101
|
Olme CH, Finnon R, Brown N, Kabacik S, Bouffler S, Badie C. Live cell detection of chromosome 2 deletion and Sfpi1/PU1 loss in radiation-induced mouse acute myeloid leukaemia. Leuk Res 2013; 37:1374-82. [PMID: 23806234 PMCID: PMC3775122 DOI: 10.1016/j.leukres.2013.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/20/2022]
Abstract
The CBA/H mouse model of radiation-induced acute myeloid leukaemia (rAML) has been studied for decades to bring to light the molecular mechanisms associated with multistage carcinogenesis. A specific interstitial deletion of chromosome 2 found in a high proportion of rAML is recognised as the initiating event. The deletion leads to the loss of Sfpi, a gene essential for haematopoietic development. Its product, the transcription factor PU.1 acts as a tumour suppressor in this model. Although the deletion can be detected early following ionising radiation exposure by cytogenetic techniques, precise characterisation of the haematopoietic cells carrying the deletion and the study of their fate in vivo cannot be achieved. Here, using a genetically engineered C57BL/6 mouse model expressing the GFP fluorescent molecule under the control of the Sfpi1 promoter, which we have bred onto the rAML-susceptible CBA/H strain, we demonstrate that GFP expression did not interfere with X-ray induced leukaemia incidence and that GFP fluorescence in live leukaemic cells is a surrogate marker of radiation-induced chromosome 2 deletions with or without point mutations on the remaining allele of the Sfpi1 gene. This study presents the first experimental evidence for the detection of this leukaemia initiating event in live leukemic cells.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Chromosome Deletion
- Disease Models, Animal
- Exons
- Female
- Flow Cytometry
- Gene Deletion
- Gene Expression
- Genes, Reporter
- Genetic Predisposition to Disease
- Immunophenotyping
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Radiation-Induced/genetics
- Leukemia, Radiation-Induced/metabolism
- Mice
- Mutation
- Proto-Oncogene Proteins/genetics
- Trans-Activators/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
| | | | | | | | | | - C. Badie
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire, UK
| |
Collapse
|
102
|
EL-SAGHIRE HOUSSEIN, MICHAUX ARLETTE, THIERENS HUBERT, BAATOUT SARAH. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med 2013; 32:1407-14. [DOI: 10.3892/ijmm.2013.1514] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022] Open
|
103
|
DNA double-strand breaks: linking gene expression to chromosome morphology and mobility. Chromosoma 2013; 123:103-15. [DOI: 10.1007/s00412-013-0432-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/27/2022]
|
104
|
Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, Greither R, Lista F, Peinnequin A, Poyot T, Herodin F, Missel A, Terbrueggen B, Zenhausern F, Rothkamm K, Meineke V, Braselmann H, Beinke C, Abend M. Laboratory intercomparison of gene expression assays. Radiat Res 2013; 180:138-48. [PMID: 23886340 DOI: 10.1667/rr3236.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide rapid individual dose estimates with high sample throughput. The focus of the study was an intercomparison of laboratories' dose-assessment performances using gene expression assays. Lithium-heparinized whole blood from one healthy donor was irradiated (240 kVp, 1 Gy/min) immediately after venipuncture at approximately 37°C using single X-ray doses. Blood samples to establish calibration curves (0.25-4 Gy) as well as 10 blinded test samples (0.1-6.4 Gy) were incubated for 24 h at 37°C supplemented with an equal volume of medium and 10% fetal calf serum. For quantitative reverse transcription polymerase chain reaction (qRT-PCR), samples were lysed, stored at -20°C and shipped on ice. For the Chemical Ligation Dependent Probe Amplification methodology (CLPA), aliquots were incubated in 2 ml CLPA reaction buffer (DxTerity), mixed and shipped at room temperature. Assays were run in each laboratory according to locally established protocols. The mean absolute difference (MAD) of estimated doses relative to the true doses (in Gy) was calculated. We also merged doses into binary categories reflecting aspects of clinical/diagnostic relevance and examined accuracy, sensitivity and specificity. The earliest reported time on dose estimates was <8 h. The standard deviation of technical replicate measurements in 75% of all measurements was below 11%. MAD values of 0.3-0.5 Gy and 0.8-1.3 Gy divided the laboratories contributions into two groups. These fourfold differences in accuracy could be primarily explained by unexpected variances of the housekeeping gene (P = 0.0008) and performance differences in processing of calibration and blinded test samples by half of the contributing laboratories. Reported gene expression dose estimates aggregated into binary categories in general showed an accuracies and sensitivities of 93-100% and 76-100% for the groups, with low MAD and high MAD, respectively. In conclusion, gene expression-based dose estimates were reported quickly, and for laboratories with MAD between 0.3-0.5 Gy binary dose categories of clinical significance could be discriminated with an accuracy and sensitivity comparable to established cytogenetic assays.
Collapse
Affiliation(s)
- C Badie
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, De Sanctis S, Greither R, Herodin F, Jones A, Kabacik S, Knie T, Kulka U, Lista F, Martigne P, Missel A, Moquet J, Oestreicher U, Peinnequin A, Poyot T, Roessler U, Scherthan H, Terbrueggen B, Thierens H, Valente M, Vral A, Zenhausern F, Meineke V, Braselmann H, Abend M. Comparison of established and emerging biodosimetry assays. Radiat Res 2013; 180:111-9. [PMID: 23862692 DOI: 10.1667/rr3231.1] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools.
Collapse
Affiliation(s)
- K Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Manning G, Rothkamm K. Deoxyribonucleic acid damage-associated biomarkers of ionising radiation: current status and future relevance for radiology and radiotherapy. Br J Radiol 2013; 86:20130173. [PMID: 23659923 DOI: 10.1259/bjr.20130173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diagnostic and therapeutic radiation technology has developed dramatically in recent years, and its use has increased significantly, bringing clinical benefit. The use of diagnostic radiology has become widespread in modern society, particularly in paediatrics where the clinical benefit needs to be balanced with the risk of leukaemia and brain cancer increasing after exposure to low doses of radiation. With improving long-term survival rates of radiotherapy patients and the ever-increasing use of diagnostic and interventional radiology procedures, concern has risen over the long-term risks and side effects from such treatments. Biomarker development in radiology and radiotherapy has progressed significantly in recent years to investigate the effects of such use and optimise treatment. Recent biomarker development has focused on improving the limitations of established techniques by the use of automation, increasing sensitivity and developing novel biomarkers capable of quicker results. The effect of low-dose exposure (0-100 mGy) used in radiology, which is increasingly linked to cancer incidences, is being investigated, as some recent research challenges the linear-no-threshold model. Radiotherapy biomarkers are focused on identifying radiosensitive patients, determining the treatment-associated risk and allowing for a tailored and more successful treatment of cancer patients. For biomarkers in any of these areas to be successfully developed, stringent criteria must be applied in techniques and analysis of data to reduce variation among reports and allow data sets to be accurately compared. Newly developed biomarkers can then be used in combination with the established techniques to better understand and quantify the individual biological response to exposures associated with radiology tests and to personalise treatment plans for patients.
Collapse
Affiliation(s)
- G Manning
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK.
| | | |
Collapse
|
107
|
El-Saghire H, Thierens H, Monsieurs P, Michaux A, Vandevoorde C, Baatout S. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol 2013; 89:628-38. [PMID: 23484538 DOI: 10.3109/09553002.2013.782448] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Health risks from exposure to low doses of ionizing radiation (IR) are becoming a concern due to the rapidly growing medical applications of X-rays. Using microarray techniques, this study aims for a better understanding of whole blood response to low and high doses of IR. MATERIALS AND METHODS Aliquots of peripheral blood samples were irradiated with 0, 0.05, and 1 Gy X-rays. RNA was isolated and prepared for microarray gene expression experiments. Bioinformatic approaches, i.e., univariate statistics and Gene Set Enrichment Analysis (GSEA) were used for analyzing the data generated. Seven differentially expressed genes were selected for further confirmation using quantitative real-time PCR (RT-PCR). RESULTS Functional analysis of genes differentially expressed at 0.05 Gy showed the enrichment of chemokine and cytokine signaling. However, responsive genes to 1 Gy were mainly involved in tumor suppressor protein 53 (p53) pathways. In a second approach, GSEA showed a higher statistical ranking of inflammatory and immune-related gene sets that are involved in both responding and/or secretion of growth factors, chemokines, and cytokines. This indicates the activation of the immune response. Whereas, gene sets enriched at 1 Gy were 'classical' radiation pathways like p53 signaling, apoptosis, DNA damage and repair. Comparative RT-PCR studies showed the significant induction of chemokine-related genes (PF4, GNG11 and CCR4) at 0.05 Gy and DNA damage and repair genes at 1 Gy (DDB2, AEN and CDKN1A). CONCLUSIONS This study moves a step forward in understanding the different cellular responses to low and high doses of X-rays. In addition to that, and in a broader context, it addresses the need for more attention to the risk assessment of health effects resulting from the exposure to low doses of IR.
Collapse
Affiliation(s)
- Houssein El-Saghire
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| | | | | | | | | | | |
Collapse
|
108
|
Manning G, Kabacik S, Finnon P, Bouffler S, Badie C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 2013; 89:512-22. [PMID: 23362884 DOI: 10.3109/09553002.2013.769694] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Modifications of gene expression following ionizing radiation (IR) exposure of cells in vitro and in vivo are well documented. However, little is known about the dose-responses of transcriptionally responsive genes, especially at low doses. In this study, we investigated these dose-responses and assessed inter-individual variability. MATERIALS AND METHODS High dose (0.5-4 Gy) and low dose (5-100 mGy) gene expression responses at 2 h and 24 h using 13 biomarkers transcriptionally regulated through the DNA damage response by the tumor suppressor p53 were investigated. Inter-individual variation was also examined. RESULTS High dose-response curves were best constructed using a polynomial fit while the low dose-response curves used a linear fit with linear R(2) values of 0.841-0.985. Individual variation was evident in the high and low dose ranges. The FDXR, DDB2 high dose gene combination produced a mean dose estimate of 0.7 Gy for 1 Gy irradiated 'unknown' samples (95% CIs of 0.3-1.1 Gy) and 1.4 Gy for 2 Gy exposure (95% CIs of 0.6-2.1 Gy). The FDXR, DDB2, CCNG1 low dose gene combination estimated 98 mGy (95% CIs of 27-169 mGy) for 100 mGy exposure. CONCLUSIONS These findings identify genes that fulfill some of the requirements of a good exposure biomarker even at low doses, such as sensitivity, reproducibility and simple proportionality with dose.
Collapse
Affiliation(s)
- Grainne Manning
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire, UK
| | | | | | | | | |
Collapse
|
109
|
The Urine Proteome as a Radiation Biodosimeter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:87-100. [DOI: 10.1007/978-94-007-5896-4_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
110
|
Finnon P, Kabacik S, MacKay A, Raffy C, A'Hern R, Owen R, Badie C, Yarnold J, Bouffler S. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer. Radiother Oncol 2012; 105:329-36. [PMID: 23157981 DOI: 10.1016/j.radonc.2012.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. MATERIALS AND METHODS Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. RESULTS Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0Gy), irradiated (4Gy) or radiation response (4-0Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. CONCLUSIONS Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.
Collapse
|
111
|
Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, Tan Y, Wang SX, Blakely WF, Coleman M, Peterson L, Wyrobek AJ. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS One 2012; 7:e48619. [PMID: 23144912 PMCID: PMC3492462 DOI: 10.1371/journal.pone.0048619] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS). Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06<p<0.03), of which 8 showed no overlap between unirradiated and irradiated samples (CDKN1A, FDXR, BBC3, PCNA, GADD45a, XPC, POLH and DDB2). This panel demonstrated excellent dose response discrimination (0.5 to 8 Gy) in an independent human blood ex vivo dataset, and 100% accuracy for discriminating patients who received total body radiation. Three genes of this panel (CDKN1A, FDXR and BBC3) were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Antoine M. Snijders
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Francesco Marchetti
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brandon Mannion
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sandhya Bhatnagar
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ely Kwoh
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yuande Tan
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Shan X. Wang
- Department of Materials Science and Engineering, Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Matthew Coleman
- Radiation Oncology, UC Davis School of Medicine, University of California Davis, Davis, California, United States of America
| | - Leif Peterson
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
112
|
Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:258-286. [DOI: 10.1016/j.mrrev.2012.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 02/07/2023]
|
113
|
Knops K, Boldt S, Wolkenhauer O, Kriehuber R. Gene expression in low- and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry. Radiat Res 2012; 178:304-12. [PMID: 22954392 DOI: 10.1667/rr2913.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To overcome the limitations of existing biodosimetry methods, we examined dose- and time-dependent gene expression changes in human peripheral blood lymphocytes after exposure to low-, medium- and high-dose ionizing radiation and searched for genes suitable for predicting radiation doses in the low-dose range. Additionally, the experiments are intended to provide new insights into the biological effects of exposures to low-, medium- and high-dose radiation. Gene expression analysis using whole human genome DNA microarrays was performed in human blood from six healthy donors irradiated ex vivo with 0, 0.02, 0.1, 0.5, 1, 2 and 4 Gy (γ rays, (137)Cs) at 6, 24 and 48 h after high-dose exposure (0.5-4 Gy), and at 24 and 48 h after low-dose exposures of 0.02 or 0.1 Gy. DNA microarray-based alterations in gene expression were found in a wide dose range in vitro and allowed us to identify nine genes with which low radiation doses could be accurately predicted with a sensitivity of 95.6%. In the low-, medium- and high-dose range, expression alterations increased with increasing dose and time after exposure, and were assigned to different biological processes such as nucleosome assembly, apoptosis and DNA repair response. We conclude from our results that gene expression profiles are suitable for predicting low-dose radiation exposure in a rapid and reliable manner and that acute low-dose exposure, as low as 20 mGy, leads to well-defined physiological responses in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Katja Knops
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | |
Collapse
|
114
|
Abnormal levels of Gadd45alpha in developing neocortex impair neurite outgrowth. PLoS One 2012; 7:e44207. [PMID: 22970179 PMCID: PMC3435417 DOI: 10.1371/journal.pone.0044207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.
Collapse
|
115
|
Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, Riecke A, Hartmann J, Meineke V, Boukheris H, Sigurdson AJ, Mabuchi K, Brenner AV. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. PLoS One 2012; 7:e39103. [PMID: 22848350 PMCID: PMC3405097 DOI: 10.1371/journal.pone.0039103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
The strong and consistent relationship between irradiation at a young age and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis in humans. We thus evaluated differential gene expression in thyroid tissue in relation to iodine-131 (I-131) doses received from the Chernobyl accident. Sixty three of 104 papillary thyroid cancers diagnosed between 1998 and 2008 in the Ukrainian-American cohort with individual I-131 thyroid dose estimates had paired RNA specimens from fresh frozen tumor (T) and normal (N) tissue provided by the Chernobyl Tissue Bank and satisfied quality control criteria. We first hybridized 32 randomly allocated RNA specimen pairs (T/N) on 64 whole genome microarrays (Agilent, 4×44 K). Associations of differential gene expression (log2(T/N)) with dose were assessed using Kruskall-Wallis and trend tests in linear mixed regression models. While none of the genes withstood correction for the false discovery rate, we selected 75 genes with a priori evidence or P kruskall/P trend <0.0005 for validation by qRT-PCR on the remaining 31 RNA specimen pairs (T/N). The qRT-PCR data were analyzed using linear mixed regression models that included radiation dose as a categorical or ordinal variable. Eleven of 75 qRT-PCR assayed genes (ACVR2A, AJAP1, CA12, CDK12, FAM38A, GALNT7, LMO3, MTA1, SLC19A1, SLC43A3, ZNF493) were confirmed to have a statistically significant differential dose-expression relationship. Our study is among the first to provide direct human data on long term differential gene expression in relation to individual I-131 doses and to identify a set of genes potentially important in radiation carcinogenesis.
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
117
|
Kuffler DP. Hyperbaric oxygen therapy: can it prevent irradiation-induced necrosis? Exp Neurol 2012; 235:517-27. [PMID: 22465460 DOI: 10.1016/j.expneurol.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/27/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
Radiosurgery is an important non-invasive procedure for the treatment of tumors and vascular malformations. However, in addition to killing target tissues, cranial irradiation induces damage to adjacent healthy tissues leading to neurological deterioration in both pediatric and adult patients, which is poorly understood and insufficiently treatable. To minimize irradiation damage to healthy tissue, not the optimal therapeutic irradiation dose required to eliminate the target lesion is used but lower doses. Although the success rate of irradiation surgery is about 95%, 5% of patients suffer problems, most commonly neurological, that are thought to be a direct consequence of irradiation-induced inflammation. Although no direct correlation has been demonstrated, the appearance and disappearance of inflammation that develops following irradiation commonly parallel the appearance and disappearance of neurological side effects that are associated with the neurological function of the irradiated brain regions. These observations have led to the hypothesis that brain inflammation is causally related to the observed neurological side effects. Studies indicate that hyperbaric oxygen therapy (HBOT) applied after the appearance of irradiation-induced neurological side effects reduces the incidence and severity of those side effects. This may result from HBOT reducing inflammation, promoting angiogenesis, and influencing other cellular functions thereby suppressing events that cause the neurological side effects. However, it would be significantly better for the patient if rather than waiting for neurological side effects to become manifest they could be avoided. This review examines irradiation-induced neurological side effects, methods that minimize or resolve those side effects, and concludes with a discussion of whether HBOT applied following irradiation, but before manifestation of neurological side effects may prevent or reduce the appearance of irradiation-induced neurological side effects.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, Puerto Rico.
| |
Collapse
|
118
|
Li MJ, Wang WW, Chen SW, Shen Q, Min R. Radiation dose effect of DNA repair-related gene expression in mouse white blood cells. Med Sci Monit 2012; 17:BR290-7. [PMID: 21959603 PMCID: PMC3539470 DOI: 10.12659/msm.881976] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background The aim of this study was to screen molecular biomarkers for biodosimetry from DNA repair-related gene expression profiles. Material/Methods Mice were subjected to whole-body exposure with 60Co γ rays with a dose range of 0–8 Gy at a dose rate of 0.80 Gy/min. RNA was extracted from the peripheral blood of irradiated mice at 4, 8, 12, 24 and 48hrs post-irradiation. The mRNA transcriptional changes of 11 genes related to DNA damage and repair were detected using real-time quantitative polymerase chain reaction (RT-PCR). Results Of the 11 genes examined, CDKN1A (cyclin-dependent kinase inhibitor 1A or p21, Cip1) and ATM (ataxia telangiectasia mutated) expression levels were found to be heavily up- and down-regulated, respectively, with exposure dose increasing at different post-irradiation times. RAD50 (RAD50 homolog), PLK3 (polo-like kinase 3), GADD45A (growth arrest and DNA damage-inducible, alpha), DDB2 (damage-specific DNA-binding protein 2), BBC3 (BCL2-binding component 3) and IER5 (immediate early response 5) gene expression levels were found to undergo significant oscillating changes over a broad dose range of 2–8 Gy at post-exposure time points observed. Three of the genes were found not to change within the observed exposure dose and post-radiation time ranges. Conclusions The results of this study add to the biodosimetry with biomarker data pool and will be helpful for constructing appropriate gene expression biomarker systems to evaluate radiation exposure doses.
Collapse
Affiliation(s)
- Ming-juan Li
- Division of Radiation Medicine, Department of Naval Medicine, 2nd Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
119
|
Kalanxhi E, Dahle J. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect. Radiat Res 2011; 177:35-43. [PMID: 22034846 DOI: 10.1667/rr2694.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.
Collapse
Affiliation(s)
- Erta Kalanxhi
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello 0310 Oslo, Norway.
| | | |
Collapse
|
120
|
Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell "vision" versus physicochemical properties of nanoparticles. ACS NANO 2011; 5:7263-7276. [PMID: 21838310 DOI: 10.1021/nn2021088] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the last few decades, nanoparticles (NPs) have been recognized as promising candidates for starting a new revolution in science and technology due to their unusual properties, attracting the attention of physicists, chemists, biologists, and engineers. The aim of this study is to evaluate the toxicities (at both cellular and molecular levels) of three forms of superparamagnetic iron oxide nanoparticles (SPIONs) of various surface chemistries (COOH, plain, and NH(2)) through the comparison with gene expression patterns of three cell types (i.e., human heart, brain, and kidney). For this purpose, both an MTT assay and a DNA microarray analysis were applied in three human cell lines--HCM (heart), BE-2-C (brain), and 293T (kidney)--under the exposure to SPIONs-COOH, SPIONs-NH(2), and bare SPIONs. The specific gene alteration and hierarchical clustering revealed that SPIONs-COOH altered genes associated with cell proliferative responses due to their reactive oxygen species (ROS) properties. It was also found that the cell type can have quite a significant role in the definition of suitable pathways for detoxification of NPs, which has deep implications for the safe and high yield design of NPs for biomedical applications and will require serious consideration in the future.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- National Cell Bank, Pasteur Institute of Iran, Tehran, 1316943551 Iran.
| | | | | | | |
Collapse
|
121
|
Manning G, Kabacik S, Finnon P, Paillier F, Bouffler S, Badie C. Assessing a new gene expression analysis technique for radiation biodosimetry applications. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
122
|
Kabacik S, Ortega-Molina A, Efeyan A, Finnon P, Bouffler S, Serrano M, Badie C. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle 2011; 10:1152-61. [PMID: 21389785 DOI: 10.4161/cc.10.7.15231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.
Collapse
Affiliation(s)
- Sylwia Kabacik
- Biological Effects Department, Centre for Radiation Chemical and Environmental Hazards, Health Protection Agency, Didcot, Oxfordshire, UK
| | | | | | | | | | | | | |
Collapse
|