101
|
Bonvin D, Arakcheeva A, Millán A, Piñol R, Hofmann H, Mionić Ebersold M. Controlling structural and magnetic properties of IONPs by aqueous synthesis for improved hyperthermia. RSC Adv 2017. [DOI: 10.1039/c7ra00687j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introducing a hydrothermal step after coprecipitation leads to iron oxide nanoparticles with higher vacancy ordering, saturation magnetization and specific absorption rate.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory
- Institute of Materials
- Ecole Polytechnique Fédérale de Lausanne
- Switzerland
| | | | - Angel Millán
- Instituto de Ciencia de Materiales de Aragón
- CSIC
- Universidad de Zaragoza
- Spain
| | - Rafael Piñol
- Instituto de Ciencia de Materiales de Aragón
- CSIC
- Universidad de Zaragoza
- Spain
| | - Heinrich Hofmann
- Powder Technology Laboratory
- Institute of Materials
- Ecole Polytechnique Fédérale de Lausanne
- Switzerland
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory
- Institute of Materials
- Ecole Polytechnique Fédérale de Lausanne
- Switzerland
- Department of Radiology
| |
Collapse
|
102
|
Seke M, Petrovic D, Djordjevic A, Jovic D, Borovic ML, Kanacki Z, Jankovic M. Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. NANOTECHNOLOGY 2016; 27:485101. [PMID: 27811390 DOI: 10.1088/0957-4484/27/48/485101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fullerenol (C60(OH)24) is present in aqueous solutions in the form of polyanion nanoparticles with particles' size distribution within the range from 15 to 42 nm. In this research it is assumed that these features could enable fullerenol nanoparticles (FNPs) to bind positively charged molecules like doxorubicin (DOX) and serve as drug carriers. Considering this, fullerenol/doxorubicin nanocomposite (FNP/DOX) is formed and characterized by ultra-performance liquid chromatography tandem mass spectrometry, dynamic light scattering, atomic force microscopy and transmission electron microscopy. Measurements have shown that DOX did not significantly affect particle size (23 nm). It is also assumed that FNP/DOX could reduce the acute cardiotoxic effects of DOX in vivo (Wistar rats treated i.p.). In this study, quantitative real time polymerase chain reaction results have shown that treatment with DOX alone caused significant increase in mRNA levels of catalase (p < 0.05) enzyme indicating the presence of oxidative stress. This effect is significantly reduced by the treatment with FNP/DOX (p < 0.05). Furthermore, mRNA levels of antiapoptotic enzyme (Bcl-2) are significantly increased (p < 0.05) in all treated groups, particularly where FNP/DOX was applied, suggesting cell resistance to apoptosis. Moreover, ultrastructural analysis has shown the absence of myelin figures within the mitochondria in the heart tissue with FNP/DOX treatment, indicating reduction of oxidative stress. Hence, our results have implied that FNP/DOX is generally less harmful to the heart compared to DOX.
Collapse
Affiliation(s)
- Mariana Seke
- Institute of Nuclear Sciences 'Vinca', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
103
|
Khan S, Gupta A, Verma NC, Nandi CK. Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size. J Chem Phys 2016; 143:164709. [PMID: 26520545 DOI: 10.1063/1.4934605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The spontaneous protein adsorption on nanomaterial surfaces and the formation of a protein corona around nanoparticles are poorly understood physical phenomena, with high biological relevance. The complexity arises mainly due to the poor knowledge of the structural orientation of the adsorbed proteins onto the nanoparticle surface and difficulties in correlating the protein nanoparticle interaction to the protein corona in real time scale. Here, we provide quantitative insights into the kinetics, number, and binding orientation of a few common blood proteins when they interact with citrate and cetyltriethylammoniumbromide stabilized spherical gold nanoparticles with variable sizes. The kinetics of the protein adsorption was studied experimentally by monitoring the change in hydrodynamic diameter and zeta potential of the nanoparticle-protein complex. To understand the competitive binding of human serum albumin and hemoglobin, time dependent fluorescence quenching was studied using dual fluorophore tags. We have performed molecular docking of three different proteins--human serum albumin, bovine serum albumin, and hemoglobin--on different nanoparticle surfaces to elucidate the possible structural orientation of the adsorbed protein. Our data show that the growth kinetics of a protein corona is exclusively dependent on both protein structure and surface chemistry of the nanoparticles. The study quantitatively suggests that a general physical law of protein adsorption is unlikely to exist as the interaction is unique and specific for a given pair.
Collapse
Affiliation(s)
- S Khan
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - A Gupta
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - N C Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - C K Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
104
|
Fan W, Shi W, Zhang W, Jia Y, Zhou Z, Brusnahan SK, Garrison JC. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer. Biomaterials 2016; 103:101-115. [PMID: 27372424 PMCID: PMC5018995 DOI: 10.1016/j.biomaterials.2016.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023]
Abstract
This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that exploitation of the cathepsin S activity in MPS tissues can be utilized to substantially lower non-target accumulation, suggesting this is a promising approach for the development of diagnostic and radiotherapeutic nanomedicine platforms.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wen Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yinnong Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Zhengyuan Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Susan K. Brusnahan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jered C. Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
- Eppley Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
105
|
Grossman JH, Crist RM, Clogston JD. Early Development Challenges for Drug Products Containing Nanomaterials. AAPS JOURNAL 2016; 19:92-102. [PMID: 27612680 DOI: 10.1208/s12248-016-9980-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/19/2016] [Indexed: 01/05/2023]
Abstract
The vast majority of drug product candidates in early development fail to progress to clinics. This is true for products containing nanomaterials just as for other types of pharmaceuticals. Early development pathways should therefore place high priority on experiments that help candidates fail faster and less expensively. Nanomedicines fail for many reasons, but some are more avoidable than others. Some of the points of failure are not considerations in the development of small molecules or biopharmaceuticals, and so may be unexpected, even to those with previous experience bringing drug products to the clinic. This article reviews experiments that have proven useful in providing "go/no-go" decision-making data for nanomedicines in early preclinical development. Of course, the specifics depend on the particulars of the drug product and the nanomaterial type, and not every product shares the same development pathway or the same potential points of failure. Here, we focus on challenges that differ from those in the development of traditional small molecule therapeutics, and on experiments that reveal deficiencies that can only be corrected by essentially starting over-altering the nanomedicine to an extent that all previous characterization and proof-of-concept testing must be repeated. Conducting these experiments early in the development process can save significant resources and time and allow developers to focus on derisked candidates with a greater likelihood of ultimate success.
Collapse
Affiliation(s)
- Jennifer H Grossman
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Wing D, Rm 1003, Frederick, Maryland, 21702, USA.
| | - Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Wing D, Rm 1003, Frederick, Maryland, 21702, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Wing D, Rm 1003, Frederick, Maryland, 21702, USA
| |
Collapse
|
106
|
Sasidharan A, Chandran P, Monteiro-Riviere NA. Biocorona Bound Gold Nanoparticles Augment Their Hematocompatibility Irrespective of Size or Surface Charge. ACS Biomater Sci Eng 2016; 2:1608-1618. [PMID: 33440594 DOI: 10.1021/acsbiomaterials.6b00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite colloidal gold nanoparticles (AuNP) being proposed for a multitude of biomedical applications, there is a lack of understanding on how the protein corona (PC) formation over AuNP influences its interaction with blood components. Herein, 40 and 80 nm AuNP with branched polyethylenimine, lipoic acid, and polyethylene glycol surface coatings were exposed to human plasma, and time-dependent evolution of the PC was evaluated using differential centrifugation sedimentation. Further, the impact of PC-AuNP interaction with human blood components was studied by evaluating red blood cell (RBC) aggregation, hemolysis, platelet activation and aggregation, prothrombin time, activated partial thromboplastin time, complement activation and cytokine release. In contrast to bare AuNP, PC-coated AuNP exhibited enhanced compatibility with RBC, platelets, and lymphocytes. More importantly, PC-AuNP did not activate the platelet coagulation cascade or complement system or elicit an immune response up to a relatively higher dose of 100 μg/mL. This study suggests that, irrespective of the physicochemical properties, the adsorption of the PC over AuNP significantly influences its biological impact by alleviating adverse hematotoxicity of bare NP.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Parwathy Chandran
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
107
|
Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, Xu R, Soo KC, Zhang Y. In vivo Biocompatibility, Biodistribution and Therapeutic Efficiency of Titania Coated Upconversion Nanoparticles for Photodynamic Therapy of Solid Oral Cancers. Theranostics 2016; 6:1844-65. [PMID: 27570555 PMCID: PMC4997241 DOI: 10.7150/thno.15088] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Despite the advantages of using photodynamic therapy (PDT) for the treatment of head and neck tumors, it can only be used to treat early stage flat lesions due to the limited tissue penetration ability of the visible light. Here, we developed near-infrared (NIR) excitable upconversion nanoparticle (UCN) based PDT agent that can specifically target epithelial growth factor receptor (EGFR) overexpressing oral cancer cells, in a bid to widen the application of PDT against thick and solid advanced or recurrent head and neck cancers. In vivo studies using the synthesized anti-EGFR-PEG-TiO2-UCNs following systemic administration displayed no major sub-acute or long term toxic effects in terms of blood biochemical, hematological or histopathological changes at a concentration of 50 mg/kg. NIR-PDT even in the presence of a 10 mm tissue phantom placed over the xenograft tumor, showed significant delay in tumor growth and improved survival rate compared to conventional chlorin-e6 (Ce6) PDT using 665 nm red light. Our work, one of the longest study till date in terms of safety (120 d), PDT efficacy (35 d) and survival (60 d), demonstrates the usefulness of UCN based PDT technology for targeted treatment of thick and bulky head and neck tumors.
Collapse
Affiliation(s)
- Sasidharan Swarnalatha Lucky
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Singapore 117456
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Niagara Muhammad Idris
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Kai Huang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Jaejung Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Zhengquan Li
- Institute of Physical Chemistry, Zhejiang Normal University, P. R. China 321004
| | | | - Rong Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Singapore 117456
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
108
|
Gurav D, Varghese OP, Hamad OA, Nilsson B, Hilborn J, Oommen OP. Chondroitin sulfate coated gold nanoparticles: a new strategy to resolve multidrug resistance and thromboinflammation. Chem Commun (Camb) 2016; 52:966-9. [PMID: 26587574 DOI: 10.1039/c5cc09215a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed the first chondroitin sulfate polymer coated gold nanoparticles that can simultaneously overcome mulidrug resistance in cancer cells and suppress thromboinflammation triggered by the chemotherapeutic drug.
Collapse
Affiliation(s)
- Deepanjali Gurav
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75121, Sweden. and Department of Chemistry, Savitri Bai Phule Pune University, Maharashtra, India
| | - Oommen P Varghese
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75121, Sweden.
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75105, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75105, Sweden
| | - Jöns Hilborn
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75121, Sweden.
| | - Oommen P Oommen
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75121, Sweden.
| |
Collapse
|
109
|
David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine (Lond) 2016; 11:1447-64. [PMID: 27171671 DOI: 10.2217/nnm-2016-0017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user.
Collapse
Affiliation(s)
- Christopher Aw David
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Andrew Owen
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
110
|
Ji T, Li S, Zhang Y, Lang J, Ding Y, Zhao X, Zhao R, Li Y, Shi J, Hao J, Zhao Y, Nie G. An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced Drug Perfusion and Efficacy in Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3438-45. [PMID: 26759926 DOI: 10.1021/acsami.5b11619] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fibrotic stroma, a critical character of pancreatic tumor microenvironment, provides a critical barrier against the penetration and efficacy of various antitumor drugs. Therefore, new strategies are urgently needed to alleviate the fibrotic mass and increase the drug perfusion within pancreatic cancer tissue. In our current work, we developed a β-cyclodextrin (β-CD) modified matrix metalloproteinase-2 (MMP-2) responsive liposome, integrating antifibrosis and chemotherapeutic drugs for regulation of pancreatic stellate cells (PSCs), a key source of the fibrosis, and targeted delivery of cytotoxic drugs for pancreatic cancer therapy. These liposomes disassembed into two functional parts upon MMP-2 cleavage at the tumor site. One part was constituted by the β-CDs and the antifibrosis drug pirfenidone, which was kept in the stroma and inhibited the expression of collagen I and TGF-β in PSCs, down-regulating the fibrosis and decreasing the stromal barrier. The other segment, the RGD peptide-modified-liposome loading the chemotherapeutic drug gemcitabine, targeted and killed pancreatic tumor cells. This integrated nanomedicine, showing an increased drug perfusion without any overt side effects, may provide a potential strategy for improvement of the pancreatic cancer therapy.
Collapse
Affiliation(s)
- Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yanping Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xiao Zhao
- Department of Pancreatic Carcinoma Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy , Tianjin 300060, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Jihui Hao
- Department of Pancreatic Carcinoma Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy , Tianjin 300060, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
111
|
Toxicity and inflammatory response in Swiss albino mice after intraperitoneal and oral administration of polyurethane nanoparticles. Toxicol Lett 2016; 246:17-27. [PMID: 26820842 DOI: 10.1016/j.toxlet.2016.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/15/2016] [Accepted: 01/23/2016] [Indexed: 12/17/2022]
Abstract
In this work in vivo experiments were conducted in order to characterize the biocompatibility of polyurethane nanoparticles (PU-NPs) after intraperitoneal (i.p.) and oral administration. Additionally, ex vivo assays were performed to assess human blood compatibility as well as in vitro assays to assess protein binding. Our results indicated that administration of three different concentrations of PU-NPs induced a significant increase in visceral fat accumulation after oral dosing. In addition, fat tissue of mice intraperitoneally treated with the highest concentration of nanoparticles showed diffuse mononuclear inflammatory infiltrate in the fat tissue. Histopathological assessment showed inflammatory infiltrate and hepatocyte vacuolization in the liver, inflammatory infiltration and vascular congestion in the lung and glomerular necrosis in the kidney. Hepatic enzymes related with liver function were significantly increased in both groups of mice treated with PU-NPs. The PU-NPs did not affect the human blood cells number as well as coagulation time but showed a susceptibility to bind in proteins commonly found in the blood stream. In addition, increased amounts of pro inflammatory cytokines in vivo, as well as ex vivo in human cells were observed. Further studies to establish the consequences of long-term exposure to PU-NPs are warranted.
Collapse
|
112
|
Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, Qin H, Liu X, Shi J, Tao N, Qin Z, Nie G, Zhao Y. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation. Angew Chem Int Ed Engl 2016; 55:1050-5. [PMID: 26283097 PMCID: PMC4736689 DOI: 10.1002/anie.201506262] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/12/2022]
Abstract
A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy.
Collapse
Affiliation(s)
- Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yanping Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jiayan Lang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoman Liu
- CAS Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ning Tao
- CAS Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- CAS Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| |
Collapse
|
113
|
Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets. Biochem Res Int 2016; 2016:2959414. [PMID: 26881078 PMCID: PMC4736757 DOI: 10.1155/2016/2959414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/20/2015] [Indexed: 01/09/2023] Open
Abstract
Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasis in vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage.
Collapse
|
114
|
Fröhlich E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr Med Chem 2016; 23:408-30. [PMID: 26063498 PMCID: PMC5403968 DOI: 10.2174/0929867323666160106151428] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Nanomaterials can get into the blood circulation after injection or by release from implants but also by permeation of the epithelium after oral, respiratory or dermal exposure. Once in the blood, they can affect hemostasis, which is usually not intended. This review addresses effects of biological particles and engineered nanomaterials on hemostasis. The role of platelets and coagulation in normal clotting and the interaction with the immune system are described. Methods to identify effects of nanomaterials on clotting and results from in vitro and in vivo studies are summarized and the role of particle size and surface properties discussed. The literature overview showed that mainly pro-coagulative effects of nanomaterials have been described. In vitro studies suggested stronger effects of smaller than of larger NPs on coagulation and a greater importance of material than of surface charge. For instance, carbon nanotubes, polystyrene particles, and dendrimers inferred with clotting independent from their surface charge. Coating of particles with polyethylene glycol was able to prevent interaction with clotting by some particles, while it had no effect on others and the more recently developed bio-inspired surfaces might help to design coatings for more biocompatible particles. The mainly pro-coagulative action of nanoparticles could present a particular risk for individuals affected by common diseases such as diabetes, cancer, and cardiovascular diseases. Under standardized conditions, in vitro assays using human blood appear to be a suitable tool to study mechanisms of interference with hemostasis and to optimize hemocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, Stiftingtalstr 24, 8010 Graz, Austria.
| |
Collapse
|
115
|
Li Z, Clemens DL, Lee BY, Dillon BJ, Horwitz MA, Zink JI. Mesoporous Silica Nanoparticles with pH-Sensitive Nanovalves for Delivery of Moxifloxacin Provide Improved Treatment of Lethal Pneumonic Tularemia. ACS NANO 2015; 9:10778-10789. [PMID: 26435204 DOI: 10.1021/acsnano.5b04306] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have optimized mesoporous silica nanoparticles (MSNs) functionalized with pH-sensitive nanovalves for the delivery of the broad spectrum fluoroquinolone moxifloxacin (MXF) and demonstrated its efficacy in treating Francisella tularensis infections both in vitro and in vivo. We compared two different nanovalve systems, positive and negative charge modifications of the mesopores, and different loading conditions-varying pH, cargo concentration, and duration of loading-and identified conditions that maximize both the uptake and release capacity of MXF by MSNs. We have demonstrated in macrophage cell culture that the MSN-MXF delivery platform is highly effective in killing F. tularensis in infected macrophages, and in a mouse model of lethal pneumonic tularemia, we have shown that the drug-loaded MSNs are much more effective in killing F. tularensis than an equivalent amount of free MXF.
Collapse
Affiliation(s)
- Zilu Li
- Department of Materials Science and Engineering, ‡Division of Infectious Diseases, Department of Medicine, §Department of Chemistry & Biochemistry, and ∥California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Daniel L Clemens
- Department of Materials Science and Engineering, ‡Division of Infectious Diseases, Department of Medicine, §Department of Chemistry & Biochemistry, and ∥California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Bai-Yu Lee
- Department of Materials Science and Engineering, ‡Division of Infectious Diseases, Department of Medicine, §Department of Chemistry & Biochemistry, and ∥California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Barbara Jane Dillon
- Department of Materials Science and Engineering, ‡Division of Infectious Diseases, Department of Medicine, §Department of Chemistry & Biochemistry, and ∥California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Marcus A Horwitz
- Department of Materials Science and Engineering, ‡Division of Infectious Diseases, Department of Medicine, §Department of Chemistry & Biochemistry, and ∥California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Materials Science and Engineering, ‡Division of Infectious Diseases, Department of Medicine, §Department of Chemistry & Biochemistry, and ∥California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
116
|
Pillai GJ, Greeshma MM, Menon D. Impact of poly(lactic-co-glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions. Colloids Surf B Biointerfaces 2015; 136:1058-66. [PMID: 26590899 DOI: 10.1016/j.colsurfb.2015.10.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022]
Abstract
The initial interactions of nanoparticles with biomolecules have a great influence on its toxicity, efficacy, biodistribution and clearance. The present work is an attempt to understand the impact of surface charge of polymeric nanoparticles on its plasma protein and cellular interactions. Negative, near-neutral and positively charged poly(lactic-co-glycolic acid) [PLGA] nanoparticles were prepared using casein, poly(vinyl alcohol) and poly(ethylene imine) respectively, as surface stabilizers. A significant temporal variation in the hydrodynamic diameter of PLGA nanoparticles was observed in the presence of plasma proteins, which correlated with the amount of proteins adsorbed to each surface. Positively charged particles displayed the maximum size variation and protein adsorption. Cellular uptake of differentially charged nanoparticles was also concurrent with the quantity of adsorbed proteins, though there was no significant difference in their cytotoxicity. Haematological interactions (haemolysis and plasma coagulation times) of positively charged nanoparticles were considerably different from near-neutral and negative nanoparticles. Collectively, the results point to the interplay between plasma protein adsorption and cellular interactions of PLGA nanoparticles, which is governed by its surface charge, thereby necessitating a rational design of nanoparticles.
Collapse
Affiliation(s)
- Gopikrishna J Pillai
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - M M Greeshma
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India.
| |
Collapse
|
117
|
Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
118
|
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. NANO TODAY 2015; 10:487-510. [PMID: 26640510 PMCID: PMC4666556 DOI: 10.1016/j.nantod.2015.06.006] [Citation(s) in RCA: 870] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phagocytes are key cellular participants determining important aspects of host exposure to nanomaterials, initiating clearance, biodistribution and the tenuous balance between host tolerance and adverse nanotoxicity. Macrophages in particular are believed to be among the first and primary cell types that process nanoparticles, mediating host inflammatory and immunological biological responses. These processes occur ubiquitously throughout tissues where nanomaterials are present, including the host mononuclear phagocytic system (MPS) residents in dedicated host filtration organs (i.e., liver, kidney spleen, and lung). Thus, to understand nanomaterials exposure risks it is critical to understand how nanomaterials are recognized, internalized, trafficked and distributed within diverse types of host macrophages and how possible cell-based reactions resulting from nanomaterial exposures further inflammatory host responses in vivo. This review focuses on describing macrophage-based initiation of downstream hallmark immunological and inflammatory processes resulting from phagocyte exposure to and internalization of nanomaterials.
Collapse
Affiliation(s)
- Heather Herd Gustafson
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
| | - Dolly Holt-Casper
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
| | - David W. Grainger
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| | - Hamidreza Ghandehari
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| |
Collapse
|
119
|
Kumar A, Lale SV, Mahajan S, Choudhary V, Koul V. ROP and ATRP Fabricated Dual Targeted Redox Sensitive Polymersomes Based on pPEGMA-PCL-ss-PCL-pPEGMA Triblock Copolymers for Breast Cancer Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9211-9227. [PMID: 25838044 DOI: 10.1021/acsami.5b01731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To minimize cardiotoxicity and to increase the bioavailability of doxorubicin, polymersomes based on redox sensitive amphiphilic triblock copolymer poly(polyethylene glycol methacrylate)-poly(caprolactone)-s-s-poly(caprolactone)-poly(polyethylene glycol methacrylate) (pPEGMA-PCL-ss-PCL-pPEGMA) with disulfide linkage were designed and developed. The polymers were synthesized by ring opening polymerization (ROP) of ε-caprolactone followed by atom transfer radical polymerization (ATRP) of PEGMA. The triblock copolymers demonstrated various types of nanoparticle morphologies by varying hydrophobic/hydrophilic content of polymer blocks, with PEGMA content of ∼18% in the triblock copolymer leading to the formation of polymersomes in the size range ∼150 nm. High doxorubicin loading content of ∼21% was achieved in the polymersomes. Disulfide linkages were incorporated in the polymeric backbone to facilitate degradation of the nanoparticles by the intracellular tripeptide glutathione (GSH), leading to intracellular drug release. Release studies showed ∼59% drug release in pH 5.5 in the presence of 10 mM GSH, whereas only ∼19% was released in pH 7.4. In cellular uptake studies, dual targeted polymersomes showed ∼22-fold increase in cellular uptake efficiency in breast cancer cell lines (BT474 and MCF-7) as compared to nontargeted polymersomes with higher apoptosis rates. In vivo studies on Ehrlich's ascites tumor (EAT) bearing Swiss albino mouse model showed ∼85% tumor regression as compared to free doxorubicin (∼42%) without any significant cardiotoxicity associated with doxorubicin. The results indicate enhanced antitumor efficacy of the redox sensitive biocompatible nanosystem and shows promise as a potential drug nanocarrier in cancer therapeutics.
Collapse
Affiliation(s)
- Arun Kumar
- §Biomedical Engineering Unit, All India Institute of Medical Sciences, AIIMS, New Delhi 110029, India
| | - Shantanu V Lale
- §Biomedical Engineering Unit, All India Institute of Medical Sciences, AIIMS, New Delhi 110029, India
| | - Shveta Mahajan
- §Biomedical Engineering Unit, All India Institute of Medical Sciences, AIIMS, New Delhi 110029, India
| | | | - Veena Koul
- §Biomedical Engineering Unit, All India Institute of Medical Sciences, AIIMS, New Delhi 110029, India
| |
Collapse
|
120
|
Tomaszewski KA, Radomski MW, Santos-Martinez MJ. Nanodiagnostics, nanopharmacology and nanotoxicology of platelet–vessel wall interactions. Nanomedicine (Lond) 2015; 10:1451-75. [DOI: 10.2217/nnm.14.232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In physiological conditions, the interactions between blood platelets and endothelial cells play a major role in vascular reactivity and hemostasis. By contrast, increased platelet activation contributes to the pathogenesis of vascular pathology such as atherosclerosis, thrombosis, diabetes mellitus, hypertension and carcinogenesis. Nanomedicine, including nanodiagnostics and nanotherapeutics is poised to be used in the management of vascular diseases. However, the inherent risk and potential toxicity resultant from the use of nanosized (<100 nm) materials need to be carefully considered. This review, basing on a systematic search of literature provides state-of-the-art and focuses on new discoveries, as well as the potential benefits and threats in the field of nanodiagnostics, nanopharmacology and nanotoxicology of platelet–vessel wall interactions.
Collapse
Affiliation(s)
- Krzysztof A Tomaszewski
- School of Pharmacy & Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland
- Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika St, 31–034 Krakow, Poland
| | - Marek W Radomski
- School of Pharmacy & Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland
- Kardio-Med Silesia, Zabrze, Poland
- Medical University of Silesia, Katowice, Poland
| | - Maria Jose Santos-Martinez
- School of Pharmacy & Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland
- School of Medicine, The University of Dublin Trinity College, Dublin, Ireland
| |
Collapse
|
121
|
Liptrott NJ, Giardiello M, Hunter JW, Tatham L, Tidbury LR, Siccardi M, Rannard S, Owen A. Flow cytometric analysis of the physical and protein-binding characteristics of solid drug nanoparticle suspensions. Nanomedicine (Lond) 2015; 10:1407-21. [DOI: 10.2217/nnm.14.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: Oral and intramuscular sustained-release antiretroviral solid drug nanoparticles (SDNs) are in development but there is limited understanding of whether nanoparticles or dissolved drug predominate systemically. Materials & methods: A flow cytometric method was developed to analyze SDNs in biological fluids such as plasma, including the putative formation of a protein corona. Results: SDNs were found to be stable in plasma and could be observed using the techniques developed here. In addition, transferrin, fibrinogen and albumin were found to be associated with SDNs upon incubation. Conclusion: This methodology has enabled us to determine protein interactions of SDNs in solution without the requirement of separation from the matrix. This will enable further studies of their biological fate. Original submitted 12 February 2014; Revised submitted 10 April 2014
Collapse
Affiliation(s)
- Neill J Liptrott
- Department of Molecular & Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Block H (first floor), Liverpool, UK
| | - Marco Giardiello
- Department of Chemistry, The University of Liverpool, Liverpool, UK
| | - Joseph W Hunter
- Department of Chemistry, The University of Liverpool, Liverpool, UK
| | - Lee Tatham
- Department of Molecular & Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Block H (first floor), Liverpool, UK
| | - Louise R Tidbury
- Department of Molecular & Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Block H (first floor), Liverpool, UK
| | - Marco Siccardi
- Department of Molecular & Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Block H (first floor), Liverpool, UK
| | - Steve Rannard
- Department of Chemistry, The University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Molecular & Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Block H (first floor), Liverpool, UK
| |
Collapse
|
122
|
Yu C, Zhou M, Zhang X, Wei W, Chen X, Zhang X. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. NANOSCALE 2015; 7:5683-5690. [PMID: 25740312 DOI: 10.1039/c5nr00290g] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.
Collapse
Affiliation(s)
- Caitong Yu
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | |
Collapse
|
123
|
Haberl N, Hirn S, Holzer M, Zuchtriegel G, Rehberg M, Krombach F. Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment. Nanotoxicology 2015; 9:963-71. [DOI: 10.3109/17435390.2014.992815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
124
|
Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S, Zhang S, Gong C, Gou M, Deng H, Zhao Y, Yang H, Deng S, Zhao C, Yang L, Qian Z, Li J, Sun X, Han J, Jiang C, Wu M, Zhang Z. Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res 2015; 25:237-53. [PMID: 25613571 PMCID: PMC4650577 DOI: 10.1038/cr.2015.9] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.
Collapse
Affiliation(s)
- Xiawei Wei
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Bin Shao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Min Luo
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yaxiong Sang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xiao Liang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Wei Wang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shuntao Luo
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Changyang Gong
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Maling Gou
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hongxing Deng
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yinglan Zhao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hanshuo Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Senyi Deng
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Li Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhiyong Qian
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiong Li
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
125
|
Lale SV, Kumar A, Naz F, Bharti AC, Koul V. Multifunctional ATRP based pH responsive polymeric nanoparticles for improved doxorubicin chemotherapy in breast cancer by proton sponge effect/endo-lysosomal escape. Polym Chem 2015. [DOI: 10.1039/c4py01698j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Folic acid and trastuzumab functionalized pH responsive polymeric nanoparticles for intracellular doxorubicin delivery in breast cancer.
Collapse
Affiliation(s)
- Shantanu V. Lale
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Biomedical Engineering Unit
| | - Arun Kumar
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Biomedical Engineering Unit
| | - Farhat Naz
- Department of Pathology
- All India Institute of Medical Sciences
- New Delhi 110029
- India
| | - Alok C. Bharti
- Division of Molecular Oncology
- Institute of Cytology and Preventive Oncology
- Noida 201301
- India
| | - Veena Koul
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Biomedical Engineering Unit
| |
Collapse
|
126
|
Jiang L, Li Y, Li Y, Guo C, Yu Y, Zou Y, Yang Y, Yu Y, Duan J, Geng W, Li Q, Sun Z. Silica nanoparticles induced the pre-thrombotic state in rats via activation of coagulation factor XII and the JNK-NF-κB/AP-1 pathway. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00118h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pre-thrombotic state induced by SiNPsviathe interaction between platelet activation, coagulation hyperfunction, anti-coagulation and fibrinolytic resistance.
Collapse
|
127
|
Aula S, Lakkireddy S, Jamil K, Kapley A, Swamy AVN, Lakkireddy HR. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra05889a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding of interplay between nanoparticles physicochemical and biophysical properties, and their impact on pharmacokinetic biodistribution and toxicological properties help designing of appropriate nanoparticle products for biomedical applications.
Collapse
Affiliation(s)
- Sangeetha Aula
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Department of Biotechnology
| | - Samyuktha Lakkireddy
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Department of Biotechnology
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
| | - Atya Kapley
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Environmental Genomics Division
| | - A. V. N. Swamy
- Department of Chemical Engineering
- Jawaharlal Nehru Technological University Anantapur (JNTUA)
- Anantapuramu
- India
| | - Harivardhan Reddy Lakkireddy
- Drug Delivery Technologies and Innovation
- Pharmaceutical Sciences
- Sanofi Research and Development
- 94403 Vitry-sur-Seine
- France
| |
Collapse
|
128
|
Khanbeigi RA, Hashim Z, Abelha TF, Pitchford S, Collins H, Green M, Dailey LA. Interactions of stealth conjugated polymer nanoparticles with human whole blood. J Mater Chem B 2015; 3:2463-2471. [DOI: 10.1039/c4tb01822b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoluminescent conjugated polymeric nanoparticles (CPNs) exhibit favourable properties as fluorescent probes due to their brightness, high photostability, tunable emission spectra and ease of surface modification.
Collapse
Affiliation(s)
| | - Zeina Hashim
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| | | | - Simon Pitchford
- Institute of Pharmaceutical Science
- King's College London
- London SE1 9NH
- UK
| | - Helen Collins
- Division of Immunology
- Infection and Inflammatory Diseases
- King's College London
- London SE1 1UL
- UK
| | - Mark Green
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| | - Lea Ann Dailey
- Institute of Pharmaceutical Science
- King's College London
- London SE1 9NH
- UK
| |
Collapse
|
129
|
Abdalla AME, Xiao L, Ouyang C, Yang G. Engineered nanoparticles: thrombotic events in cancer. NANOSCALE 2014; 6:14141-14152. [PMID: 25347245 DOI: 10.1039/c4nr04825c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineered nanoparticles are being increasingly produced for specific applications in medicine. Broad selections of nano-sized constructs have been developed for applications in diagnosis, imaging, and drug delivery. Nanoparticles as contrast agents enable conjugation with molecular markers which are essential for designing effective diagnostic and therapeutic strategies. Such investigations can also lead to a better understanding of disease mechanisms such as cancer-associated thrombosis which remains unpredictable with serious bleeding complications and high risk of death. Here we review the recent and current applications of engineered nanoparticles in diagnosis and therapeutic strategies, noting their toxicity in relation to specific markers as a target.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
130
|
Kushida T, Saha K, Subramani C, Nandwana V, Rotello VM. Effect of nano-scale curvature on the intrinsic blood coagulation system. NANOSCALE 2014; 6:14484-7. [PMID: 25341004 PMCID: PMC4224616 DOI: 10.1039/c4nr04128c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation 'silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.
Collapse
Affiliation(s)
- Takashi Kushida
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
131
|
Ruan S, Qian J, Shen S, Zhu J, Jiang X, He Q, Gao H. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. NANOSCALE 2014; 6:10040-7. [PMID: 25031208 DOI: 10.1039/c4nr02657h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
132
|
Qian J, Chen J, Ruan S, Shen S, He Q, Jiang X, Zhu J, Gao H. Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. J Colloid Interface Sci 2014; 429:77-82. [DOI: 10.1016/j.jcis.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/15/2022]
|
133
|
Bircher L, Theusinger OM, Locher S, Eugster P, Roth-Z'graggen B, Schumacher CM, Studt JD, Stark WJ, Beck-Schimmer B, Herrmann IK. Characterization of carbon-coated magnetic nanoparticles using clinical blood coagulation assays: effect of PEG-functionalization and comparison to silica nanoparticles. J Mater Chem B 2014; 2:3753-3758. [PMID: 32261721 DOI: 10.1039/c4tb00208c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intravascular application of magnetic nanocarriers is a critical step in the development of new therapeutic strategies, including magnetic drug targeting or hyperthermia. However, injection of particulate matter bears the intrinsic risk of contact activation of the blood coagulation cascade. In this work, we use point-of-care assays to study coagulation dynamics and clotting parameters in blood samples exposed to relevant concentrations of surface-functionalized carbon-coated iron carbide nanomagnets using unmodified nanomagnets and poly(ethylene)glycol-functionalized nanomagnets with different end-groups, including -OCH3, -NH2, -COOH, -IgG, and -ProteinA-protected-IgG (-IgG-ProtA). Silica nanoparticles with a comparable surface area are used as a reference material. For magnetic nanoparticles, we observe a decrease in clotting time by 25% compared to native blood at concentrations of 1 mg mL-1, independent of the surface functionalization, and only minor differences in receptor expression on platelets (GP-IIb-IIIa, CD62, and CD63) relative to control samples were observed. Interestingly, the inter-subject variance of the clotting time is similar to the nanoparticle-induced effect in a single subject with average clotting time. Whilst the present study is based on in vitro assays and a small group of healthy blood donors, the comparison to broadly used silica nanoparticles, and the fact that experimental intergroup variability is comparable to the observed effects from the carbon-coated nanomagnets suggests continuing investigations on their potential clinical use.
Collapse
Affiliation(s)
- Lukas Bircher
- Institute of Anesthesiology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Lale SV, R G A, Aravind A, Kumar DS, Koul V. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules 2014; 15:1737-52. [PMID: 24689987 DOI: 10.1021/bm5001263] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonspecificity and cardiotoxicity are the primary limitations of current doxorubicin chemotherapy. To minimize side effects and to enhance bioavailability of doxorubicin to cancer cells, a dual-targeted pH-sensitive biocompatible polymeric nanosystem was designed and developed. An ATRP-based biodegradable triblock copolymer, poly(poly(ethylene glycol) methacrylate)-poly(caprolactone)-poly(poly(ethylene glycol) methacrylate) (pPEGMA-PCL-pPEGMA), conjugated with doxorubicin via an acid-labile hydrazone bond was synthesized and characterized. Dual targeting was achieved by attaching folic acid and the AS1411 aptamer through EDC-NHS coupling. Nanoparticles of the functionalized triblock copolymer were prepared using the nanoprecipitation method, resulting in an average particle size of ∼140 nm. The biocompatibility of the nanoparticles was evaluated using MTT cytotoxicity assays, blood compatibility studies, and protein adsorption studies. In vitro drug release studies showed a higher cumulative doxorubicin release at pH 5.0 (∼70%) compared to pH 7.4 (∼25%) owing to the presence of the acid-sensitive hydrazone linkage. Dual targeting with folate and the AS1411 aptamer increased the cancer-targeting efficiency of the nanoparticles, resulting in enhanced cellular uptake (10- and 100-fold increase in uptake compared to single-targeted NPs and non-targeted NPs, respectively) and a higher payload of doxorubicin in epithelial cancer cell lines (MCF-7 and PANC-1), with subsequent higher apoptosis, whereas a normal (noncancerous) cell line (L929) was spared from the adverse effects of doxorubicin. The results indicate that the dual-targeted pH-sensitive biocompatible polymeric nanosystem can act as a potential drug delivery vehicle against various epithelial cancers such as those of the breast, ovary, pancreas, lung, and others.
Collapse
Affiliation(s)
- Shantanu V Lale
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
| | | | | | | | | |
Collapse
|