DMU-212 on EGFR-mutant NSCLC cells. The data found that the cytotoxicity of DMU-212 on three EGFR-mutant NSCLC cell lines was significantly higher than that of normal lung epithelial cell. Further study showed that DMU-212 can regulate the expression of cell cycle-related proteins including p21 and cyclin B1 to induce G2/M phase arrest in both H1975 and PC9 cells. Moreover, treatment with DMU-212 significantly promoted the activation of AMPK and simultaneously down-regulated the expression of EGFR and the phosphorylation of PI3K, Akt and ERK. In conclusion, our study suggested that DMU-212 inhibited the growth of NSCLCs via targeting of AMPK and EGFR.
Collapse
|
119
|
Qazi S, Uckun FM. Upregulated Expression of ErbB1 in Diffuse Large B-Cell Lymphoma as a Predictor of Poor Overall Survival Outcome. J Pers Med 2023; 13:770. [PMID: 37240940 PMCID: PMC10221820 DOI: 10.3390/jpm13050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
We examined the transcript-level expression of ErbB family protein tyrosine kinases, including ERBB1, in primary malignant lymphoma cells from 498 adult patients with diffuse large B-cell lymphoma (DLBCL). ERBB1 expression in DLBCL cells was significantly higher than in normal B-lineage lymphoid cells. An upregulated expression of ERBB1 mRNA in DLBCL cells was correlated with an amplified expression of mRNAs for transcription factors that recognized ERBB1 gene promoter sites. Notably, amplified ERBB1 expression in DLBCL and its subtypes were associated with significantly worse overall survival (OS). Our results encourage the further evaluation of the prognostic significance of high-level ERBB1 mRNA expression and the clinical potential of ERBB1-targeting therapeutics as personalized medicines in high-risk DLBCL.
Collapse
Affiliation(s)
| | - Fatih M. Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| |
Collapse
|
120
|
Zakrzewicz D, Geyer J. Interactions of Na +/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infection: novel potential targets for antiviral therapy. Biol Chem 2023:hsz-2022-0345. [PMID: 37103224 DOI: 10.1515/hsz-2022-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Na+/taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier (SLC) family 10 transporters (gene symbol SLC10A1) and is responsible for the sodium-dependent uptake of bile salts across the basolateral membrane of hepatocytes. In addition to its primary transporter function, NTCP is the high-affinity hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV) viruses and, therefore, is a prerequisite for HBV/HDV virus entry into hepatocytes. The inhibition of HBV/HDV binding to NTCP and internalization of the virus/NTCP receptor complex has become a major concept in the development of new antiviral drugs called HBV/HDV entry inhibitors. Hence, NTCP has emerged as a promising target for therapeutic interventions against HBV/HDV infections in the last decade. In this review, recent findings on protein-protein interactions (PPIs) between NTCP and cofactors relevant for entry of the virus/NTCP receptor complex are summarized. In addition, strategies aiming to block PPIs with NTCP to dampen virus tropism and HBV/HDV infection rates are discussed. Finally, this article suggests novel directions for future investigations evaluating the functional contribution of NTCP-mediated PPIs in the development and progression of HBV/HDV infection and subsequent chronic liver disorders.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| |
Collapse
|
121
|
Gao J, Jiang H, Chen P, Zhang R, Liu N. Photosensitizer-based small molecule theranostic agents for tumor-targeted monitoring and phototherapy. Bioorg Chem 2023; 136:106554. [PMID: 37094481 DOI: 10.1016/j.bioorg.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.
Collapse
Affiliation(s)
- Jiake Gao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
122
|
Azevedo ML, Silveira RG, Nedel F, Lund RG. MicroRNAs expressed during normal wound healing and their associated pathways: A systematic review and bioinformatics analysis. PLoS One 2023; 18:e0281913. [PMID: 37053170 PMCID: PMC10101427 DOI: 10.1371/journal.pone.0281913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/04/2023] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are responsible for regulating gene expression post-transcriptionally. Are involved in several biological processes, such as wound healing. Understanding the miRNAs involved in this process is fundamental for the development of new therapies. So, due to the need to understand the role of these molecules, we aimed systematically review the literature in order to identify which miRNAs are involved in the wound healing and determine, through bioinformatics analysis, which signaling pathways are associated with these miRNAs. An electronic search was performed in the following databases: National Library of Medicine National Institutes of Health (PubMed), Science Direct, Scifinder, Scopus and Web of Science, using the descriptors: "(microRNA [MeSH])" and "(skin [MeSH])" and "(wound healing [MeSH])". After the search, two independent and previously calibrated reviewers selected the articles that analyzed the expression pattern of miRNAs in wound healing in in vivo studies, using the software Zotero bibliography manager. Following, bioinformatic analysis was performed using the software DIANA Tools, mirPath v.3 and the data was interpreted. The bioinformatics analysis revealed that on the day 1 there were 13 union pathways, eight of which were statistically significant. Still on the day 1, among the miRNAs that had a decrease in their expression, 12 of 17 union pathways found were statistically significant. On the day 5, among the miRNAs with an increase in expression, 16 union pathways were found, 12 of which were statistically significant. Finally, among the miRNAs with decreased expression, 11 of 15 union pathways found were statistically significant. Although it has been found substantial heterogeneity in the studies, with this systematic review, it was possible to study the panorama of miRNAs that may be altered in the wound healing. The present review summarizes existing evidence of miRNAs associated to wound healing, and these findings can contribute to new therapeutic approaches.
Collapse
Affiliation(s)
- Morgana Lüdtke Azevedo
- Graduated Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Roberta Giorgi Silveira
- Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Nedel
- Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Rafael Guerra Lund
- Graduated Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
123
|
Avti PK, Singh J, Dahiya D, Khanduja KL. Dual functionality of pyrimidine and flavone in targeting genomic variants of EGFR and ER receptors to influence the differential survival rates in breast cancer patients. Integr Biol (Camb) 2023; 15:zyad014. [PMID: 38084900 DOI: 10.1093/intbio/zyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer ranks as one of the most prevalent forms of cancer and stands as the primary global cause of mortality among women. Overexpression of EGFR and ER receptors or their genomic alterations leads to malignant transformation, disease aggression and is linked to poor patient survival outcomes. The clinical breast cancer patient's genomic expression, survival analysis, and computational drug-targeting approaches were used to identify best-hit phytochemicals for therapeutic purposes. Breast cancer patients have genomic alterations in EGFR (4%, n = 5699) and ER (9%, n = 8461), with the highest proportion being missense mutations. No statistically significant difference was observed in the patient survival rates between the altered and unaltered ER groups, unlike EGFR, with the lowest survival rates in the altered group. Computational screening of natural compound libraries (7711) against each EGFR (3POZ) and ER (3ERT) receptor shortlists the best-hit 3 compounds with minimum docking score (ΔG = -7.9 to -10.8), MMGBSA (-40.16 to -51.91 kcal/mol), strong intermolecular H-bonding, drug-like properties with least kd, and ki. MD simulation studies display stable RMSD, RMSF, and good residual correlation of best-hit common compounds (PubChem ID: 5281672 and 5280863) targeting both EGFR and ER receptors. In vitro, studies revealed that these common drugs exhibited a high anti-proliferative effect on MCF-7 and MDA-MB-231 breast cancer cells, with effective IC50 values (15-40 μM) and lower free energy, kd, and ki (5281672 > 5280863 > 5330286) much affecting HEK-293 non-cancerous cells, indicating the safety profile. The experimental and computational correlation studies suggest that the highly expressed EGFR and ER receptors in breast cancer patients having poor survival rates can be effectively targeted with best-hit common potent drugs with a multi-target therapeutic approach. Insight Box: The findings of this study provide valuable insights into the genomic/proteomic data, breast cancer patient's survival analysis, and EGFR and ER receptor variants structural analysis. The genetic alterations analysis of EGFR and ER/ESR1 in breast cancer patients reveals the high frequency of mutation types, which affect patient's survival rate and targeted therapies. The common best-hit compounds affect the cell survival patterns with effective IC50, drug-like properties having lower equilibrium and dissociation constants demonstrating the anti-proliferative effects. This work integrates altered receptor structural analysis, molecular interaction-based simulations, and ADMET properties to illuminate the identified best hits phytochemicals potential efficacy targeting both EGFR and ER receptors, demonstrating a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
124
|
Li Y, Mao T, Wang J, Zheng H, Hu Z, Cao P, Yang S, Zhu L, Guo S, Zhao X, Tian Y, Shen H, Lin F. Toward the next generation EGFR inhibitors: an overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal 2023; 21:71. [PMID: 37041601 PMCID: PMC10088170 DOI: 10.1186/s12964-023-01082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is currently the standard first-line therapy for EGFR-mutated advanced non-small cell lung cancer (NSCLC). The life quality and survival of this subgroup of patients were constantly improving owing to the continuous iteration and optimization of EGFR-TKI. Osimertinib, an oral, third-generation, irreversible EGFR-TKI, was initially approved for the treatment of NSCLC patients carrying EGFR T790M mutations, and has currently become the dominant first-line targeted therapy for most EGFR mutant lung cancer. Unfortunately, resistance to osimertinib inevitably develops during the treatment and therefore limits its long-term effectiveness. For both fundamental and clinical researchers, it stands for a major challenge to reveal the mechanism, and a dire need to develop novel therapeutics to overcome the resistance. In this article, we focus on the acquired resistance to osimertinib caused by EGFR mutations which account for approximately 1/3 of all reported resistance mechanisms. We also review the proposed therapeutic strategies for each type of mutation conferring resistance to osimertinib and give an outlook to the development of the next generation EGFR inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Tianyu Mao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hongrui Zheng
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Ziyi Hu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Pingping Cao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Suisui Yang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingyun Zhu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Shunyao Guo
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinfei Zhao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yue Tian
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hua Shen
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
| | - Fan Lin
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
125
|
Chen Y, Dang H, Wu X, Zhang Z, Shi X, Zhang T, Chen X, Zhu X, Su T, Wang Y, Hou B, Jin Z. Correlation between 18F-FDG PET/MR parameters with the expression level of epidermal growth factor receptor and the diagnostic value of PET/MR in head and neck squamous cell carcinoma. Heliyon 2023; 9:e14822. [PMID: 37089359 PMCID: PMC10119563 DOI: 10.1016/j.heliyon.2023.e14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Objective To investigate the correlation between parameters of PET/MR and the expression level of epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinoma (HNSCC) and to evaluate diagnostic efficacy of independent and combined PET/MR parameters for the expression level of EGFR. Materials and methods 21 patients who had undergone PET/MR and been proven HNSCC pathologically were included in this retrospective study. The PET/MR sequences included 18-flurodeoxyglucose (18F-FDG) PET, T1, T2-weighted imaging, DWI, ADC and DCE. Parameters including ADCmean from DWI, Ktrans, Ve, Kep from DCE, and SUVmean, SUVmax from PET were obtained. Immunohistochemical method was used to detect the expression level of EGFR. The associations between parameters of PET/MR and EGFR expression level were analyzed by Spearman's analysis. Logistic regression was utilized to establish the diagnostic model of EGFR expression level with PET/MR parameters. The efficacy of the independent and combined diagnostic model for EGFR expression level in HNSCC was analyzed by ROC curve. P value ≤ 0.05 was considered statistically significant. Results (1) Expression level of EGFR was correlated to SUVmean with correlation coefficient of 0.47 (p = 0.05). (2) There was significant difference of SUVmean between the EGFR high- and low-expression groups (p = 0.02). (3) Combination of PET/MR improved the diagnostic efficacy for expression level of EGFR, with AUC = 0.93. Conclusion There were different degrees of correlation between PET/MR parameters and EGFR expression level in HNSCC. Combination of PET/MR might improve diagnostic efficacy of EGFR expression level.
Collapse
Affiliation(s)
- Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Haodan Dang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Fuxing Road 28, Beijing, China
| | - Xiaoqian Wu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Zhuhua Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
- Corresponding author.
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai Fu Yuan 1, Dong Cheng District, Beijing 100730, China
| | - Xingming Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai Fu Yuan 1, Dong Cheng District, Beijing 100730, China
| | - Xiaoli Zhu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai Fu Yuan 1, Dong Cheng District, Beijing 100730, China
| | - Tong Su
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Yunting Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Bo Hou
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| |
Collapse
|
126
|
Shoykhet M, Dervishi O, Menauer P, Hiermaier M, Moztarzadeh S, Osterloh C, Ludwig RJ, Williams T, Gerull B, Kääb S, Clauss S, Schüttler D, Waschke J, Yeruva S. EGFR inhibition leads to enhanced desmosome assembly and cardiomyocyte cohesion via ROCK activation. JCI Insight 2023; 8:163763. [PMID: 36795511 PMCID: PMC10070108 DOI: 10.1172/jci.insight.163763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.
Collapse
Affiliation(s)
- Maria Shoykhet
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Orsela Dervishi
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Philipp Menauer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Matthias Hiermaier
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Dominik Schüttler
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| |
Collapse
|
127
|
Lee E, Shrestha KL, Kang S, Ramakrishnan N, Kwon Y. Cell-Based Sensors for the Detection of EGF and EGF-Stimulated Ca 2+ Signaling. BIOSENSORS 2023; 13:383. [PMID: 36979595 PMCID: PMC10045995 DOI: 10.3390/bios13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Epidermal growth factor (EGF)-mediated activation of EGF receptors (EGFRs) has become an important target in drug development due to the implication of EGFR-mediated cellular signaling in cancer development. While various in vitro approaches are developed for monitoring EGF-EGFR interactions, they have several limitations. Herein, we describe a live cell-based sensor system that can be used to monitor the interaction of EGF and EGFR as well as the subsequent signaling events. The design of the EGF-detecting sensor cells is based on the split-intein-mediated conditional protein trans-cleavage reaction (CPC). CPC is triggered by the presence of the target (EGF) to activate a signal peptide that translocates the fluorescent cargo to the target cellular location (mitochondria). The developed sensor cell demonstrated excellent sensitivity with a fast response time. It was also successfully used to detect an agonist and antagonist of EGFR (transforming growth factor-α and Cetuximab, respectively), demonstrating excellent specificity and capability of screening the analytes based on their function. The usage of sensor cells was then expanded from merely detecting the presence of target to monitoring the target-mediated signaling cascade, by exploiting previously developed Ca2+-detecting sensor cells. These sensor cells provide a useful platform for monitoring EGF-EGFR interaction, for screening EGFR effectors, and for studying downstream cellular signaling cascades.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Keshab Lal Shrestha
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Seonhye Kang
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Neethu Ramakrishnan
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
128
|
Wang J, Wang Y, Pan H, Zhao L, Yang X, Liang Z, Shen X, Zhang J, Yang J, Zhu Y, Xun J, Liang Y, Lin Q, Liang H, Li M, Zhu H. Chemokine Receptors CCR6 and PD1 Blocking scFv E27 Enhances Anti-EGFR CAR-T Therapeutic Efficacy in a Preclinical Model of Human Non-Small Cell Lung Carcinoma. Int J Mol Sci 2023; 24:ijms24065424. [PMID: 36982500 PMCID: PMC10056525 DOI: 10.3390/ijms24065424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells, a therapeutic agent for solid tumors, are not completely effective due to a lack of infiltration of T cells into the tumor site and immunity caused by Programmed Death Receptor 1(PD1). Here, an epidermal growth factor receptor (EGFR) CAR-T cell was engineered to express the chemokine receptor CCR6 and secrete PD1 blocking Single-chain antibody fragment (scFv) E27 to enhance their anti-tumor effects. The findings showed that CCR6 enhanced the migration of EGFR CAR-E27-CCR6 T cells in vitro by the Transwell migration assay. When incubated with tumor cells, EGFR CAR-E27-CCR6 T cells specifically exerted potent cytotoxicity and produced high levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interferon-γ (IFN-γ). A non-small cell lung carcinoma (NSCLC) cell line-derived xenograft model was constructed by implanting modified A549 cell lines into immunodeficient NOD.PrkdcscidIl2rgem1/Smoc (NSG) mice. In comparison with traditional EGFR CAR-T cells, live imaging indicated that EGFR CAR-E27-CCR6 T cells displayed superior anti-tumor function. In addition, the histopathological examination of mouse organs showed no obvious organic damage. Our findings confirmed that PD1 blocking and CCR6 can enhance the anti-tumor function of EGFR CAR-T cells in an NSCLC xenograft model, providing an effective treatment strategy to improve the efficacy of CAR-T in NSCLC.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jing Zhang
- School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
- Correspondence: ; Tel./Fax: +86-021-31246728
| |
Collapse
|
129
|
Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin. Biomolecules 2023; 13:biom13030513. [PMID: 36979447 PMCID: PMC10046267 DOI: 10.3390/biom13030513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
TRPV3 is a non-selective cation channel that is highly expressed in keratinocytes in the skin. Traditionally, keratinocytes-expressed TRPV3 is involved in multiple physiological and pathological functions of the skin, such as itching, heat pain, and hair development. Although the underlying mechanisms by which TRPV3 functions in vivo remain obscure, recent research studies suggest that several cytokines and EGFR signaling pathways may be involved. However, there have also been other studies with opposite results that question the role of TRPV3 in heat pain. In addition, an increasing number of studies have suggested a novel role of TRPV3 in promoting skin regeneration, indicating that TRPV3 may become a new potential target for regulating skin regeneration. This paper not only reviews the role of keratinocytes-expressed TRPV3 in the physiological and pathological processes of itching, heat pain, hair development, and skin regeneration, but also reviews the relationship between TRPV3 gene mutations and skin diseases such as atopic dermatitis (AD) and Olmsted syndrome (OS). This review will lay a foundation for further developing our understanding of the mechanisms by which TRPV3 is involved in itching, heat pain, and hair development, as well as the treatments for TRPV3-related skin diseases.
Collapse
|
130
|
Cao Y, Lu X, Fu L, Shi T, Zhang C, Zeng L, Zhang J, Shao J, Xi J, Pan Z, Liu S, Zhu H. Exploration of novel dihydroquinoxalinone derivatives as EGFRL858R/T790M tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Bioorg Chem 2023; 135:106494. [PMID: 37011522 DOI: 10.1016/j.bioorg.2023.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
To overcome or delay the drug-resistance of first-generation epidermal growth factor receptor (EGFR) kinase inhibitors and non-selectivity toxicity mediated by second-generation inhibitors, splicing principle was employed to design and synthesize a series of Osimertinib derivatives containing dihydroquinoxalinone (8-30) as the novel third-generation inhibitors against double mutant L858R/T790M in EGFR. Among them, compound 29 showed excellent kinase inhibitory activity against EGFRL858R/T790M with an IC50 value of 0.55 ± 0.02 nM and potent anti-proliferative activity against H1975 cells with an IC50 value of 5.88 ± 0.07 nM. Moreover, the strong down-regulation effect of EGFR-mediated signaling pathways and the promotion of apoptosis in H1975 cells confirmed its potent antitumor activities. Compound 29 was also demonstrated with good ADME profile in various in vitro assays. Further in vivo studies confirmed that compound 29 could suppress the growth of xenograft tumors. These results verified that compound 29 would be a promising lead compound for targeting drug-resistant EGFR mutations.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Tao Shi
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China.
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
131
|
Wang X, Zhang W, Wu W, Wu S, Young A, Yan Z. Is Candida albicans a contributor to cancer? A critical review based on the current evidence. Microbiol Res 2023; 272:127370. [PMID: 37028206 DOI: 10.1016/j.micres.2023.127370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
The association between Candida albicans (C. albicans) and cancer has been noticed for decades. Whether C. albicans infection is a complication of cancer status or as a contributor to cancer development remains to be discussed. This review systematically summarized the up-to-date knowledge about associations between C. albicans and various types of cancer, and discussed the role of C. albicans in cancer development. Most of the current clinical and animal evidence support the relationship between C. albicans and oral cancer development. However, there is insufficient evidence to demonstrate the role of C. albicans in other types of cancer. Moreover, this review explored the underlying mechanisms for C. albicans promoting cancer. It was hypothesized that C. albicans may promote cancer progression by producing carcinogenic metabolites, inducing chronic inflammation, remodeling immune microenvironment, activating pro-cancer signals, and synergizing with bacteria.
Collapse
|
132
|
Ko H, Sung BH, Kim MJ, Park HJ, Sohn JH, Bae JH. Dual-functional carboxymethyl levan-based protein carrier for cosmeceutical application of human epidermal growth factor. Int J Biol Macromol 2023; 229:181-187. [PMID: 36587635 DOI: 10.1016/j.ijbiomac.2022.12.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/27/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Human epidermal growth factor (hEGF) has been a subject of extensive research as its wide range of physiological functions has many potential applications. However, due to the low stability of hEGF, its physiological effect is easily lost under conditions of use. To compensate for this, we developed a stable delivery system using levan-based nanoparticles. The entrapment yield of various tested proteins was significantly improved by employing carboxymethyl levan (CML) instead of levan; the entrapment yield of the CML-hEGF nanoparticles was 84.1 %. The size and zeta potential of the nanoparticles were identified as 199.9 ± 3.87 nm and -19.1 mV, respectively, using scanning electron microscopy (SEM) and particle size analysis. Dual biological functions of the nanoparticles (skin regeneration and moisturizing) were identified through collagen synthesis activity and aquaporin 3 expression level analysis. Stability of the prepared nanoparticles was also investigated via cell proliferation activity comparison under mimicked physiological conditions. The CML-hEGF nanoparticles maintained cell proliferation activity over 100 % for 6 weeks, while free hEGF was almost inactivated within 2 weeks. Taken together, our results indicate that the CML-based hEGF nanoparticles can be used in pharma- and cosmeceutical applications, guaranteeing a high entrapment capability, functionality, and stability.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun Joo Park
- Cellapy Bio Inc., Bio-Venture Center 211, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Cellapy Bio Inc., Bio-Venture Center 211, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
133
|
Xie J, Zhou J, Xia J, Zeng Y, Huang G, Zeng W, Fan T, Li L, Zeng X, Tao Q. Phospholipase C delta 1 inhibits WNT/β-catenin and EGFR-FAK-ERK signaling and is disrupted by promoter CpG methylation in renal cell carcinoma. Clin Epigenetics 2023; 15:30. [PMID: 36849889 PMCID: PMC9972803 DOI: 10.1186/s13148-023-01448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND PLCD1, located at 3p22, encodes an enzyme that mediates cellular metabolism and homeostasis, intracellular signal transduction and movement. PLCD1 plays a pivotal role in tumor suppression of several types of cancers; however, its expression and underlying molecular mechanisms in renal cell carcinoma (RCC) pathogenesis remain elusive. METHODS RT-PCR and Western blot were used to detect PLCD1 expression in RCC cell lines and normal tissues. Bisulfite treatment, MSP and BGS were utilized to explore the CpG methylation status of PLCD1 promoter. Online databases were analyzed for the association between PLCD1 expression/methylation and patient survival. In vitro experiments including CCK8, colony formation, wound-healing, transwell migration and invasion, immunofluorescence and flow cytometry assays were performed to evaluate tumor cell behavior. Luciferase assay and Western blot were used to examine effect of PLCD1 on WNT/β-catenin and EGFR-FAK-ERK signaling. RESULTS We found that PLCD1 was widely expressed in multiple adult normal tissues including kidney, but frequently downregulated or silenced in RCC due to its promoter CpG methylation. Restoration of PLCD1 expression inhibited the viability, migration and induced G2/M cell cycle arrest and apoptosis in RCC cells. PLCD1 restoration led to the inhibition of signaling activation of WNT/β-catenin and EGFR-FAK-ERK pathways, and the EMT program of RCC cells. CONCLUSIONS Our results demonstrate that PLCD1 is a potent tumor suppressor frequently inactivated by promoter methylation in RCC and exerts its tumor suppressive functions via suppressing WNT/β-catenin and EGFR-FAK-ERK signaling. These findings establish PLCD1 as a promising prognostic biomarker and treatment target for RCC.
Collapse
Affiliation(s)
- Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Zhou
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ying Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
134
|
Li MC, Coumar MS, Lin SY, Lin YS, Huang GL, Chen CH, Lien TW, Wu YW, Chen YT, Chen CP, Huang YC, Yeh KC, Yang CM, Kalita B, Pan SL, Hsu TA, Yeh TK, Chen CT, Hsieh HP. Development of Furanopyrimidine-Based Orally Active Third-Generation EGFR Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2023; 66:2566-2588. [PMID: 36749735 PMCID: PMC9969398 DOI: 10.1021/acs.jmedchem.2c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.
Collapse
Affiliation(s)
- Mu-Chun Li
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shu-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yih-Shyan Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Guan-Lin Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Tzu-Wen Lien
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Yen-Ting Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Ching-Ping Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yu-Chen Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Kai-Chia Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chen-Ming Yang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Bikashita Kalita
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shiow-Lin Pan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Tsu-An Hsu
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan, ROC
- , . Phone: +886-37-206-166
| |
Collapse
|
135
|
Haukamp FJ, Hartmann ZM, Pich A, Kuhn J, Blasczyk R, Stieglitz F, Bade-Döding C. HLA-B*57:01/Carbamazepine-10,11-Epoxide Association Triggers Upregulation of the NFκB and JAK/STAT Pathways. Cells 2023; 12:cells12050676. [PMID: 36899812 PMCID: PMC10000580 DOI: 10.3390/cells12050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.
Collapse
Affiliation(s)
- Funmilola Josephine Haukamp
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-9774; Fax: +49-511-532-2079
| | - Zoe Maria Hartmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joachim Kuhn
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Florian Stieglitz
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christina Bade-Döding
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
136
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
137
|
Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04614-4. [PMID: 36807762 DOI: 10.1007/s00432-023-04614-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Osteosarcoma is a common primary malignant tumour of the bone that usually occurs in children and adolescents. It is characterised by difficult treatment, recurrence and metastasis, and poor prognosis. Currently, the treatment of osteosarcoma is mainly based on surgery and auxiliary chemotherapy. However, for recurrent and some primary osteosarcoma cases, owing to the rapid progression of disease and chemotherapy resistance, the effects of chemotherapy are poor. With the rapid development of tumour-targeted therapy, molecular-targeted therapy for osteosarcoma has shown promise. PURPOSE In this paper, we review the molecular mechanisms, related targets, and clinical applications of targeted osteosarcoma therapy. In doing this, we provide a summary of recent literature on the characteristics of targeted osteosarcoma therapy, the advantages of its clinical application, and development of targeted therapy in future. We aim to provide new insights into the treatment of osteosarcoma. CONCLUSION Targeted therapy shows potential in the treatment of osteosarcoma and may offer an important means of precise and personalised treatment in the future, but drug resistance and adverse effects may limit its application.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.,Graduate School, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - He Zhang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Jinxin Liu
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.
| |
Collapse
|
138
|
Legay C, Doublier S, Babajko S, Ricort JM. Protein kinase D1 overexpression potentiates epidermal growth factor signaling pathway in MCF-7 cells. Mol Biol Rep 2023; 50:3641-3651. [PMID: 36800056 DOI: 10.1007/s11033-023-08300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Protein kinase D1, PKD1, is a serine-threonine kinase implicated in cell proliferation, migration, invasion, and/or apoptosis and its activation by several growth factors sets this enzyme as a key regulator of tumorigenesis and tumor progression. Despite many studies, its role in the regulation of intracellular signaling pathways remains widely disparate and needs to be clarified. METHODS AND RESULTS By using human breast cancer cells MCF-7, overexpressing or not PKD1, we demonstrated that PKD1 expression level modulated the tumor growth-promoting epidermal growth factor (EGF) signaling pathway. We also showed that EGF acutely stimulated PKD1 phosphorylation with similar time courses both in control and PKD1-overexpressing cells. However, PKD1 overexpression specifically and markedly increased EGF-induced phosphorylation of Akt (onto T308 and S473 residues) and extracellular-regulated protein kinase (ERK1/2). Finally, pharmacological inhibition of PKD1 activity or lowering its expression level using specific siRNAs drastically reduced EGF-stimulated Akt and ERK phosphorylation in PKD1overexpressing cells, but not in control cells. CONCLUSIONS Overall, these results identified the level of PKD1 expression as a key determinant in the regulation of the EGF signaling pathway highlighting its crucial role in a tumorigenic setting.
Collapse
Affiliation(s)
- Christine Legay
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 91290, Gif-Sur-Yvette, France
| | - Sophie Doublier
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France
| | - Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France
- Biomedical Research in Odontology, Université Paris Cité, 92120, Montrouge, France
| | - Jean-Marc Ricort
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 91290, Gif-Sur-Yvette, France.
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France.
- Biomedical Research in Odontology, Université Paris Cité, 92120, Montrouge, France.
| |
Collapse
|
139
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
140
|
Yang H, Jin G, Chen S, Luo J, Xu W. Glycoprotein non-metastatic melanoma B interacts with epidermal growth factor receptor to regulate neural stem cell survival and differentiation. Open Med (Wars) 2023; 18:20230639. [PMID: 36820063 PMCID: PMC9938639 DOI: 10.1515/med-2023-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 02/16/2023] Open
Abstract
The functional recovery following spinal cord injury (SCI) remains a challenge clinically. Among the proteins interacted with the glycoprotein non-metastatic melanoma B (GPNMB), epidermal growth factor receptor (EGFR) during activation is able to promote the proliferation of neural stem cells (NSCs) in the spinal cord. We investigated the roles of GPNMB and EGFR in regulating the survival and differentiation of the NSCs. By overexpression and short-hairpin RNA-mediated knockdown of GPNMB in the NSCs, GPNMB promoted cell viability and differentiation by increasing the expressions of βIII tubulin and CNPase (2',3'-cyclic nucleotide 3-phosphodiesterase). Using co-immunoprecipitation, we found that EGFR interacted with GPNMB. Furthermore, EGFR had a similar effect as GPNMB on promoting cell viability and differentiation. Overexpression of EGFR reversed the decrease in viability and differentiation caused by the knockdown of GPNMB, and vice versa. Last but not least, we tested the effect of GPNMB and EGFR on several intracellular pathways and found that GPNMB/EGFR modulated the phosphorylated (p)-c-Jun N-terminal kinase (JNK)1/2/JNK1/2 ratio and the p-nuclear factor κB (NF-κB p65)/NF-κB p65 ratio. In sum, our findings demonstrate the interaction between GPNMB and EGFR that regulates cell bioprocesses, with the hope to provide a new strategy of SCI therapy.
Collapse
Affiliation(s)
- Hua Yang
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gang Jin
- Orthopedics Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai City, Taizhou, Zhejiang Province, 317000, China
| | - Shihong Chen
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jing Luo
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Wei Xu
- Orthopedics Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai City, Taizhou, Zhejiang Province, 317000, China
| |
Collapse
|
141
|
Fang Y, Fan J, Yan C. Treatment Protocols in the Efficacy and Safety of Anti-EGFR Medicines in Combination with Standard Therapy for Patients with Nasopharyngeal Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9477442. [PMID: 36794258 PMCID: PMC9925253 DOI: 10.1155/2023/9477442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 02/08/2023]
Abstract
Objective This study was conducted to compare the efficacy of standard therapy (radiotherapy/RT/CT) with that of antiepidermal growth factor receptor (anti-EGFR) monoclonal antibody (NPC) therapy in patients with advanced nasopharyngeal cancer. Methods A meta-analysis was performed to meet the objective of this study. The English databases PubMed, Cochrane Library, and Web of Science were searched. The literature review compared anti-EGFR-targeted therapy with conventional therapy practices. The main outcome measure was overall survival (OS). Secondary goals were progression-free survival (PFS), locoregional recurrence-free survival (LRRFS), distant metastasis-free survival (DMFS), and adverse events (grade 3). Results The database search resulted in 11 studies, with a total of 4219 participants. It was found that combining an anti-EGFR regimen with conventional therapy did not enhance OS (hazard ratio [HR] = 1.18; 95%confidence interval [CI] = 0.51-2.40; p = 0.70) or PFS appreciably (HR = 0.95; 95%CI = 0.51-1.48; p = 0.88) in patients with nasopharyngeal carcinoma. While LRRFS increased considerably (HR = 0.70; 95%CI = 0.67-1.00; p = 0.01), the combined regimen did not improve DMFS (HR = 0.86; 95%CI = 0.61-1.12; p = 0.36). Treatment-related adverse events included haematological toxicity (RR = 0.2; 95%CI = 0.08-0.45; p = 0.01), cutaneous reactions (RR = 7.05; 95%CI = 2.15-23.09; p = 0.01), and mucositis (RR = 1.96; 95%CI = 1.58-2.09; p = 0.01). Conclusions Individuals who have nasopharyngeal cancer do not have an increased chance of surviving until a local recurrence of their disease if they get normal therapy in addition to an anti-EGFR regimen. However, this combination does not enhance overall survival. On the other hand, this factor adds to an increase in the number of adverse effects.
Collapse
Affiliation(s)
- Yakun Fang
- Obstetrics Department, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Jinlei Fan
- Obstetrics Department, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266035, China
| |
Collapse
|
142
|
Bandi SR, Kavitha N, Nukala SK, Thirukovela NS, Manchal R, Palabindela R, Narsimha S. Synthesis and biological evaluation of novel [1,2,3]triazolo-pyrrolo[1,2-a]pyrido[4,3-d]pyrimidines as EGFR targeting anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
143
|
Ye J, Li J, Zhao P. The Silkworm Carboxypeptidase Inhibitor Prevents Gastric Cancer Cells' Proliferation through the EGF/EGFR Signaling Pathway. Int J Mol Sci 2023; 24:ijms24021078. [PMID: 36674593 PMCID: PMC9861121 DOI: 10.3390/ijms24021078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer is a common malignant tumor originating from the gastric mucosa epithelium. Studies have shown that bioactive substances such as antimicrobial peptides and cantharidin contained in a variety of insects can exert anti-cancer functions; when compared with chemotherapy drugs, these bioactive substances have less toxicity and reduced side effects. Here, we report the first Bombyx mori carboxypeptidase inhibitor that is specifically and highly expressed in silk glands, which can significantly prevent the proliferation of gastric cancer cells by inhibiting the MAPK/ERK pathway initiated by EGF/EGFR through the promotion of expression of the proto-oncogene c-Myc, thereby affecting the expression of related cyclins. Through molecular docking and virtual screening of silkworm carboxypeptidase inhibitors and epidermal growth factor receptors, we identified a polypeptide that overlapped with existing small-molecule inhibitors of the receptor. In the present work, we explore the medicinal potential and application of silkworm carboxypeptidase inhibitors to promote the development of anti-tumor drugs from insect-derived substances.
Collapse
Affiliation(s)
- Junhong Ye
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Jifu Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-23-6825-0885
| |
Collapse
|
144
|
Development of a bridging ELISA for detection of antibodies against ZV0203 in cynomolgus monkey serum. J Pharmacol Toxicol Methods 2023; 119:107210. [PMID: 36028046 DOI: 10.1016/j.vascn.2022.107210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023]
Abstract
Immunogenicity has been a major concern in the safety evaluation of therapeutic proteins. The assessment of the unwanted immunogenicity of the therapeutic proteins performed in animals prior to clinical trials has been a regulatory requirement. In preclinical studies of therapeutic proteins, cynomolgus monkeys are usually the most relevant animal species. ZV0203, a recombinant humanized anti-human epidermal growth factor receptor 2 monoclonal antibody covalently bound to a cytotoxic drug (Duo-5), possesses a novel format of antibody drug conjugates. In this study, we reported the development, validation, and application of a bridging enzyme-linked immunosorbent assay for the detection of antibodies against ZV0203 in cynomolgus monkey serum. Drug interference at low positive control (18.0 ng/mL) and high positive control (130 ng/mL) of anti-ZV0203 antibodies was not observed when ZV0203 concentration is below 1.74 μg/mL and 1.49 μg/mL, respectively. In addition, no interference was found from mouse IgG1, but interference was observed with human IgG1. No effect of hemolysis was found on the analysis results of the testing samples present in 100% pooled rabbit serum containing 2% (V/V) erythrocyte hemolysates. Besides, spiked anti-ZV0203 antibody in rabbit serum was stable after 5 freeze/thaw cycles. The results showed that the method is suitable for the detection of anti-ZV0203 antibodies in cynomolgus monkey serum. The assay was also successfully applied in the repeated dose study of ZV0203.
Collapse
|
145
|
Yan L, Zuo Y, Chen K, Xu Y, Le Y. Synthesis and Biological Evaluation of 5-Methylpyrimidine Derivatives as Dual Inhibitors of EGFR and Src for Cancer Treatment. HETEROCYCLES 2023. [DOI: 10.3987/com-23-14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
146
|
Wang D, Xu H, Fan L, Ruan W, Song Q, Diao H, He R, Jin Y. Hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes epithelial-mesenchymal transition and liver fibrosis in sprague-dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114386. [PMID: 36508792 DOI: 10.1016/j.ecoenv.2022.114386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is a well known environmental hazardous material, chronic arsenic exposure results in different types of liver damage. Among them, liver fibrosis has become a research hotspot because of its reversibility, while the underlying mechanism is still unclear. Previous studies revealed that EGFR/ERK signaling appears to play an important role in fibrosis diseases. In this study, sprague-dawley rats were exposed to different doses of arsenite for 36 weeks to investigate the roles of EGFR/ERK signaling on arsenite-induced liver fibrogenesis. Our results showed that long-term arsenite exposure induced liver fibrosis, accompanied by hepatic stellate cells (HSCs) activation, excessive serum secretion of extracellular matrix (ECM), and hepatocytes epithelial-mesenchymal transformation (EMT). In addition, arsenite exposure caused hyperphosphorylation of EGFR/ERK signaling in liver tissue of rats, indicating that EGFR/ERK signaling may be involved in arsenite-induced liver fibrosis. Indeed, erlotinib (a specific phosphorylation inhibitor of EGFR) intervention significantly decreased arsenite induced hyperphosphorylation of EGFR/ERK signaling, thereby suppressed hepatocytes EMT process and alleviated liver fibrogenesis in arsenite exposed rats. In summary, the present study provides evidences showing that hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes EMT and liver fibrosis in rats, which brings new insights into the pathogenesis of arsenic-induced liver injury.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Huifen Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wenli Ruan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China; Tongren Center for Disease Control and Prevention, Tongren 554300, Guizhou, China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| |
Collapse
|
147
|
Liu M, Li Z, Ouyang Y, Chen M, Guo X, Mazhar M, Kang J, Zhou H, Wu Q, Yang S. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154503. [PMID: 36332387 DOI: 10.1016/j.phymed.2022.154503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the primary and predominant threats to human health with increasing incidence. Danshen Decoction (DSD) as an adjuvant therapy can benefit CVDs patients by improving clinical efficacy. PURPOSE The purpose of this study was to identify the active components and potential pharmacological mechanisms of DSD by combining mass spectrometry with a network pharmacology strategy and to review the use of DSD in the treatment of CVDs. METHOD First, the composition of DSD was analyzed by ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Second, the network pharmacology method was used to elucidate the underlying material basis and possible pharmacological mechanism of DSD for the treatment of CVDs. Finally, clinical and experimental studies on DSD in the past ten years were retrieved from the PubMed and CNKI database, and the content of these studies was used to summarize the latest progress in DSD treatment of CVDs. OUTCOME A total of 35 compounds were found in DSD by manual identification from the analysis of MS, which may be the material basis for the therapeutic effect of DSD. After taking the intersection of 2086 targets related to CVDs, these 35 compounds are considered to play a role in the treatment of CVDs through 210 targets including signal transducer and activator of transcription 3 (STAT3), sarcoma (SRC) and phosphoinositide-3-kinase regulatory subunit (PIK3R), and a total of 168 signaling pathways were involved in the regulation of CVDs by DSD, including PI3K-AKT signaling pathway, Alzheimer disease, and Rap1 signaling pathway. A total of 29 clinical studies using DSD in the treatment of CVDs were included in the literature review, and these studies showed the positive significance of DSD as adjuvant therapy, while 14 experimental studies included in the literature review also demonstrated the effectiveness of DSD in the treatment of CVDs. CONCLUSION DSD plays a role in the treatment of CVDs through a variety of active ingredients. Large-scale clinical research and more in-depth experimental research will help to further reveal the mechanism of DSD in the treatment of CVDs.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Ziyi Li
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Maryam Mazhar
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Junli Kang
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, PR China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China.
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
148
|
Wu Z, Wang J, You F, Li X, Xiao C. The role of irreversible pan-HER tyrosine kinase inhibitors in the treatment of HER2-Positive metastatic breast cancer. Front Pharmacol 2023; 14:1142087. [PMID: 36937848 PMCID: PMC10018043 DOI: 10.3389/fphar.2023.1142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) is the leading cause of cancer death in women. For patients with HER2-positive MBC, after the failure of multiple lines of treatment, there is no optimal line of therapy. A series of clinical trials confirmed that treatment with irreversible pan-HER tyrosine kinase inhibitors (TKIs) in combination with chemotherapy significantly improves patients' survival outcomes. This review focuses on the pathogenesis of HER2-positive breast cancer, current standard treatments, mechanisms of approved irreversible TKIs, and key clinical trials. The available findings suggest that irreversible pan-HER TKIs, such as pyrotinib and neratinib, in combination with chemotherapy, represent a beneficial salvage therapy for patients with HER2-positive MBC with manageable toxicity. However, further studies are needed to assess the efficacy and safety of this combination therapy.
Collapse
Affiliation(s)
| | | | | | - Xueke Li
- *Correspondence: Xueke Li, ; Chong Xiao,
| | - Chong Xiao
- *Correspondence: Xueke Li, ; Chong Xiao,
| |
Collapse
|
149
|
Histone deacetylase inhibitors as sanguine epitherapeutics against the deadliest lung cancer. Adv Cancer Res 2023; 158:163-198. [PMID: 36990532 DOI: 10.1016/bs.acr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The back-breaking resistance mechanisms generated by lung cancer cells against epidermal growth factor receptor (EGFR), KRAS and Janus kinase 2 (JAK2) directed therapies strongly prioritizes the requirement of novel therapies which are perfectly tolerated, potentially cytotoxic and can reinstate the drug-sensitivity in lung cancer cells. Enzymatic proteins modifying the post-translational modifications of nucleosome-integrated histone substrates are appearing as current targets for defeating various malignancies. Histone deacetylases (HDACs) are hyperexpressed in diverse lung cancer types. Blocking the active pocket of these acetylation erasers through HDAC inhibitors (HDACi) has come out as an optimistic therapeutic recourse for annihilating lung cancer. This article in the beginning gives an overview about lung cancer statistics and predominant lung cancer types. Succeeding this, compendium about conventional therapies and their serious drawbacks has been provided. Then, connection of uncommon expression of classical HDACs in lung cancer onset and expansion has been detailed. Moreover, keeping the main theme in view this article deeply discusses HDACi in the context of aggressive lung cancer as single agents and spotlights various molecular targets suppressed or induced by these inhibitors for engendering cytotoxic effect. Most particularly, the raised pharmacological effects achieved on using these inhibitors in concerted form with other therapeutic molecules and the cancer-linked pathways altered by this procedure are described. The positive direction towards further heightening of efficacy and the pressing requirement of exhaustive clinical assessment has been proposed as a new focus point.
Collapse
|
150
|
Alwahsh M, Farhat J, Talhouni S, Hamadneh L, Hergenröder R. Bortezomib advanced mechanisms of action in multiple myeloma, solid and liquid tumors along with its novel therapeutic applications. EXCLI JOURNAL 2023; 22:146-168. [PMID: 36998701 PMCID: PMC10043448 DOI: 10.17179/excli2022-5653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/12/2023] [Indexed: 04/01/2023]
Abstract
Bortezomib (BTZ) is a first-in-class reversible and selective proteasome inhibitor. It inhibits the ubiquitin proteasome pathway that leads to the degradation of many intracellular proteins. Initially, BTZ was FDA approved for the treatment of refractory or relapsed multiple myeloma (MM) in 2003. Later, its usage was approved for patients with previously untreated MM. In 2006, BTZ was approved for the treatment of relapsed or refractory Mantle Cell Lymphoma (MCL) and, in 2014, for previously untreated MCL. BTZ has been extensively studied either alone or in combination with other drugs for the treatment of different liquid tumors especially in MM. However, limited data evaluated the efficacy and safety of using BTZ in patients with solid tumors. In this review, we will discuss the advanced and novel mechanisms of action of BTZ documented in MM, solid tumors and liquid tumors. Moreover, we will shed the light on the newly discovered pharmacological effects of BTZ in other prevalent diseases.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Institute of Pathology and Medical Research Center (ZMF), University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
- *To whom correspondence should be addressed: Mohammad Alwahsh, Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan, E-mail:
| | - Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, PO Box 127788, United Arab Emirates
| | - Shahd Talhouni
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| |
Collapse
|