101
|
Antagonism of Ang-Tie2 and Dll4-Notch signaling has opposing effects on tumor endothelial cell proliferation, evidenced by a new flow cytometry method. J Transl Med 2014; 94:1296-308. [PMID: 25243900 DOI: 10.1038/labinvest.2014.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022] Open
Abstract
Sustained angiogenesis is essential for tumor growth as it provides the tumor with a network of blood vessels that supply both oxygen and essential nutrients. Limiting tumor-associated angiogenesis is a proven strategy for the treatment of human cancer. To date, the rapid detection and quantitation of tumor-associated endothelial cell (TAEC) proliferation has been challenging, largely due to the low frequency of endothelial cells (ECs) within the tumor microenvironment. In this report, we address this problem using a new multiparametric flow cytometry method capable of rapid and precise quantitation of proliferation by measuring bromodeoxyuridine (BrdUrd) uptake in mouse TAECs from established human tumor xenografts. We determined the basal proliferation labeling index of TAECs in two human tumor xenografts representing two distinct histologies, COLO 205 (colorectal cancer) and U-87 (glioblastoma). We then investigated the effects of two large-molecule antiangiogenic agents targeting different biochemical pathways. Blocking angiopoietin-Tie2 signaling with the peptide-Fc fusion protein, trebananib (AMG 386), inhibited proliferation of TAECs, whereas blocking Dll4-Notch signaling with an anti-Dll4-specific antibody induced hyperproliferation of TAECs. These pharmacodynamic studies highlight the sensitivity and utility of this flow cytometry-based method and demonstrate the value of this assay to rapidly assess the in vivo proliferative effects of angiogenesis-targeted agents on both the tumor and the associated vasculature.
Collapse
|
102
|
May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1958-73. [PMID: 25447551 DOI: 10.1016/j.bbamcr.2014.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023]
Abstract
Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
103
|
Luo W, Hu Q, Wang D, Deeb KK, Ma Y, Morrison CD, Liu S, Johnson CS, Trump DL. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue. Oncotarget 2014; 4:1472-83. [PMID: 23978847 PMCID: PMC3824530 DOI: 10.18632/oncotarget.1269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer.
Collapse
Affiliation(s)
- Wei Luo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 2014; 35:7110-20. [PMID: 24875764 DOI: 10.1016/j.biomaterials.2014.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/18/2014] [Indexed: 01/31/2023]
Abstract
The objective of this study was to construct our recently developed aptamer-modified targeted liposome nano-carrier (Apt-PEG-LPs) system to target primary cultured mouse tumor endothelial cells (mTEC), both in vitro and in vivo. We first synthesized an aptamer-polyethylene glycol 2000-distearoyl phosphoethanolamine (Apt-PEG2000-DSPE). The conjugation of the Apt-PEG2000-DSPE was confirmed by MALDI-TOF mass spectroscopy. A lipid hydration method was used to prepare Apt-PEG-LPs, in which the outer surface of the PEG-spacer was decorated with the aptamer. Apt-PEG-LPs were significantly taken up by mTECs. Cellular uptake capacity was observed both quantitatively and qualitatively using spectrofluorometry, and confocal laser scanning microscopy (CLSM), respectively. In examining the extent of localization of aptamer-modified liposomes that entered the cells, approximately 39% of the Apt-PEG-LPs were not co-localized with lysotracker, indicating that they had escaped from endosomes. The uptake route involved a receptor mediated pathway, followed by clathrin mediated endocytosis. This Apt-PEG-LP was also applied for in vivo research whether this system could target tumor endothelial cells. Apt-PEG-LP and PEG5000-DSPE modified Apt-PEG-LP (Apt/PEG5000-LP) were investigated by human renal cell carcinoma (OS-RC-2 cells) inoculating mice using CLSM. Apt-PEG-LP and Apt/PEG5000-LP showed higher accumulation on tumor vasculature compared to PEG-LP and the co-localization efficacy of Apt-PEG-LP and Apt/PEG5000-LP on TEC were quantified 16% and 25% respectively, which was also better than PEG-LP (3%). The findings suggest that this system is considerable promise for targeting tumor endothelial cells to deliver drugs or genes in vitro and in vivo.
Collapse
|
105
|
Ara MN, Hyodo M, Ohga N, Akiyama K, Hida K, Hida Y, Shinohara N, Harashima H. Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer Med 2014; 3:825-34. [PMID: 24810801 PMCID: PMC4303150 DOI: 10.1002/cam4.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
The identification of a specific biomarker involves the development of new clinical diagnostic tools, and an in-depth understanding of the disease at the molecular level. When new blood vessels form in tumor cells, endothelial cell production is induced, a process that plays a key role in disease progression and metastasis to distinct organs for solid tumor types. The present study reports on the identification of a new biomarker on primary cultured mouse tumor endothelial cells (mTECs) using our recently developed high-affinity DNA aptamer AraHH001 (Kd = 43 nmol/L) assisted proteomics approach. We applied a strategy involving aptamer-facilitated biomarker discovery. Biotin-tagged AraHH001 was incubated with lysates of mTECs and the aptamer-proteins were then conjugated with streptavidin magnetic beads. Finally, the bound proteins were separated by sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. We identified troponin T via matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, the molecular target of aptamer AraHH001, and its presence was confirmed by measuring mRNA, protein levels, western blot, immunostaining, a gel shift assay of AraHH001 with troponin T. We first report here on the discovery of troponin T on mTECs, a promising and interesting diagnostic tool in the development of antiangiogenic therapy techniques the involves the targeting of the tumor vasculature.
Collapse
Affiliation(s)
- Mst Naznin Ara
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Tpl2 inhibitors thwart endothelial cell function in angiogenesis and peritoneal dissemination. Neoplasia 2014; 15:1036-48. [PMID: 24027429 DOI: 10.1593/neo.121914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/05/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2) in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s) of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA) in endothelial cells. Vascular endothelial growth factor (VEGF) or chemokine (C-X-C motif) ligand 1 (CXCL1) increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.
Collapse
|
107
|
Gupta DK, Singh N, Sahu DK. TGF-β Mediated Crosstalk Between Malignant Hepatocyte and Tumor Microenvironment in Hepatocellular Carcinoma. CANCER GROWTH AND METASTASIS 2014; 7:1-8. [PMID: 24741325 PMCID: PMC3988670 DOI: 10.4137/cgm.s14205] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Abstract
In this article, we have reviewed current literature regarding the regulation of hepatocellular carcinoma (HCC) by the interaction of malignant hepatocytes and their tissue environment through cytokine signaling, here represented by transforming growth factor-beta (TGF-β) signaling. We have discussed responses of TGF-β signaling in transition of hepatic stellate cells to myofibroblasts (MFBs), recruitment of tumor-associated macrophages (TAMs), and enrichment of tumor-associated endothelial cells (TECs). The malignant hepatocytes also secrete various factors such as platelet-derived growth factors (PDGFs), vascular endothelial growth factor (VEGF), and TGF-β. TGF-β, a super-family of cytokines, creates tumor microenvironment by interacting through other growth factors (epidermal growth factor receptor (EGFR), PDGF, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), VEGF), cytokines and chemokines, and extracellular matrix (ECM) remodeling. Hence, the HCC tumor microenvironment may now be recognized as an important participant of tumor progression to act as potential target to systemic therapies compared to targeted therapies.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India. ; King George's Medical University, Lucknow, India
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, India
| | - Dinesh Kumar Sahu
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, India
| |
Collapse
|
108
|
Farhang Ghahremani M, Radaelli E, Haigh K, Bartunkova S, Haenebalcke L, Marine JC, Goossens S, Haigh JJ. Loss of autocrine endothelial-derived VEGF significantly reduces hemangiosarcoma development in conditional p53-deficient mice. Cell Cycle 2014; 13:1501-7. [PMID: 24626176 DOI: 10.4161/cc.28474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Malignant transformation of the endothelium is rare, and hemangiosarcomas comprise only 1% of all sarcomas. For this reason and due to the lack of appropriate mouse models, the genetic mechanisms of malignant endothelial transformation are poorly understood. Here, we describe a hemangiosarcoma mouse model generated by deleting p53 specifically in the endothelial and hematopoietic lineages. This strategy led to a high incidence of hemangiosarcoma, with an average latency of 25 weeks. To study the in vivo roles of autocrine or endothelial cell autonomous VEGF signaling in the initiation and/or progression of hemangiosarcomas, we genetically deleted autocrine endothelial sources of VEGF in this mouse model. We found that loss of even a single conditional VEGF allele results in substantial rescue from endothelial cell transformation. These findings highlight the important role of threshold levels of autocrine VEGF signaling in endothelial malignancies and suggest a new approach for hemangiosarcoma treatment using targeted autocrine VEGF inhibition.
Collapse
Affiliation(s)
- Morvarid Farhang Ghahremani
- Vascular Cell Biology Unit; Department for Molecular Biomedical Research; VIB-Ghent University; Ghent, Belgium; Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Enrico Radaelli
- Mouse & Animal Pathology Laboratory; Università degli Studi di Milano; Milano, Italy; Center for the Biology of Disease; VIB-KULeuven; Leuven, Belgium; Center for Human Genetics; Faculty of Medicine; Laboratory for Molecular Cancer Biology; KULeuven; Leuven, Belgium
| | - Katharina Haigh
- Vascular Cell Biology Unit; Department for Molecular Biomedical Research; VIB-Ghent University; Ghent, Belgium; Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium; Australian Centre for Blood Diseases; Monash University; Melbourne, Victoria, Australia
| | - Sonia Bartunkova
- Vascular Cell Biology Unit; Department for Molecular Biomedical Research; VIB-Ghent University; Ghent, Belgium; Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Lieven Haenebalcke
- Vascular Cell Biology Unit; Department for Molecular Biomedical Research; VIB-Ghent University; Ghent, Belgium; Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Jean-Christophe Marine
- Center for the Biology of Disease; VIB-KULeuven; Leuven, Belgium; Center for Human Genetics; Faculty of Medicine; Laboratory for Molecular Cancer Biology; KULeuven; Leuven, Belgium
| | - Steven Goossens
- Vascular Cell Biology Unit; Department for Molecular Biomedical Research; VIB-Ghent University; Ghent, Belgium; Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium; Unit of Molecular and Cellular Oncology; Inflammation Research Center (IRC); VIB-Ghent University; Ghent, Belgium
| | - Jody J Haigh
- Vascular Cell Biology Unit; Department for Molecular Biomedical Research; VIB-Ghent University; Ghent, Belgium; Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium; Australian Centre for Blood Diseases; Monash University; Melbourne, Victoria, Australia
| |
Collapse
|
109
|
Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. Cancer Treat Res 2014; 159:401-426. [PMID: 24114493 DOI: 10.1007/978-3-642-38007-5_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In addition to aberrant transformed cells, tumors are tissues that contain host components, including stromal cells, vascular cells (ECs) and their precursors, and immune cells. All these constituents interact with each other at the cellular and molecular levels, resulting in the production of an intricate and heterogeneous complex of cells and matrix defined as the tumor microenvironment. Several pathways involved in these interactions have been investigated both in pathological and physiological scenarios, and diverse molecules are currently targets of chemotherapeutic and preventive drugs. Many phytochemicals and their derivatives show the ability to inhibit tumor progression, angiogenesis, and metastasis, exerting effects on the tumor microenvironment. In this review, we will outline the principal players and mechanisms involved in the tumor microenvironment network and we will discuss some interesting compounds aimed at interrupting these interactions and blocking tumor insurgence and progression. The considerations provided will be crucial for the design of new preventive approaches to the reduction in cancer risk that need to be applied to large populations composed of apparently healthy individuals.
Collapse
Affiliation(s)
- Antonino Bruno
- Polo Scientifico e Tecnologico, MultiMedica Onlus, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
110
|
Tsuzuki T, Sassa N, Shimoyama Y, Morikawa T, Shiroki R, Kuroda M, Fukatsu A, Kuwahara K, Yoshino Y, Hattori R, Gotoh M. Tyrosine kinase inhibitor-induced vasculopathy in clear cell renal cell carcinoma: an unrecognized antitumour mechanism. Histopathology 2013; 64:484-93. [PMID: 24274732 DOI: 10.1111/his.12277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/04/2013] [Indexed: 12/18/2022]
Abstract
AIMS To evaluate the pathological features of clear cell renal cell carcinoma (CCRCC) treated with tyrosine kinase inhibitors (TKIs), and to elucidate the mechanism of action of TKIs. METHODS AND RESULTS Twenty cases of CCRCC treated with TKIs (sorafenib or sunitinib) were retrospectively analysed: 16 were patients who had undergone radical nephrectomy after neoadjuvant TKI therapy, and four were autopsy cases of patients who received TKI treatment. All tumours had two distinct regions: one characterized by necrosis and/or degeneration, indicating antitumour activity; and the other characterized by no or few pathological changes, indicating the absence of antitumour activity. Vasculopathy of tumour vessels was observed in or adjacent to the necrotic or degenerative areas; a decreased density of endothelial cells was noted in the tumour vessels. Few or no changes of vasculopathy were observed in tumour vessels in the other CCRCC areas, indicating the absence or low levels of antitumour activity. CONCLUSIONS This is the first pathological report of vasculopathy in TKI-treated CCRCC cases. Our data suggest that TKIs initially induce vasculopathy in tumour vessels, and consequently cause reduction or diminution of blood supply to the CCRCCs, resulting in antitumour activity characterized by necrosis and hyalinization.
Collapse
Affiliation(s)
- Toyonori Tsuzuki
- Department of Pathology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Kondoh M, Ohga N, Akiyama K, Hida Y, Maishi N, Towfik AM, Inoue N, Shindoh M, Hida K. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One 2013; 8:e80349. [PMID: 24260373 PMCID: PMC3829944 DOI: 10.1371/journal.pone.0080349] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/02/2013] [Indexed: 11/17/2022] Open
Abstract
There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.
Collapse
Affiliation(s)
- Miyako Kondoh
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of CardioVascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Alam Mohammad Towfik
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nobuo Inoue
- Department of Gerodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
112
|
Akhter A, Hayashi Y, Sakurai Y, Ohga N, Hida K, Harashima H. A liposomal delivery system that targets liver endothelial cells based on a new peptide motif present in the ApoB-100 sequence. Int J Pharm 2013; 456:195-201. [DOI: 10.1016/j.ijpharm.2013.07.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/27/2013] [Accepted: 07/21/2013] [Indexed: 11/29/2022]
|
113
|
Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. Br J Cancer 2013; 109:2237-47. [PMID: 24045659 PMCID: PMC3798951 DOI: 10.1038/bjc.2013.535] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 01/28/2023] Open
Abstract
Background: Molecules that are highly expressed in tumour endothelial cells (TECs) may be candidates for specifically targeting TECs. Using DNA microarray analysis, we found that the lysyl oxidase (LOX) gene was upregulated in TECs compared with its expression in normal endothelial cells (NECs). LOX is an enzyme that enhances invasion and metastasis of tumour cells. However, there are no reports on the function of LOX in isolated TECs. Methods: TECs and NECs were isolated to investigate LOX function in TECs. LOX inhibition of in vivo tumour growth was also assessed using β-aminopropionitrile (BAPN). Results: LOX expression was higher in TECs than in NECs. LOX knockdown inhibited cell migration and tube formation by TECs, which was associated with decreased phosphorylation of focal adhesion kinase (Tyr 397). Immunostaining showed high LOX expression in human tumour vessels in vivo. Tumour angiogenesis and micrometastasis were inhibited by BAPN in an in vivo tumour model. Conclusion: LOX may be a TEC marker and a possible therapeutic target for novel antiangiogenic therapy.
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW This review will examine developmental angiogenesis and tumor-related changes to endothelial cells. RECENT FINDINGS Processes that govern developmental angiogenesis become dysfunctional in the tumor environment, leading to abnormal tumor endothelial cells and blood vessels. Recent findings suggest that tumor endothelial cells are permanently modified compared with normal counterparts. SUMMARY Coordination of numerous intracellular and extracellular programs promotes the formation of new blood vessels that are necessary for both development and certain diseases. Developmental angiogenesis uses canonical signaling modalities to effectively assemble endothelial cells into predictable vessel structures, and disruption of critical signaling factors has dramatic effects on blood vessel development. Solid tumors co-opt developmental cues to promote formation of tumor vessels that sustain their growth, but these angiogenic signals are not well regulated and produce endothelial cell dysfunction. Aberrant growth factor signaling contributes to phenotypic changes and acquired irreversible intracellular signaling, cytoskeletal and genetic modifications in endothelial cells of tumor vessels. Permanently altered tumor endothelial cells may represent a significant population.
Collapse
|
115
|
Hida K, Ohga N, Akiyama K, Maishi N, Hida Y. Heterogeneity of tumor endothelial cells. Cancer Sci 2013; 104:1391-5. [PMID: 23930621 DOI: 10.1111/cas.12251] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/18/2023] Open
Abstract
Tumor blood vessels play important roles in tumor progression and metastasis. Thus, targeting tumor blood vessels is an important strategy for cancer therapy. Tumor endothelial cells (TECs) are the main targets of anti-angiogenic therapy. Although tumor blood vessels generally sprout from pre-existing vessels and have been thought to be genetically normal, they display a markedly abnormal phenotype, including morphological changes. The degree of angiogenesis is determined by the balance between the positive and negative regulating molecules that are released by tumor and host cells in the microenvironment. Reportedly, tumor blood vessels are heterogeneous with TECs differing from normal endothelial cells (in contrast to the conventional view). We recently compared characteristics of different TECs isolated from highly and low metastatic tumors. We found TECs from highly metastatic tumors had more proangiogenic phenotypes than those from low metastatic tumors. Elucidating the variety of TEC phenotypes and identifying TEC molecular signatures should lead to more complete understanding of the mechanisms of tumor progression, discovery of new therapeutic targets, and development of biomarkers. This review considers current studies on TEC heterogeneity and discusses the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Kyoko Hida
- Department of Vascular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
116
|
Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. The effect of liposomal size on the targeted delivery of doxorubicin to Integrin αvβ3-expressing tumor endothelial cells. Biomaterials 2013; 34:5617-27. [PMID: 23623323 DOI: 10.1016/j.biomaterials.2013.03.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
Abstract
Size of the liposomes (LPs) specially governs its biodistribution. In this study, LPs were developed with controlled sizes, where variation in LP size dictates the ligand-receptor interaction, cellular internalization and its distribution within the tumor microenvironment. The therapeutic efficacies of doxorubicin (DOX)-loaded RGD modified small size (~100 nm in diameter, dnm) and large size (~300 dnm) PEGylated LPs (RGD-PEG-LPs) were compared to that of Doxil (a clinically used DOX-loaded PEG-LP, ~100 dnm) in DOX resistant OSRC-2 (Renal cell carcinoma, RCC) tumor xenografts. Doxil, which accumulated in tumor tissue via the enhanced permeability and retention (EPR) effect, failed to suppress tumor growth. Small size RGD-PEG-LP, that targets the tumor endothelial cells (TECs) and extravasates to tumor cells, failed to provide anti-tumor effect. Large size RGD-PEG-LP preferentially targets the TECs via minimization of the EPR effect, and significantly reduced the tumor growth, which was exerted through its strong anti-angiogenic activity on the tumor vasculature rather than having a direct effect on DOX resistant RCC. The prepared large size RGD-PEG-LP that targets the TECs via interacting with Integrin αvβ3, is a potentially effective and alternate therapeutic strategy for the treatment of DOX resistant tumor cells by utilizing DOX, in cases where Doxil is ineffective.
Collapse
Affiliation(s)
- Golam Kibria
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | |
Collapse
|
117
|
Infante T, Cesario E, Gallo M, Fazioli F, De Chiara A, Tutucci C, Apice G, de Nigris F. Ex vivo behaviour of human bone tumor endothelial cells. Cancers (Basel) 2013; 5:404-17. [PMID: 24216983 PMCID: PMC3730325 DOI: 10.3390/cancers5020404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/19/2013] [Accepted: 04/03/2013] [Indexed: 02/04/2023] Open
Abstract
Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31+ subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.
Collapse
Affiliation(s)
- Teresa Infante
- SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol 2013; 7:259-82. [PMID: 23522958 PMCID: PMC5528409 DOI: 10.1016/j.molonc.2013.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood vessels (angiogenesis) is required for the growth of most tumors. The tumor microenvironment also induces lymphangiogenic factors that promote metastatic spread. Anti-angiogenic therapy targets the mechanisms behind the growth of the tumor vasculature. During the past two decades, several strategies targeting blood and lymphatic vessels in tumors have been developed. The blocking of vascular endothelial growth factor (VEGF)/VEGF receptor-2 (VEGFR-2) signaling has proven effective for inhibition of tumor angiogenesis and growth, and inhibitors of VEGF-C/VEGFR-3 involved in lymphangiogenesis have recently entered clinical trials. However, thus far anti-angiogenic treatments have been less effective in humans than predicted on the basis of pre-clinical tests in mice. Intrinsic and induced resistance against anti-angiogenesis occurs in patients, and thus far the clinical benefit of the treatments has been limited to modest improvements in overall survival in selected tumor types. Our current knowledge of tumor angiogenesis is based mainly on experiments performed in tumor-transplanted mice, and it has become evident that these models are not representative of human cancer. For an improved understanding, angiogenesis research needs models that better recapitulate the multistep tumorigenesis of human cancers, from the initial genetic insults in single cells to malignant progression in a proper tissue environment. To improve anti-angiogenic therapies in cancer patients, it is necessary to identify additional molecular targets important for tumor angiogenesis, and to get mechanistic insight into their interactions for eventual combinatorial targeting. The recent development of techniques for manipulating the mammalian genome in a precise and predictable manner has opened up new possibilities for the generation of more reliable models of human cancer that are essential for the testing of new therapeutic strategies. In addition, new imaging modalities that permit visualization of the entire mouse tumor vasculature down to the resolution of single capillaries have been developed in pre-clinical models and will likely benefit clinical imaging.
Collapse
Affiliation(s)
- Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P.O.B. 5000, 90014 University of Oulu, Finland.
| | | | | |
Collapse
|
119
|
Akiyama K, Ohga N, Maishi N, Hida Y, Kitayama K, Kawamoto T, Osawa T, Suzuki Y, Shinohara N, Nonomura K, Shindoh M, Hida K. The F-prostaglandin receptor is a novel marker for tumor endothelial cells in renal cell carcinoma. Pathol Int 2013; 63:37-44. [DOI: 10.1111/pin.12031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/16/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Kosuke Akiyama
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Noritaka Ohga
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Nako Maishi
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery; University of Hokkaido; Sapporo; Japan
| | - Kazuko Kitayama
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Takahiro Osawa
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Yuko Suzuki
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; University of Hokkaido; Sapporo; Japan
| | - Katsuya Nonomura
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; University of Hokkaido; Sapporo; Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology; Graduate School of Dental Medicine; University of Hokkaido; Sapporo; Japan
| | - Kyoko Hida
- Department of Vascular Biology; University of Hokkaido; Sapporo; Japan
| |
Collapse
|
120
|
Hida K, Akiyama K, Ohga N, Maishi N, Hida Y. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem 2013; 153:243-9. [PMID: 23293323 DOI: 10.1093/jb/mvs152] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumour growth is dependent on angiogenesis, and tumour blood vessels are recognized as an important target for cancer therapy. Tumour endothelial cells (TECs) are the main targets of anti-angiogenic therapy. Unlike the traditionally held view, some TECs may be genetically abnormal and might acquire drug resistance. Therefore, we investigated the drug resistance of TECs and the mechanism by which it is acquired. TECs show resistance to paclitaxel through greater mRNA expression of multidrug resistance 1, which encodes P-glycoprotein, as compared with normal endothelial cells. We found that high levels of vascular endothelial growth factor in tumour-conditioned medium may be responsible for upregulated P-glycoprotein expression. This is a novel mechanism for the acquisition of drug resistance by TECs in a tumour microenvironment. This review focuses on the possibility that TECs can acquire drug resistance.
Collapse
Affiliation(s)
- Kyoko Hida
- Department of Vascular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
121
|
Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS One 2012; 7:e50174. [PMID: 23226512 PMCID: PMC3514264 DOI: 10.1371/journal.pone.0050174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
The present study used a spontaneous cell-based SELEX method (Systemic Evolution of Ligands by EXponential Enrichment) to produce DNA aptamers that specifically bind to cell surface proteins or biomarkers produced by primary cultured mouse tumor endothelial cells (mTECs). In solid tumors, new blood vessels are formed through an angiogenesis process, and this plays a critical role in cancer development as well as metastasis. To combat angiogenesis, an appropriate diagnosis and a molecular-level understanding of the different cancer types are now a high priority. The novel DNA aptamer AraHH001, developed in this study, binds specifically to mTECs with high affinity in the nano-molar range, but does not bind to normal skin endothelial cells (skin-ECs). The selected DNA aptamer was also found to bind to cultured human tumor endothelial cells (hTECs), isolated from a clinical patient with a renal carcinoma. The aptamer AraHH001 showed significant anti-angiogenesis activity by inhibiting tube formation by mTECs on matrigel. Interestingly, a confocal laser scanning microscopy examination of in vitro cellular uptake revealed that AraHH001 was assimilated by mTECs, and became co-localized in acidic compartments, as detected by labeling with Lysotracker Red. Therefore, the development of a specific DNA aptamer that binds to mTECs, as reported here for the first time, holds great promise not only as a therapeutic aptamer but also as a targeted molecular probe that appears to play a major role in angiogenesis, and for the development of a targeted new drug delivery system.
Collapse
|
122
|
After insufficient radiofrequency ablation, tumor-associated endothelial cells exhibit enhanced angiogenesis and promote invasiveness of residual hepatocellular carcinoma. J Transl Med 2012; 10:230. [PMID: 23171368 PMCID: PMC3543343 DOI: 10.1186/1479-5876-10-230] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/01/2012] [Indexed: 12/16/2022] Open
Abstract
Background The mechanism regarding rapid progression of residual hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA) has been preliminarily discussed. However, most studies have mainly focused on RFA-induced changes in the tumor cells. The present study was designed to determine whether tumor-associated endothelial cells (TAECs) could contribute to the invasiveness of HCC after insufficient RFA. Methods TAECs were isolated from fresh HCC tissue and characterized. Morphological changes were observed in TAECs after heat treatment for 10 min. TAEC proliferation, migration and tube formation after heat treatment for 10 min at 37°C (control group), and 42 and 47°C (insufficient RFA groups) were examined. The differences in TAECs interactions with HepG2-GFP or HCCLM3-GFP cells among the two insufficient RFA groups and control group were evaluated. The expression of E-selectin, ICAM-1 and VCAM-1 in TAECs was measured. The effects of TAECs on the invasiveness of HepG2-GFP or HCCLM3-GFP cells after insufficient RFA were analyzed. The IL-6, IL-8, MCP-1 and GRO-α concentrations in conditioned medium from TAECs were measured after insufficient RFA. The associated signaling pathways of Akt, ERK1/2, STAT3 and NF-κB were analyzed in TAECs after insufficient RFA. Results TAECs expressed the EC-specific markers and took up complexes of Dil-Ac-LDL. Relative to the control group, the proliferation of TAECs was significantly inhibited and their migration and tube formation were significantly enhanced in the insufficient RFA groups. Significantly more HepG2-GFP or HCCLM3-GFP cells adhered to TACEs in these groups than in the control group (all P<0.001), via up-regulated expression of E-selectin, ICAM-1 and VCAM-1. TAECs promoted the invasiveness of HepG2-GFP or HCCLM3-GFP cells after insufficient RFA via the up-regulation of IL-6, IL-8, MCP-1 and GRO-α in conditioned medium (all P<0.05). Insufficient RFA enhanced the activities of Akt, ERK1/2 and NF-κB signaling pathways and inhibited STAT3 signaling pathways. Conclusions Insufficient RFA enhanced TAEC migration and tube formation, and this may play a key role in the rapid growth of residual HCC. Increased expression of metastasis-related molecules in TAECs after insufficient RFA may be a potential mechanism for the metastasis of residual HCC.
Collapse
|
123
|
Rumie Vittar NB, Lamberti MJ, Pansa MF, Vera RE, Rodriguez ME, Cogno IS, Milla Sanabria LN, Rivarola VA. Ecological photodynamic therapy: new trend to disrupt the intricate networks within tumor ecosystem. Biochim Biophys Acta Rev Cancer 2012; 1835:86-99. [PMID: 23127970 DOI: 10.1016/j.bbcan.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
Abstract
As with natural ecosystems, species within the tumor microenvironment are connected by pairwise interactions (e.g. mutualism, predation) leading to a strong interdependence of different populations on each other. In this review we have identified the ecological roles played by each non-neoplastic population (macrophages, endothelial cells, fibroblasts) and other abiotic components (oxygen, extracellular matrix) directly involved with neoplastic development. A way to alter an ecosystem is to affect other species within the environment that are supporting the growth and survival of the species of interest, here the tumor cells; thus, some features of ecological systems could be exploited for cancer therapy. We propose a well-known antitumor therapy called photodynamic therapy (PDT) as a novel modulator of ecological interactions. We refer to this as "ecological photodynamic therapy." The main goal of this new strategy is the improvement of therapeutic efficiency through the disruption of ecological networks with the aim of destroying the tumor ecosystem. It is therefore necessary to identify those interactions from which tumor cells get benefit and those by which it is impaired, and then design multitargeted combined photodynamic regimes in order to orchestrate non-neoplastic populations against their neoplastic counterpart. Thus, conceiving the tumor as an ecological system opens avenues for novel approaches on treatment strategies.
Collapse
Affiliation(s)
- N Belén Rumie Vittar
- Universidad Nacional de Río Cuarto, Biología Molecular, Ruta 36 Km 601, Río Cuarto (5800), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Clinical and biological implications of the tumor microenvironment. CANCER MICROENVIRONMENT 2012; 5:95-112. [PMID: 22782446 DOI: 10.1007/s12307-012-0099-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In normal tissues and organs, the activities of the constituent cells are strictly restricted to the tasks assigned to them during development. In addition they (with the exception of leukocytes) remain inflexibly confined to their territorial domains by regulatory interactions with their neighbors.This creates specialized local micro-environments in which structure and function are orderly, stable and tightly controlled by feed-back loops, within interacting regulatory networks.This system has considerable ability to adapt to changing conditions. In contrast, the microenvironment in regions where tumors are forming and expanding is characterized by progressive loss of specialized or differentiated cellular functions,disorderly molecular signals, and degeneration of microscopical organ structure. This, coupled with the traffic of cells into and out of the tumor, often culminates in local invasion and metastasis to other organs. The nature of these disturbed molecular and cellular interactions is, by definition,highly unstable and increasingly unpredictable as time passes.It also varies between different tumors, sometimes even leading to regression. However, systematic analysis of this dysfunction in the tumor microcosm, using multiple modern research techniques, has revealed that all actively growing primary and secondary neoplasms share an absolute dependency upon support from adjacent non-neoplastic cells of the host. This support, in turn, continuously depends upon dynamic interplay between tumor and host cell populations, via signaling molecules and surface receptors in the tumor microenvironment.Such interplay determines the fate of the growing neoplasm. Such information, described and evaluated in this article, provides important new insights into the etiology of carcinogenesis and how tumor growth, invasion and metastasis might be therapeutically arrested. The facts and concepts assembled below, regarding the cancer microenvironment, demonstrate how modern molecular findings reveal the impact of the wide range of cancer diseases upon the internal cellular, tissue and organ environments of the whole individual and how this applies to designing new work to improve human cancer diagnosis and treatment. The article discusses several specific types of experimentally-induced and clinically common cancers to derive principles useful for interpreting events in the tumor microenvironment,which apply to cancers in general and especially to human malignant disease.
Collapse
|
125
|
Bottsford-Miller JN, Coleman RL, Sood AK. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol 2012; 30:4026-34. [PMID: 23008289 DOI: 10.1200/jco.2012.41.9242] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis has long been considered an important target for cancer therapy. Initial efforts have primarily focused on targeting of endothelial and tumor-derived vascular endothelial growth factor signaling. As evidence emerges that angiogenesis has significant mechanistic complexity, therapeutic resistance and escape have become practical limitations to drug development. Here, we review the mechanisms by which dynamic changes occur in the tumor microenvironment in response to antiangiogenic therapy, leading to drug resistance. These mechanisms include direct selection of clonal cell populations with the capacity to rapidly upregulate alternative proangiogenic pathways, increased invasive capacity, and intrinsic resistance to hypoxia. The implications of normalization of vasculature with subsequently improved vascular function as a result of antiangiogenic therapy are explored, as are the implications of the ability to incorporate and co-opt otherwise normal vasculature. Finally, we consider the extent to which a better understanding of the biology of hypoxia and reoxygenation, as well as the depth and breadth of systems invested in angiogenesis, may offer putative biomarkers and novel therapeutic targets. Insights gained through this work may offer solutions for personalizing antiangiogenesis approaches and improving the outcome of patients with cancer.
Collapse
Affiliation(s)
- Justin N Bottsford-Miller
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas MD Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA
| | | | | |
Collapse
|
126
|
Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. J Control Release 2012; 162:225-32. [DOI: 10.1016/j.jconrel.2012.06.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/16/2012] [Accepted: 06/14/2012] [Indexed: 01/23/2023]
|
127
|
Qin L, Bromberg-White JL, Qian CN. Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv Cancer Res 2012; 113:191-239. [PMID: 22429856 DOI: 10.1016/b978-0-12-394280-7.00006-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is essential for tumor growth and metastasis. Many signaling pathways are involved in regulating tumor angiogenesis, with the vascular endothelial growth factor pathway being of particular interest. The recognition of the heterogeneity in tumor vasculature has led to better predictions of prognosis through differential analyses of the vasculature. However, the clinical benefits from antiangiogenic therapy are limited, because many antiangiogenic agents cannot provide long-term survival benefits, suggesting the development of drug resistance. Activation of the hypoxia and c-Met pathways, as well as other proangiogenic factors, has been shown to be responsible for such resistance. Vessel co-option could be another important mechanism. For future development, research to improve the efficacy of antiangiogenic therapy includes (a) using tumor-derived endothelial cells for drug screening; (b) developing the drugs focusing on specific tumor types; (c) developing a better preclinical model for drug study; (d) developing more accurate biomarkers for patient selection; (e) targeting the c-Met pathway or other pathways; and (f) optimizing the dose and schedule of antiangiogenic therapy. In summary, the future of antiangiogenic therapy for cancer patients depends on our efforts to develop the right drugs, select the right patients, and optimize the treatment conditions.
Collapse
Affiliation(s)
- Li Qin
- State Key Laboratory on Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | | | | |
Collapse
|
128
|
Rodriguez FJ, Orr BA, Ligon KL, Eberhart CG. Neoplastic cells are a rare component in human glioblastoma microvasculature. Oncotarget 2012; 3:98-106. [PMID: 22298889 PMCID: PMC3292896 DOI: 10.18632/oncotarget.427] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microvascular proliferation is a key biological and diagnostic hallmark of human glioblastoma, one of the most aggressive forms of human cancer. It has recently been suggested that stem-like glioblastoma cells have the capacity to differentiate into functional endothelial cells, and that a significant proportion of the vascular lining in tumors has a neoplastic origin. In principle, this finding could significantly impact the efficacy and development of antiangiogenic therapies targeting the vasculature. While the potential of stem-like cancer cells to form endothelium in culture seems clear, in our clinical experience using a variety of molecular markers, neoplastic cells do not contribute significantly to the endothelial-lined vasculature of primary human glioblastoma. We sought to confirm this impression by analyzing vessels in glioblastoma previously examined using chromogenic in situ hybridization (CISH) for EGFR and immunohistochemistry for mutant IDH1. Vessels containing cells expressing these definitive neoplastic markers were identified in a small fraction of tumors, but only 10% of vessel profiles examined contained such cells and when identified these cells comprised less than 10% of the vascular cellularity in the cross section. Interestingly, these rare intravascular cells showing EGFR amplification by CISH or mutant IDH1 protein by immunohistochemistry were located in the middle or outer portions of vessel walls, but not amongst the morphologic boundaries of the endothelial lining. To more directly address the capacity of glioblastoma cells to contribute to the vascular endothelium, we performed double labeling (Immunofluorescence/FISH) for the endothelial marker CD34 and EGFR gene locus. Although rare CD34 positive neoplastic cells unassociated with vessels were identified (<1%), this analysis did not identify EGFR amplified cells within vascular linings, and further supports our observations that incorporation of glioblastoma cells into the tumor vessels is at best extremely rare, and therefore of questionable clinical or therapeutic significance.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Division of Neuropathology, Johns Hopkins University, MD, USA.
| | | | | | | |
Collapse
|
129
|
Osawa T, Ohga N, Hida Y, Kitayama K, Akiyama K, Onodera Y, Fujie M, Shinohara N, Shindoh M, Nonomura K, Hida K. Prostacyclin receptor in tumor endothelial cells promotes angiogenesis in an autocrine manner. Cancer Sci 2012; 103:1038-44. [PMID: 22380928 DOI: 10.1111/j.1349-7006.2012.02261.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/17/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022] Open
Abstract
Molecules highly expressed in tumor endothelial cells (TEC) are important for specific targeting of these cells. Previously, using DNA microarray analysis, we found that the prostacyclin receptor (IP receptor) gene was upregulated in TEC compared with normal endothelial cells (NEC). Although prostacyclin is implicated in re-endothelialization and angiogenesis, its role remains largely unknown in TEC. Moreover, the effect of the IP receptor on TEC has not been reported. In the present study we investigated the function of the IP receptor in TEC. The TEC were isolated from two types of human tumor xenografts in nude mice, while NEC were isolated from normal counterparts. Prostacyclin secretion levels in TEC were significantly higher than those in NEC, as shown using ELISA. Real-time RT-PCR showed that the IP receptor was upregulated in TEC compared with NEC. Furthermore, migration and tube formation of TEC were suppressed by the IP receptor antagonist RO1138452. Immunohistostaining showed that the IP receptor was specifically expressed in blood vessels of renal cell carcinoma specimens, but not in glomerular vessels of normal renal tissue. These findings suggest that the IP receptor is a TEC-specific marker and might be a useful therapeutic target.
Collapse
Affiliation(s)
- Takahiro Osawa
- Department of Vascular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kawamoto T, Ohga N, Akiyama K, Hirata N, Kitahara S, Maishi N, Osawa T, Yamamoto K, Kondoh M, Shindoh M, Hida Y, Hida K. Tumor-derived microvesicles induce proangiogenic phenotype in endothelial cells via endocytosis. PLoS One 2012; 7:e34045. [PMID: 22479517 PMCID: PMC3316594 DOI: 10.1371/journal.pone.0034045] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
Abstract
Background Increasing evidence indicates that tumor endothelial cells (TEC) differ from normal endothelial cells (NEC). Our previous reports also showed that TEC were different from NEC. For example, TEC have chromosomal abnormality and proangiogenic properties such as high motility and proliferative activity. However, the mechanism by which TEC acquire a specific character remains unclear. To investigate this mechanism, we focused on tumor-derived microvesicles (TMV). Recent studies have shown that TMV contain numerous types of bioactive molecules and affect normal stromal cells in the tumor microenvironment. However, most of the functional mechanisms of TMV remain unclear. Methodology/Principal Findings Here we showed that TMV isolated from tumor cells were taken up by NEC through endocytosis. In addition, we found that TMV promoted random motility and tube formation through the activation of the phosphoinositide 3-kinase/Akt pathway in NEC. Moreover, the effects induced by TMV were inhibited by the endocytosis inhibitor dynasore. Our results indicate that TMV could confer proangiogenic properties to NEC partly via endocytosis. Conclusion We for the first time showed that endocytosis of TMV contributes to tumor angiogenesis. These findings offer new insights into cancer therapies and the crosstalk between tumor and endothelial cells mediated by TMV in the tumor microenvironment.
Collapse
Affiliation(s)
- Taisuke Kawamoto
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Naoya Hirata
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Shuji Kitahara
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Nako Maishi
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Takahiro Osawa
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Kazuyuki Yamamoto
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Miyako Kondoh
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
131
|
Tumor Endothelial Cells Acquire Drug Resistance by MDR1 Up-Regulation via VEGF Signaling in Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1283-1293. [DOI: 10.1016/j.ajpath.2011.11.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/11/2011] [Accepted: 11/17/2011] [Indexed: 01/19/2023]
|
132
|
Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells. Br J Cancer 2012; 106:1214-23. [PMID: 22374465 PMCID: PMC3304426 DOI: 10.1038/bjc.2012.59] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We isolated tumour endothelial cells (TECs), demonstrated their abnormalities, compared gene expression profiles of TECs and normal endothelial cells (NECs) by microarray analysis and identified several genes upregulated in TECs. We focused on the gene encoding biglycan, a small leucine-rich repeat proteoglycan. No report is available on biglycan expression or function in TECs. METHODS The NEC and TEC were isolated. We investigated the biglycan expression and function in TECs. Western blotting analysis of biglycan was performed on sera from cancer patients. RESULTS Biglycan expression levels were higher in TECs than in NECs. Biglycan knockdown inhibited cell migration and caused morphological changes in TECs. Furthermore, immunostaining revealed strong biglycan expression in vivo in human tumour vessels, as in mouse TECs. Biglycan was detected in the sera of cancer patients but was hardly detected in those of healthy volunteers. CONCLUSION These findings suggested that biglycan is a novel TEC marker and a target for anti-angiogenic therapy.
Collapse
|
133
|
Maishi N, Ohga N, Hida Y, Akiyama K, Kitayama K, Osawa T, Onodera Y, Shinohara N, Nonomura K, Shindoh M, Hida K. CXCR7: A novel tumor endothelial marker in renal cell carcinoma. Pathol Int 2012; 62:309-17. [DOI: 10.1111/j.1440-1827.2012.02792.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
134
|
Heterogeneity of tumor endothelial cells: comparison between tumor endothelial cells isolated from high- and low-metastatic tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1294-1307. [PMID: 22245217 DOI: 10.1016/j.ajpath.2011.11.035] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/14/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022]
Abstract
An important concept in tumor angiogenesis is that tumor endothelial cells (TECs) are genetically normal and homogeneous. However, we previously reported that TECs differ from normal ECs. Whether the characteristics of TECs derived from different tumors differ remains unknown. To elucidate this, in this study, we isolated two types of TECs from high-metastatic (HM) and low-metastatic (LM) tumors and compared their characteristics. HM tumor-derived TECs (HM-TECs) showed higher proliferative activity and invasive activity than LM tumor-derived TECs (LM-TECs). Moreover, the mRNA expression levels of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF) receptors 1 and 2, VEGF, and hypoxia-inducible factor-1α, were higher in HM-TECs than in LM-TECs. The tumor blood vessels themselves and the surrounding area in HM tumors were exposed to hypoxia. Furthermore, HM-TECs showed higher mRNA expression levels of the stemness-related gene stem cell antigen and the mesenchymal marker CD90 compared with LM-TECs. HM-TECs were spheroid, with a smoother surface and higher circularity in the stem cell spheroid assay. HM-TECs differentiated into osteogenic cells, expressing activated alkaline phosphatase in an osteogenic medium at a higher rate than either LM-TECs or normal ECs. Furthermore, HM-TECs contained more aneuploid cells than LM-TECs. These results indicate that TECs from HM tumors have a more pro-angiogenic phenotype than those from LM tumors.
Collapse
|
135
|
Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation. Brain Tumor Pathol 2012; 29:73-86. [DOI: 10.1007/s10014-011-0077-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 12/14/2022]
|
136
|
Bruce D, Tan PH. Vascular endothelial growth factor receptors and the therapeutic targeting of angiogenesis in cancer: where do we go from here? ACTA ACUST UNITED AC 2011; 18:85-103. [PMID: 22017472 DOI: 10.3109/15419061.2011.619673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Vascular Endothelial Growth Factor receptors (VEGFRs), the interactions with their ligands and the subsequent signalling pathways are known to play a vital role in tumour angiogenesis. Initial clinical trials of VEGFR inhibitors were disappointing but over the past decade some therapies have been successfully brought to market. At present, VEGFR inhibitors appear to be most promising as adjuvants to conventional chemotherapy. However, several interacting signalling molecules and downstream pathways have recently been shown to interact with VEGFR signalling and provide promising novel targets, such as the platelet-derived growth factor (PDGF), epithelial growth factor (EGF), human epithelial receptor-2, (HER-2) Tie-2 and oestrogen receptors. Elucidation of this web of signalling pathways may identify new therapeutic strategies which may be used in combination with VEGFR inhibitors to augment the efficacy of anti-angiogenic cancer treatments. This review assesses the role of modulating VEGFR activity in cancer and systematically examines current evidence and trials in this area.
Collapse
Affiliation(s)
- David Bruce
- Nuffield Department of Surgical Science, Oxford University, The John Radcliffe, Headley Way, Oxford, UK
| | | |
Collapse
|
137
|
Hida K, Kawamoto T, Ohga N, Akiyama K, Hida Y, Shindoh M. Altered angiogenesis in the tumor microenvironment. Pathol Int 2011; 61:630-7. [PMID: 22029673 DOI: 10.1111/j.1440-1827.2011.02726.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor blood vessels play an important role in tumor progression and metastasis. Thus, targeting the tumor blood vessels is an important strategy in cancer therapy. Tumor blood vessels generally arise from pre-existing vessels and have been thought to be genetically normal. However, they have been shown to differ from their normal counterparts, e.g. with regard to the morphological changes. We isolated tumor endothelial cells (TEC) from mouse tumor xenografts and showed that they were abnormal. TEC up-regulate many genes, proliferate more rapidly and migrate more than normal endothelial cells (NEC). Furthermore, the TEC in our study were cytogenetically abnormal. We concluded that TEC can acquire cytogenetic abnormalities while in the tumor microenvironment. In order to develop ideal antiangiogenic therapies, understanding the crosstalk between blood vessels and the tumor microenvironment is important. This review considers the current studies on TEC abnormalities and discusses the possible mechanism by which the tumor microenvironment produces abnormal TEC.
Collapse
Affiliation(s)
- Kyoko Hida
- Departments of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
138
|
Deeb KK, Luo W, Karpf AR, Omilian AR, Bshara W, Tian L, Tangrea MA, Morrison CD, Johnson CS, Trump DL. Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate. Epigenetics 2011; 6:994-1000. [PMID: 21725204 DOI: 10.4161/epi.6.8.16536] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p< 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 remained unchanged in two patient sample. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Kristin K Deeb
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute; Buffalo, NY USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization. FASEB J 2011; 25:2874-82. [PMID: 21628445 DOI: 10.1096/fj.10-180323] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neoangiogenesis is crucial for solid tumor growth and invasion, as the vasculature provides metabolic support and access to the circulation. Current antiangiogenic therapies have been designed on the assumption that endothelial cells forming the tumor vasculature exhibit genetic stability. Recent studies demonstrate that this is not the case. Tumor endothelial cells possess a distinct phenotype, differing from normal endothelial cells at both molecular and functional levels. This challenges the concept that tumor angiogenesis exclusively depends on normal endothelial cell recruitment from the surrounding vascular network. Indeed, recent data suggest alternative strategies for tumor vascularization. It has been reported that tumor vessels may derive from an intratumor embryonic-like vasculogenesis. This condition might be due to differentiation of normal stem and progenitor cells of hematopoietic origin or resident in tissues. Cancer stem cells may also participate in tumor vasculogenesis by virtue of their stem and progenitor cell properties. Finally, normal endothelial cells might be reprogrammed to a proangiogenic or dedifferentiated phenotype by genetic information transmitted from the tumor trough apoptotic bodies, or following mRNA and microRNA transfer by exosomes and microvesicles. In this review, we discuss the different aspects of intratumor angiogenesis and vasculogenesis, the known mechanisms involved, and the possible implications for the response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, University of Torino, Turin, Italy
| | | | | |
Collapse
|
140
|
Muraki C, Ohga N, Hida Y, Nishihara H, Kato Y, Tsuchiya K, Matsuda K, Totsuka Y, Shindoh M, Hida K. Cyclooxygenase-2 inhibition causes antiangiogenic effects on tumor endothelial and vascular progenitor cells. Int J Cancer 2011; 130:59-70. [DOI: 10.1002/ijc.25976] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/12/2011] [Indexed: 11/07/2022]
|
141
|
HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer 2011; 104:819-29. [PMID: 21285980 PMCID: PMC3048211 DOI: 10.1038/bjc.2011.20] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Tumour stromal cells differ from its normal counterpart. We have shown that tumour endothelial cells (TECs) isolated from tumour tissues are also abnormal. Furthermore, we found that mRNAs of vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) were upregulated in TECs. Vascular endothelial growth factor-A and COX-2 are angiogenic factors and their mRNAs contain an AU-rich element (ARE). AU-rich element-containing mRNAs are reportedly stabilised by Hu antigen R (HuR), which is exported to the cytoplasm. Methods: Normal endothelial cell (NEC) and two types of TECs were isolated. We evaluated the correlation of HuR and accumulation of VEGF-A and COX-2 mRNAs in TECs and effects of HuR on biological phenotypes of TECs. Results: The HuR protein was accumulated in the cytoplasm of TECs, but not in NECs. Vascular endothelial growth factor-A and COX-2 mRNA levels decreased due to HuR knockdown and it was shown that these ARE-mRNA were bound to HuR in TECs. Furthermore, HuR knockdown inhibited cell survival, random motility, tube formation, and Akt phosphorylation in TECs. Conclusion: Hu antigen R is associated with the upregulation of VEGF-A and COX-2 mRNA in TECs, and has an important role in keeping an angiogenic switch on, through activating angiogenic phenotype in tumour endothelium.
Collapse
|
142
|
|
143
|
Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468:829-33. [PMID: 21102433 DOI: 10.1038/nature09624] [Citation(s) in RCA: 900] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 11/01/2010] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a γ-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas γ-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.
Collapse
|
144
|
Nitta Y, Hida K, Kitamura T, Higashino F, Ohga N, Fukushima K, Shindoh M. Phenotype of tumor lymphatic vessels is a prognostic factor in human tongue squamous cell carcinoma. Oncol Lett 2010; 2:79-83. [PMID: 22870133 DOI: 10.3892/ol.2010.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/13/2010] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis to lymph nodes occurs through the lymphatic vessels located in the tumor circumference. However, few studies have focused on the phenotypes of lymphatic vessels around these tumors. We investigated the characteristics of the lymph vessels of tongue squamous cell carcinoma (SCC) and compared them to clinicopathological characteristics. A total of 43 patients diagnosed as having tongue SCC consulted Hokkaido University Hospital were examined. The lymphatic vessels were identified by antibody D2-40 and the number and diameter of tumor lymphatic vessels were measured. The proliferative activity of lymphatic endothelial cells was also examined by immunostaining using antibody MIB-1. We then measured the DNA density of lymphatic endothelial cells in normal and tumor tissues. The number of tumor lymphatic vessels significantly increased in highly metastatic cases of tongue SCC, particularly in cases with a large number of micro lymphatic vessels. A significant correlation was found between the metastatic and proliferative activity of tumor lymphatic endothelial cells. Moreover, the DNA density of tumor lymphatic endothelial cells increased compared to normal tissues. These results suggest that the phenotypes of tumor lymphatic endothelial cells are an indicator of lymph node metastasis of tongue SCC.
Collapse
Affiliation(s)
- Yukie Nitta
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
We review the evidence suggesting the involvement of Cadherin 13 (CDH13, T-cadherin, H-cadherin) in various cancers. CDH13 is an atypical member of the cadherin family, devoid of a transmembrane domain and anchored to the exterior surface of the plasma membrane via a glycosylphosphatidylinositol anchor. CDH13 is thought to affect cellular behavior largely through its signaling properties. It is often down-regulated in cancerous cells. CDH13 down-regulation has been associated with poorer prognosis in various carcinomas, such as lung, ovarian, cervical and prostate cancer. CDH13 re-expression in most cancer cell lines inhibits cell proliferation and invasiveness, increases susceptibility to apoptosis, and reduces tumor growth in in vivo models. These properties suggest that CDH13 may represent a possible target for therapy in some cancers. At the same time, CDH13 is up-regulated in blood vessels growing through tumors and promotes tumor neovascularization. In contrast to most cancer cell lines, CDH13 overexpression in endothelial cells promotes their proliferation and migration, and has a pro-survival effect. We also discuss molecular mechanisms that may regulate CDH13 expression and underlie its roles in cancer.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois, College of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
146
|
Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels. Blood 2010; 116:3108-17. [PMID: 20664058 DOI: 10.1182/blood-2010-01-266197] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulated vascular endothelial growth factor (VEGF) signaling is required for proper angiogenesis, and excess VEGF signaling results in aberrantly formed vessels that do not function properly. Tumor endothelial cells have excess centrosomes and are aneuploid, properties that probably contribute to the morphologic and functional abnormalities of tumor vessels. We hypothesized that endothelial cell centrosome number is regulated by signaling via angiogenic factors, such as VEGF. We found that endothelial cells in developing vessels exposed to elevated VEGF signaling display centrosome overduplication. Signaling from VEGF, through either MEK/ERK or AKT to cyclin E/Cdk2, is amplified in association with centrosome overduplication, and blockade of relevant pathway components rescued the centrosome overduplication defect. Endothelial cells exposed to elevated FGF also had excess centrosomes, suggesting that multiple angiogenic factors regulate centrosome number. Endothelial cells with excess centrosomes survived and formed aberrant spindles at mitosis. Developing vessels exposed to elevated VEGF signaling also exhibited increased aneuploidy of endothelial cells, which is associated with cellular dysfunction. These results provide the first link between VEGF signaling and regulation of the centrosome duplication cycle, and suggest that endothelial cell centrosome overduplication contributes to aberrant angiogenesis in developing vessel networks exposed to excess angiogenic factors.
Collapse
|
147
|
Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 2010; 123:1684-92. [DOI: 10.1242/jcs.061556] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the bone morphogenetic protein (BMP) family have been implicated in the development and maintenance of vascular systems. Whereas members of the BMP-2/4 and osteogenic protein-1 groups signal via activin receptor-like kinase (ALK)-2, ALK-3 and ALK-6, BMP-9 and BMP-10 have been reported to bind to ALK-1 in endothelial cells. However, the roles of BMP-9–ALK-1 signaling in the regulation of endothelial cells have not yet been fully elucidated. Here, using various systems, we examined the effects of BMP-9 on the proliferation of endothelial cells. Vascular-tube formation from ex vivo allantoic explants of mouse embryos was promoted by BMP-9. BMP-9, as well as BMP-4 and BMP-6, also induced the proliferation of in-vitro-cultured mouse embryonic-stem-cell-derived endothelial cells (MESECs) by inducing the expression of vascular endothelial growth factor receptor 2 and Tie2, a receptor for angiopoietin-1. A decrease in ALK-1 expression or expression of constitutively active ALK-1 in MESECs abrogated and mimicked the effects of BMP-9 on the proliferation of MESECs, respectively, suggesting that BMP-9 promotes the proliferation of these cells via ALK-1. Furthermore, in vivo angiogenesis was promoted by BMP-9 in a Matrigel plug assay and in a BxPC3 xenograft model of human pancreatic cancer. Consistent with these in vivo findings, BMP-9 enhanced the proliferation of in-vitro-cultured normal endothelial cells from dermal tissues of adult mice and of tumor-associated endothelial cells isolated from tumor xenografts in host mice. These findings suggest that BMP-9 signaling activates the endothelium tested in the present study via ALK-1.
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Noritaka Ohga
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, Division of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Hokkaido 060-0808, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Hida
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, Division of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Hokkaido 060-0808, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuro Watabe
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
148
|
Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy. JOURNAL OF ONCOLOGY 2010; 2010:723798. [PMID: 20454584 PMCID: PMC2864512 DOI: 10.1155/2010/723798] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/13/2010] [Accepted: 03/03/2010] [Indexed: 01/07/2023]
Abstract
Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.
Collapse
|
149
|
|
150
|
Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K. Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun 2010; 394:947-54. [DOI: 10.1016/j.bbrc.2010.03.089] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|