101
|
Abstract
In this review we summarize the current understanding of signal transduction downstream of vascular endothelial growth factor A (VEGFA) and its receptor VEGFR2, and the relationship between these signal transduction pathways and the hallmark responses of VEGFA, angiogenesis and vascular permeability. These physiological responses involve a number of effectors, including extracellular signal-regulated kinases (ERKs), Src, phosphoinositide 3 kinase (PI3K)/Akt, focal adhesion kinase (FAK), Rho family GTPases, endothelial NO and p38 mitogen-activated protein kinase (MAPK). Several of these factors are involved in the regulation of both angiogenesis and vascular permeability. Tumour angiogenesis primarily relies on VEGFA-driven responses, which to a large extent result in a dysfunctional vasculature. The reason for this remains unclear, although it appears that certain aspects of the VEGFA-stimulated angiogenic milieu (high level of microvascular density and permeability) promote tumour expansion. The high degree of redundancy and complexity of VEGFA-driven tumour angiogenesis may explain why tumours commonly develop resistance to anti-angiogenic therapy targeting VEGFA signal transduction.
Collapse
Affiliation(s)
- L Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
102
|
Liu D, Xiao H, Du C, Luo S, Li D, Pan L. The effect of fibroblast activation on vascularization in transplanted pancreatic islets. J Surg Res 2013; 183:450-6. [PMID: 23369362 DOI: 10.1016/j.jss.2012.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/22/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Insufficient revascularization of transplanted pancreatic islets is an important reason why the long-term effects of pancreatic islet transplantation on type I diabetes patients have been so limited. The goal of this study was to investigate the role of fibroblasts (FBs) activated by tumor cell supernatants on the vascularization of transplanted pancreatic islets. MATERIALS AND METHODS Pancreatic islets and activated or inactivated FBs were used for subrenal capsule transplantation. Mouse melanoma cell supernatants were used to activate FBs; the tests of the purity of the pancreatic islet cells of the donor, survival rate, and function of insulin secretion were performed to ensure high-quality transplants. Mice receiving the allogeneic transplantation were given tacrolimus and sirolimus to prevent rejection. The diabetic model was induced by streptozotocin. RESULTS Conditioned medium made of tumor cell supernatants was found to stimulate the expression of α-smooth muscle actin and vascular endothelial growth factor A to an extent notably greater than that of pancreatic islet transplantation alone or pancreatic islet transplantation combined with inactivated FBs. FBs from the recipient were associated with capillary density in the transplanted pancreatic islet most closely to that observed in isogenically transplanted pancreatic islets and the original pancreatic islet. In this way, activated FBs derived from the recipient combined with pancreatic transplantation were able to treat diabetes, and long-term survival was achieved. CONCLUSIONS The current research sheds new light on the revascularization of transplanted pancreatic islets: activated FBs derived from the recipients, when transplanted alongside pancreatic tissue, can promote revascularization inside the transplanted pancreatic islet.
Collapse
Affiliation(s)
- Dingzhi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chong Qing Medical University, Chong Qing, PR China
| | | | | | | | | | | |
Collapse
|
103
|
Animal models of diabetes mellitus for islet transplantation. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:256707. [PMID: 23346100 PMCID: PMC3546491 DOI: 10.1155/2012/256707] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 01/09/2023]
Abstract
Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.
Collapse
|
104
|
van der Windt DJ, Bottino R, Kumar G, Wijkstrom M, Hara H, Ezzelarab M, Ekser B, Phelps C, Murase N, Casu A, Ayares D, Lakkis FG, Trucco M, Cooper DK. Clinical islet xenotransplantation: how close are we? Diabetes 2012; 61:3046-55. [PMID: 23172951 PMCID: PMC3501885 DOI: 10.2337/db12-0033] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/06/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Dirk J. van der Windt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rita Bottino
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Division of Immunogenetics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Goutham Kumar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martin Wijkstrom
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Burcin Ekser
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | | | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anna Casu
- Diabetes Unit, Department of Medicine, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), Palermo, Italy
| | | | - Fadi G. Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Massimo Trucco
- Division of Immunogenetics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David K.C. Cooper
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
105
|
Bellin M, Balamurugan A, Pruett TL, Sutherland DE. No islets left behind: islet autotransplantation for surgery-induced diabetes. Curr Diab Rep 2012; 12:580-6. [PMID: 22777430 PMCID: PMC3432727 DOI: 10.1007/s11892-012-0296-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For patients with severe chronic pancreatitis refractory to medical interventions, total pancreatectomy can be considered to relieve the root cause of pain. The goal of a simultaneous islet autotransplant is to prevent or minimize the otherwise inevitable surgical diabetes. Islet autotransplant can successfully preserve some endogenous islet function in the majority of recipients, which mediates protection against brittle diabetes. Most maintain reasonably good glycemic control, while 30 %-40 % successfully discontinue insulin therapy. With islet autotransplants reaching a wider clinical audience, refinements in islet isolation techniques and strategies to protect islet grafts post-transplant may further improve the success of this procedure.
Collapse
Affiliation(s)
- Melena Bellin
- University of Minnesota Amplatz Children’s Hospital, East Building, Rm MB-671, 2450 Riverside Ave E, Minneapolis, MN 55454
| | - A.N. Balamurugan
- University of Minnesota, Schulze Diabetes Institute, Department of Surgery, 420 Delaware St SE, Minneapolis, MN 55455, Phone 651-253-0656, Fax 612-626-5855,
| | - Timothy L. Pruett
- University of Minnesota, 420 Delaware St. S.E., Minneapolis, MN 55455, 612-626-7282 Phone, 612-624-7168 Fax,
| | - David E.R. Sutherland
- University of Minnesota, 420 Delaware St. S.E., Minneapolis, MN 55455, 612-625-7600 Phone, 612-624-7168 Fax,
| |
Collapse
|
106
|
VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 2012; 120:4653-62. [PMID: 22966168 DOI: 10.1182/blood-2012-04-421040] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.
Collapse
|
107
|
Henriksnäs J, Lau J, Zang G, Berggren PO, Köhler M, Carlsson PO. Markedly decreased blood perfusion of pancreatic islets transplanted intraportally into the liver: disruption of islet integrity necessary for islet revascularization. Diabetes 2012; 61:665-73. [PMID: 22315321 PMCID: PMC3282819 DOI: 10.2337/db10-0895] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experimental studies indicate low revascularization of intraportally transplanted islets. This study aimed to quantify, for the first time, the blood perfusion of intrahepatically transplanted islets and elucidate necessary factors for proper islet graft revascularization at this site. Yellow chameleon protein 3.0 islets expressing fluorescent protein in all cells were transplanted. Graft blood perfusion was determined by microspheres. The vascular density and relative contribution of donor blood vessels in revascularization was evaluated using islets expressing green fluorescent protein under the Tie-2 promoter. Blood perfusion of intrahepatic islets was as a mean only 5% of that of native islets at 1-month posttransplantation. However, there was a marked heterogeneity where blood perfusion was less decreased in islets transplanted without prior culture and in many cases restored in islets with disrupted integrity. Analysis of vascular density showed that distorted islets were well revascularized, whereas islets still intact at 1-month posttransplantation were almost avascular. Few donor endothelial cells were observed in the new islet vasculature. The very low blood perfusion of intraportally transplanted islets is likely to predispose for ischemia and hamper islet function. Since donor endothelial cells do not expand posttransplantation, disruption of islet integrity is necessary for revascularization to occur by recipient blood vessels.
Collapse
Affiliation(s)
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Guangxiang Zang
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Olof Berggren
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Köhler
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Corresponding author: Per-Ola Carlsson,
| |
Collapse
|
108
|
Striated muscle as implantation site for transplanted pancreatic islets. J Transplant 2011; 2011:352043. [PMID: 22174984 PMCID: PMC3235886 DOI: 10.1155/2011/352043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/20/2011] [Indexed: 01/27/2023] Open
Abstract
Islet transplantation is an attractive treatment for selected patients with brittle type 1 diabetes. In the clinical setting, intraportal transplantation predominates. However, due to extensive early islet cell death, the quantity of islets needed to restore glucose homeostasis requires in general a minimum of two donors. Moreover, the deterioration of islet function over time results in few insulin-independent patients after five-year followup. Specific obstacles to the success of islet transplantation include site-specific concerns for the liver such as the instant blood mediated inflammatory reaction, islet lipotoxicity, low oxygen tension, and poor revascularization, impediments that have led to the developing interest for alternative implantation sites over recent years. Within preclinical settings, several alternative sites have now been investigated and proven favorable in various aspects. Muscle is considered a very promising site and has physiologically properties and technical advantages that could make it optimal for islet transplantation.
Collapse
|
109
|
O'Sullivan ES, Vegas A, Anderson DG, Weir GC. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 2011; 32:827-44. [PMID: 21951347 PMCID: PMC3591674 DOI: 10.1210/er.2010-0026] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The concept of using an immunoisolation device to facilitate the transplantation of islets without the need for immunosuppression has been around for more than 50 yr. Significant progress has been made in developing suitable materials that satisfy the need for biocompatibility, durability, and permselectivity. However, the search is ongoing for a device that allows sufficient oxygen transfer while maintaining a barrier to immune cells and preventing rejection of the transplanted tissue. Separating the islets from the rich blood supply in the native pancreas takes its toll. The immunoisolated islets commonly suffer from hypoxia and necrosis, which in turn triggers a host immune response. Efforts have been made to improve the supply of nutrients by using proangiogenic factors to augment the development of a vascular supply in the transplant site, by using small islet cell aggregates to reduce the barrier to diffusion of oxygen, or by creating scaffolds that are in close proximity to a vascular network such as the omental blood supply. Even if these efforts are successful, the shortage of donor islet tissue available for transplantation remains a major problem. To this end, a search for a renewable source of insulin-producing cells is ongoing; whether these will come from adult or embryonic stem cells or xenogeneic sources remains to be seen. Herein we will review the above issues and chart the progress made with various immunoisolation devices in small and large animal models and the small number of clinical trials carried out to date.
Collapse
Affiliation(s)
- Esther S O'Sullivan
- Section on Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
110
|
Abstract
Autologous islet transplantation (AIT) is performed to prevent surgical diabetes after total or semi-total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain. In addition, AIT is used in cases of benign pancreatic tumors and pancreatic trauma. It has been shown that AIT results in better outcomes in terms of glycemic control compared with allogeneic islet transplantation. The reasons for the favorable outcomes of AIT are thought to be: (i) patients have no autoimmune diseases; (ii) the transplanted islets do not suffer allogeneic rejection; (iii) diabetogenic antirejection drugs are not required; (iv) pancreata do not undergo a cytokine storm as a result of periods of brain death; (v) the period of cold preservation of retrieved pancreata is short; (vi) the isolated islets are immediately transplanted without culture; and (vii) pancreata with pancreatitis may contain more progenitor cells. Further research into AIT would help improve the results of allogeneic islet transplantation. Conversely, the technical difficulties associated with islet isolation appear to be the largest hurdle for AIT; therefore, remote center islet isolation may prove to be key in the promotion of this treatment.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Baylor All Saints Islet Cell Laboratory, Baylor Research Institute Fort Worth Campus, Fort Worth, Texas 76104, USA.
| |
Collapse
|
111
|
Eriksson O, Carlsson F, Blom E, Sundin A, Långström B, Korsgren O, Velikyan I. Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation. Nucl Med Biol 2011; 39:415-21. [PMID: 22136888 DOI: 10.1016/j.nucmedbio.2011.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/14/2011] [Accepted: 09/17/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Islet transplantation is a promising treatment for type 1 diabetes mellitus, but the fate of the cells after intraportal infusion is unclear. It is therefore imperative to develop novel techniques for noninvasive imaging and quantification of events following islet transplantation. METHODS Small islet-like microbeads, avidin-covered agarose resins (AARs), were used as a model system for islet transplantation. Capability for specific [(68)Ga]Ga-DOTA-(PEG)(2)-biotin uptake and retention for either AARs or human islets conjugated with avidin by means of a heparin scaffold was studied in vitro. Biodistribution of the novel positron emission tomography (PET) tracer [(68)Ga]Ga-DOTA-(PEG)(2)-biotin was evaluated in mice treated by intraportal transplantation of AARs by μPET/computed tomography and ex vivo organ distribution and compared with control mice. RESULTS AARs had high capability to bind [(68)Ga]Ga-DOTA-(PEG)(2)-biotin, close to 50% of administrated tracer/μl in vitro (>0.25 MBq/μl). Avidin-tagged human islets could bind on average 2.2% of administered tracer/μl. Specificity (>90%) and retention (>90% after 1 h) were high for both AARs and avidin-tagged islets. Hepatic tracer uptake and retention were increased in mice transplanted with AARs [standardized uptake value (SUV)=2.6] compared to the untreated group (SUV=1.4). In vivo uptake of tracer to AARs was blocked by preadministration of unlabeled biotin. CONCLUSIONS Avidin-tagged islet-like objects can be tracked in hepatic volume after intraportal transplantation by using [(68)Ga]Ga-DOTA-(PEG)(2)-biotin and PET.
Collapse
Affiliation(s)
- Olof Eriksson
- Platform for Preclinical PET, Department of Medicinal Chemistry, Uppsala University, SE-75187 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
112
|
McDonald B, Kubes P. Neutrophils and intravascular immunity in the liver during infection and sterile inflammation. Toxicol Pathol 2011; 40:157-65. [PMID: 22105645 DOI: 10.1177/0192623311427570] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The liver is a target of many inflammatory pathologies of both infectious and noninfectious etiology. As key effectors of the innate immune system, neutrophils are critical for defense against microbial infections but are often the source of profound collateral damage to host tissues during disease states. In this article based on the authors' presentation at the 2011 Society of Toxicologic Pathology Annual Symposium, they review the molecular mechanisms of neutrophil recruitment to the liver in response to sepsis/endotoxemia, as well as sterile inflammation, and discuss variations in the molecular choreography of neutrophil trafficking in response to these different insults. Furthermore, the authors discuss the functional contributions of neutrophils within the liver microvasculature during severe sepsis, including their contributions to both host defense and organ damage. Given that inappropriate neutrophilic inflammation contributes to the pathogenesis of many liver diseases, a thorough understanding of the molecular mechanisms that regulate the recruitment of neutrophils to the liver, and their functions therein, may reveal new avenues for therapeutic interventions to treat inflammatory liver pathologies.
Collapse
Affiliation(s)
- Braedon McDonald
- Calvin, Phoebe, and Joan Snyder Institute for Infection, Immunity, and Inflammation, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
113
|
Current world literature. Curr Opin Organ Transplant 2011; 16:650-60. [PMID: 22068023 DOI: 10.1097/mot.0b013e32834dd969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
114
|
Abstract
Here we focus on how neutrophils have a key regulatory role in vascular inflammation. Recent studies using advanced imaging techniques have yielded new insights into the mechanisms by which neutrophils contribute to defense against bacterial infections and also against sterile injury. In these settings, neutrophils are recruited by various mechanisms depending on the situation. We also describe how these processes may be disrupted in systemic infections, with a particular emphasis on mouse models of sepsis. Neutrophils are often immobilized in the lungs and liver during systemic infections, and this immobilization may be a mechanism through which bacteria can evade the innate immune response or allow neutrophils to form neutrophil extracellular traps that trap and kill bacteria in blood. The platelet is also an important player in sepsis, and we describe how it collaborates with neutrophils in the formation of neutrophil extracellular traps.
Collapse
Affiliation(s)
- Mia Phillipson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
115
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
116
|
Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz) 2011; 59:421-9. [PMID: 21984594 DOI: 10.1007/s00005-011-0143-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. In recent years, the proportion of patients achieving initial insulin independence has improved, but longer term outcomes remain poor compared to those for whole pancreas transplants. This review article will discuss factors affecting islet yield and viability leading up to transplantation and in the immediate post-transplant period.
Collapse
|
117
|
Abstract
The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being an ideal site because of immunologic, anatomic, and physiologic factors leading to a significant early graft loss. A huge amount of alternative sites have been used for islet transplantation in experimental animal models to provide improved engraftment and long-term survival minimizing surgical complications. The pancreas, gastric submucosa, genitourinary tract, muscle, omentum, bone marrow, kidney capsule, peritoneum, anterior eye chamber, testis, and thymus have been explored. Site-specific differences exist in term of islet engraftment, but few alternative sites have potential clinical translation and generally the evidence of a post-transplant islet function better than that reached after intraportal infusion is still lacking. This review discusses site-specific benefits and drawbacks taking into account immunologic, metabolic, and technical aspects to identify the ideal microenvironment for islet function and survival.
Collapse
Affiliation(s)
- Elisa Cantarelli
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
118
|
Abstract
Under physiological conditions and in the pathogenesis of diabetes mellitus systemic influences play a substantial role for function and survival of cells of the islet of Langerhans. Therefore, in vivo studies to understand islet biology are indispensible and imaging techniques are increasingly used for this purpose. Among the diverse imaging modalities currently only laser scanning microscopy (LSM) allows resolution and visualization of individual cells and cellular processes. To overcome limited tissue penetration and working distance of LSM and enable in vivo investigations of islet cell physiology, various experimental approaches have been developed. Especially, the recently developed imaging platforms have significantly improved the possibility to study islets at a cellular level in vivo, and provided novel insight into islet biology in health and disease. The various approaches, their applications, and reported results, as well as their limitations are reviewed in this article.
Collapse
Affiliation(s)
- Stephan Speier
- Center for Regenerative Therapies Dresden and Paul Langerhans Institute Dresden, School of Medicine, Dresden University of Technology, 01307 Dresden, Germany.
| |
Collapse
|
119
|
Eriksson O, Alavi A. Imaging the islet graft by positron emission tomography. Eur J Nucl Med Mol Imaging 2011; 39:533-42. [PMID: 21932118 DOI: 10.1007/s00259-011-1928-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Clinical islet transplantation is being investigated as a permanent cure for type 1 diabetes mellitus (T1DM). Currently, intraportal infusion of islets is the favoured procedure, but several novel implantation sites have been suggested. Noninvasive longitudinal methodologies are an increasingly important tool for assessing the fate of transplanted islets, their mass, function and early signs of rejection. This article reviews the approaches available for islet graft imaging by positron emission tomography and progress in the field, as well as future challenges and opportunities.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
120
|
Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci U S A 2011; 108:12815-20. [PMID: 21768367 DOI: 10.1073/pnas.1109859108] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K(12) position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4(×12)-VT750) had a high binding affinity (~3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4(×12)-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts.
Collapse
|
121
|
Lau J, Zang G, Carlsson PO. Pancreatic islet transplantation to the liver: how can vascularization problems be resolved? ACTA ACUST UNITED AC 2011. [DOI: 10.2217/dmt.11.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
122
|
Abstract
Pancreatic islet transplantation into the liver provides a possibility to treat selected patients with brittle type 1 diabetes mellitus. However, massive early β-cell death increases the number of islets needed to restore glucose homeostasis. Moreover, late dysfunction and death contribute to the poor long-term results of islet transplantation on insulin independence. Studies in recent years have identified early and late challenges for transplanted pancreatic islets, including an instant blood-mediated inflammatory reaction when exposing human islets to the blood microenvironment in the portal vein and the low oxygenated milieu of islets transplanted into the liver. Poor revascularization of remaining intact islets combined with severe changes in the gene expression of islets transplanted into the liver contributes to late dysfunction. Strategies to overcome these hurdles have been developed, and some of these interventions are now even tested in clinical trials providing a hope to improve results in clinical islet transplantation. In parallel, experimental and clinical studies have, based on the identified problems with the liver site, evaluated the possibility of change of implantation organ in order to improve the results. Site-specific differences clearly exist in the engraftment of transplanted islets, and a more thorough characterization of alternative locations is needed. New strategies with modifications of islet microenvironment with cells and growth factors adhered to the islet surface or in a surrounding matrix could be designed to intervene with site-specific hurdles and provide possibilities to improve future results of islet transplantation.
Collapse
Affiliation(s)
- Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|