101
|
Abstract
When messenger RNA precursors (pre-mRNAs) containing alternative 5' splice sites are spliced in vitro, the relative concentrations of the heterogeneous ribonucleoprotein (hnRNP) A1 and the essential splicing factor SF2 precisely determine which 5' splice site is selected. In general, an excess of hnRNP A1 favors distal 5' splice sites, whereas an excess of SF2 results in utilization of proximal 5' splice sites. The regulation of these antagonistic activities may play an important role in the tissue-specific and developmental control of gene expression by alternative splicing.
Collapse
Affiliation(s)
- A Mayeda
- Cold Spring Harbor Laboratory, New York, New York 11724-2208
| | | |
Collapse
|
102
|
De Cristofaro R, Di Cera E. Modulation of thrombin-fibrinogen interaction by specific ion effects. Biochemistry 1992; 31:257-65. [PMID: 1731875 DOI: 10.1021/bi00116a035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Steady-state measurements of synthetic substrate hydrolysis by human alpha-thrombin in the presence of human fibrinogen, under experimental conditions where light scattering due to the formation of fibrin aggregates is negligible, have allowed for a quantitative evaluation of Km for fibrinogen. Measurements of Km for fibrinogen carried out at pH 7.5 and 37 degrees C as a function of NaCl, NaBr, KCl, and KBr concentration, from 50 to 500 mM, show that the derivative d ln Km/d ln a +/-, where a +/- is the mean ion activity, is constant over the entire range of salt concentrations and is strictly dependent on the particular salt present in solution. The values of d ln Km/d ln a +/- are found to be equal to 0.75 +/- 0.03 (NaCl), 0.90 +/- 0.01 (NaBr), 0.62 +/- 0.07 (KCl), and 0.60 +/- 0.03 (KBr). Measurements of Km for two synthetic amide substrates, under identical solution conditions, reveal practically no change in Km with salt concentration, while they show a significant decrease in kcat when Na+ salts are replaced by K+ salts. The drastic difference in the salt dependence of Km between fibrinogen and the synthetic amide substrate points out that a significant role may be played by the fibrinogen recognition site in the energetics of thrombin-fibrinogen interaction. The sensitivity of Km for fibrinogen to different salts unequivocally demonstrates that specific ion effects, rather than nonspecific ionic strength effects, modulate thrombin-fibrinogen interaction under experimental conditions of physiological relevance. Analysis of ion effects on clotting curves obtained at pH 7.5 and 37 degrees C also shows a drastic differential effect of cations and anions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R De Cristofaro
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
103
|
Koblan KS, Ackers GK. Site-specific enthalpic regulation of DNA transcription at bacteriophage lambda OR. Biochemistry 1992; 31:57-65. [PMID: 1531023 DOI: 10.1021/bi00116a010] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding of cI repressor to DNA fragments containing the three specific binding sites of the right operator (OR) of bacteriophage lambda was studied in vitro over the temperature range 5-37 degrees C by quantitative footprint titration. The individual-site isotherms, obtained for binding repressor dimers to each site of wild-type OR and to appropriate mutant operator templates, were analyzed for the Gibbs energies of intrinsic binding and pairwise cooperative interactions. It is found that dimer affinity for each of the three sites varies inversely with temperature, i.e., the binding reactions are enthalpy driven, unlike many protein-DNA reactions. By contrast, the magnitude of the pairwise cooperativity terms describing interaction between adjacently site-bound repressor dimers is quite small. This result in combination with the recent finding that repressor monomer-dimer assembly is highly enthalpy driven (with delta H degrees = -16 kcal mol-1) [Koblan, K. S., & Ackers, G. K. (1991) Biochemistry 30, 7817-7821] indicates that the associative contacts between site-bound repressors that mediate cooperativity are unlikely to be the same as those responsible for dimerization. The intrinsic binding enthalpies for all three sites are negative (exothermic) and nearly temperature-invariant, indicating no heat capacity changes on the scale of those inferred in other protein-DNA systems. However, the three operator sites are affected differentially by temperature: the intrinsic binding free energies for sites OR1 and OR3 change in parallel over the entire range, delta H0OR1 = -23.3 +/- 4.0 kcal mol-1 and delta H0OR3 = -22.7 +/- 1.2 kcal mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K S Koblan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
104
|
Lohman TM, Mascotti DP. Nonspecific ligand-DNA equilibrium binding parameters determined by fluorescence methods. Methods Enzymol 1992; 212:424-58. [PMID: 1518458 DOI: 10.1016/0076-6879(92)12027-n] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
105
|
Abstract
Ligand-and protein-DNA equilibria are extremely sensitive to solution conditions (e.g., salt, temperature, and pH), and, in general, the effects of different solution variables are interdependent (i.e., linked). As a result, an assessment of the basis for the stability and specificity of ligand-or protein-DNA interactions requires quantitative studies of these interactions as a function of a range of solution variables. Many of the most dramatic effects on the stability of these interactions result from changes in the entropy of the system, caused by the preferential interaction of small molecules, principally ions which are released into solution on complex formation. A determination of the contributions of these entropy changes to the stability and specificity of protein-and ligand-DNA interactions requires thermodynamic approaches and cannot be assessed from structural studies alone.
Collapse
Affiliation(s)
- T M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
106
|
Catalysis of Hydrolysis by Proteases at the Protein-Solution Interface. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-444-89397-0.50027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
107
|
Sastry SS, Hearst JE. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. J Mol Biol 1991. [DOI: 10.1016/0022-2836(91)90921-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
108
|
Nickell C, Lloyd RS. Mutations in endonuclease V that affect both protein-protein association and target site location. Biochemistry 1991; 30:8638-48. [PMID: 1888726 DOI: 10.1021/bi00099a021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general mechanism by which proteins locate their target sites within large domains of DNA is a one-dimensional facilitated diffusion process in which the protein scans DNA in a nonspecifically bound state. An electrostatic contribution to this type of mechanism has been previously established. This study was designed to question whether other characteristics of a protein's structure might contribute to the scanning mechanism of target site location. In this regard, T4 endonuclease V was shown to establish an ionic strength dependent monomer-dimer equilibrium in solution. A protein dimer interaction site was postulated to exist along a putative alpha-helix containing amino acid residues 54-62. The conservative substitutions of Phe-60----Leu-60 and Phe-59, Phe-60----Leu-59, Leu-60 resulted in mutant enzymes which remained in the monomeric state independent of the ionic strength of the solution. The target site location mechanism of these mutants has also been altered. Under conditions where wild-type endonuclease V processively scans nontarget DNA, the target location mechanism of the monomeric mutant proteins was shifted toward a less processive search. This decrease in the processivity of the mutants was especially surprising because the nontarget DNA binding affinity was found to be significantly increased. Thus, an additional component of the endonuclease V DNA scanning mechanism appears to be the formation of a stable endonuclease V dimer complex.
Collapse
Affiliation(s)
- C Nickell
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
109
|
Di Cera E, De Cristofaro R, Albright DJ, Fenton JW. Linkage between proton binding and amidase activity in human alpha-thrombin: effect of ions and temperature. Biochemistry 1991; 30:7913-24. [PMID: 1868067 DOI: 10.1021/bi00246a007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amidase activity of human alpha-thrombin has been studied at steady state in the pH range 6-10, as a function of NaCl concentration from 1 mM to 1 M and temperature from 10 to 40 degrees C. The Michaelis-Menten constant, Km, shows a bell-shaped dependence over this pH range with a minimum around pH 7.5 in the presence of 0.1 M NaCl at 25 degrees C. The catalytic constant, kcat, also has a bell-shaped pH dependence with multiple inflection points that are more evident at low NaCl concentrations and a maximum around pH 8.2 in the presence of 0.1 M NaCl at 25 degrees C. A detailed analysis of the results in terms of a general linkage scheme has allowed a thorough characterization of the linkage between proton and substrate binding and its dependence on NaCl concentration, as well as the relevant entropic and enthalpic contributions to binding and catalytic events. Formulation of detailed partition functions for each enzyme intermediate involved in the catalytic cycle suggests that (at least) three groups are responsible for the control of thrombin amidase activity as a function of pH. One group is to be identified with the active site His, due to its pK values in the free enzyme and the adduct and its enthalpy of ionization. The effect of NaCl concentration on amidase activity seems to be extremely specific. Comparative steady-state measurements carried out in the presence of NaCl, NaBr, NaI, KCl, and MgCl2 show that human alpha-thrombin is capable of discriminating among different cations and anions. This suggests that small ions participate as allosteric effectors in the regulation of thrombin activity. The linkage with NaCl is strongly pH dependent and increases with decreasing pH. The present results provide information on the basic aspects of human alpha-thrombin activity and regulation and enable a rigorous thermodynamic approach to other important regulatory interactions in human alpha-thrombin and its structurally perturbed derivatives.
Collapse
Affiliation(s)
- E Di Cera
- Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
110
|
Koblan KS, Ackers GK. Cooperative protein-DNA interactions: effects of KCl on lambda cI binding to OR. Biochemistry 1991; 30:7822-7. [PMID: 1831046 DOI: 10.1021/bi00245a023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of monovalent salt activity on the site-specific and cooperative interactions of cI repressor with its three operator sites OR were studied by using quantitative DNase I footprint titration methods. Individual-site binding isotherms were obtained for binding repressor dimers to each site of wild-type OR and to mutant operator templates in which binding to one or two sites has been eliminated. The standard Gibbs energies for intrinsic binding, delta G1, delta G2, and delta G3, and cooperative interactions, delta G12 and delta G23, were determined at each condition (range 50-200 mM KCl). It is found that the dimer affinity for each of the three sites increases as [KCl] decreases, a striking result given that the monomer-dimer equilibrium shifts toward monomer formation under identical solution conditions [Koblan, K. S., & Ackers, G. K. (1991) Biochemistry (preceding paper in this issue)]. The magnitudes of ion-linked effects are found to differ at the three operator sites, while the intrinsic interaction binding free energies for sites OR1 and OR3 change in parallel over the entire range of [KCl]. The KCl dependencies at OR1 and OR3 represent the average release of 3.7 +/- 0.6 and 3.8 +/- 0.6 apparent ions, respectively. By contrast, the KCl dependency of OR2 binding corresponds to the displacement of 5.2 +/- 0.7 apparent ions. The ability of cI repressor to discriminate between the three operator sites thus appears linked to ion binding/release reactions.
Collapse
Affiliation(s)
- K S Koblan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
111
|
Newlands JT, Ross W, Gosink KK, Gourse RL. Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. J Mol Biol 1991; 220:569-83. [PMID: 1651394 DOI: 10.1016/0022-2836(91)90101-b] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A region upstream from the Escherichia coli rrnB P1 promoter, the upstream activator region (UAR), increases the activity of the promoter in vivo and the rate of association with RNA polymerase (E sigma 70) in vitro in the presence of the two initiating nucleotides. We have used four types of chemical and enzymatic footprinting probes to determine whether rrnB P1-E sigma 70 complexes formed in the presence of the initiating nucleotides (RPinit) differ from typical open complexes (RPo) formed in the absence of the initiating nucleotides and to examine the structural differences between rrnB P1 complexes containing the UAR and those lacking the UAR. We find that the rrnB P1-RPinit complex closely resembles open complexes formed at other E sigma 70 promoters, indicating that the formation of the first phosphodiester bond does not result in a major rearrangement of the promoter-RNA polymerase complex. An unusual potassium permanganate modification at position -18 in both RPo and RPinit indicates the possible presence of a subtle difference in the -10, -35 spacer structure compared to some other E. coli promoters. We show that the E sigma 70-rrnB P1 complex formed with the promoter containing the UAR has DNase I and hydroxyl radical cleavage patterns in the -50 region different from those observed with the same promoter lacking the UAR. These results are interpreted to indicate that E sigma 70 may interact with a region further upstream from that contacted by RNA polymerase bound at most other promoters and/or that unusual structural properties of this region are induced by bound E sigma 70.
Collapse
Affiliation(s)
- J T Newlands
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
112
|
Apostol BL, Greer CL. Preferential binding of yeast tRNA ligase to pre-tRNA substrates. Nucleic Acids Res 1991; 19:1853-60. [PMID: 2030966 PMCID: PMC328115 DOI: 10.1093/nar/19.8.1853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Joining of tRNA halves during splicing in extracts of Saccharomyces cerevisiae requires each of the three enzymatic activities associated with the tRNA ligase polypeptide. Joining is most efficient for tRNA as opposed to oligonucleotide substrates and is sensitive to single base changes at a distance from splice sites suggesting considerable specificity. To examine the basis for this specificity, binding of ligase to labeled RNA substrates was measured by native gel electrophoresis. Ligase bound tRNA halves with an association constant 1600-fold greater than that for a nonspecific RNA. Comparison of binding of a series of tRNA processing intermediates revealed that tRNA-structure, particularly in the region around the splice sites, contributes to specific binding. Finally, the ligase was shown to form multiple, discrete complexes with tRNA substrates. The basis for recognition by ligase and its role in a tRNA processing pathway are discussed.
Collapse
Affiliation(s)
- B L Apostol
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
113
|
Nickell C, Anderson WF, Lloyd RS. Substitution of basic amino acids within endonuclease V enhances nontarget DNA binding. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67642-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
114
|
Tanious FA, Yen SF, Wilson WD. Kinetic and equilibrium analysis of a threading intercalation mode: DNA sequence and ion effects. Biochemistry 1991; 30:1813-9. [PMID: 1993195 DOI: 10.1021/bi00221a013] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction of a symmetric naphthalene diimide with alkylamino substituents at each imide position was investigated with the alternating sequence polymers, poly[d(A-T)]2 and poly[d(G-C)]2. Spectrophotometric binding studies indicate strong binding of the diimide to both sequences although the GC binding constant is 20-25 times larger than the AT binding constant. Analysis of the effects of salt concentration on the binding equilibria shows that the diimide forms two ion pairs in its complex with both polymers as expected for a simple dication. Stopped-flow kinetics experiments demonstrate that the diimide both associates and dissociates from DNA more slowly than classical intercalators with similar binding constants. Analysis of salt concentration effects on dissociation kinetics rate constants (kd) reveals that slopes in log kd versus log [Na+] plots are only approximately half the value obtained for classical dicationic intercalators that have both charged groups in the same groove. These kinetics results support a threading intercalation model, with one charged diimide substituent in each of the DNA grooves rather than with both side chains in the same groove, for the diimide complex with DNA. In the rate-determining step of the mechanism for dissociation of a threading complex only one ion pair is broken; the free side chain can then slide between base pairs to put both diimide side chains in the same groove, and this is followed by rapid full dissociation of the diimide. This sequential release of ion pairs makes the dissociation slope for dicationic threading intercalators more similar to the slope for classical monocationic intercalating ligands.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F A Tanious
- Department of Chemistry, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
115
|
Record MT, Ha JH, Fisher MA. Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA. Methods Enzymol 1991; 208:291-343. [PMID: 1779839 DOI: 10.1016/0076-6879(91)08018-d] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The concentration and nature of the electrolyte are key factors determining (1) the equilibrium extent of binding of oligocations or proteins to DNA, (2) the distribution of bound protein between specific and nonspecific sites, and (3) the kinetics of association and dissociation of both specific and nonspecific complexes. Salt concentration may therefore be used to great advantage to probe the thermodynamic basis of stability and specificity of protein-DNA complexes, and the mechanisms of association and dissociation. Cation concentration serves as a thermodynamic probe of the contributions to stability and specificity from neutralization of DNA phosphate charges and/or reduction in phosphate charge density. Cation concentration also serves as a mechanistic probe of the kinetically significant steps in association and dissociation that involve cation uptake. In general, effects of electrolyte concentration on equilibrium constants (quantified by SKobs) and rate constants (quantified by Skobs) are primarily cation effects that result from the cation-exchange character of the interactions of proteins and oligocations with polyanionic DNA. The competitive effects of Mg2+ or polyamines on the equilibria and kinetics of protein-DNA interactions are interpretable in the context of the cation-exchange model. The nature of the anion often has a major effect on the magnitude of the equilibrium constant (Kobs) and rate constant (kobs) of protein-DNA interactions, but a minor effect on SKobs and Skobs, which are dominated by the cation stoichiometry. The order of effects of different anions generally follows the Hofmeister series and presumably reflects the relative extent of preferential accumulation or exclusion of these anions from the relevant surface regions of DNA-binding proteins. The question of which anion is most inert (i.e., neither accumulated nor excluded from the relevant regions of these proteins) remains unanswered. The characteristic effects of temperature on equilibrium constants and rate constants for protein-DNA interactions also serve as diagnostic probes of the thermodynamic origins of stability and specificity and of the mechanism of the interaction, since large changes in thermodynamic and activation heat capacities accompany processes with large changes in the amount of water-accessible nonpolar surface area.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
116
|
|
117
|
Strickland JA, Marzilli LG, Wilson WD. Binding of meso-tetrakis(N-methylpyridiniumyl)porphyrin isomers to DNA: quantitative comparison of the influence of charge distribution and copper(II) derivatization. Biopolymers 1990; 29:1307-23. [PMID: 2369635 DOI: 10.1002/bip.360290819] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Factors influencing the binding of tetracationic porphyrin derivatives to DNA have been comprehensively evaluated by equilibrium dialysis, stopped-flow kinetics, etc., for mesotetrakis (4-N-methylpyridiniumyl)porphyrin [TMpyP (4)]. Technical difficulties have previously precluded a comprehensive study of metalloporphyrins. Since electrostatic interactions with the DNA and metal derivatization of the porphyrins have important consequences, we have investigated in greater detail two isomers of TMpyP (4) (meso-tetrakis(3-N-methylpyridiniumyl)porphyrin, [TMpyP (3)] and meso-tetrakis(2-N-methylpyridiniumyl)porphyrin [TMpyP (2)]) in which the position of the charged centers has been varied. A comprehensive study of the Cu(II) derivatives, e.g., CuTMpyP (4), was possible since the difficulties encountered previously with Ni(II) compounds were not a problem with Cu(II) porphyrins [J. A. Strickland, L. G. Marzilli, M. K. Gay, and W. D. Wilson (1988) Biochemistry 27, 8870-8878]. At 25 degrees C, the apparent equilibrium constants [Kobs] decreased with increasing [Na+] for all porphyrins. The Kobs values were comparable for TMpyP (4) and TMpyP (3) binding to either polyd(G-C).polyd(G-C) [poly[d(G-C)2]] or poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]]. For the copper(II) porphyrins, the Kobs values were about fivefold greater. The Kobs value for CuTMpyP (2) binding to poly[d(G-C)2] was too small to measure under typical salt conditions; however, Kobs for binding to poly[d(A-T)2] was about two orders of magnitude smaller than those found for CuTMpyP (4) or CuTMpyP (3). Application of the condensation theory for polyelectrolytes suggests about three charge interactions when CuTMpyP (4), CuTMpyP (3), and TMpyP (3) bind to poly[d(G-C)2] or poly[d(A-T)2], a result comparable to that reported for TMpyP (4). At 20 degrees C and 0.115 M [Na+], incorporation of copper decreased the rates of dissociation from poly[d(A-T)2] by a 100-fold compared to those reported for TMpyP (4) but had little effect on the rates of dissociation from poly[d(G-C)2]. Also, movement of the H3CN+ group from the fourth to the third position of the pyridinium ring enhanced the rates of dissociation from poly[d(A-T)2] but decreased the rates of dissociation from poly[d(G-C)2]. From polyelectrolyte theory, the [Na+] dependence of the dissociation rates from poly[d(G-C)2] is consistent with intercalative binding, while that for poly[d(A-T)2] is consistent with an outside binding model. For calf thymus [CT] DNA at 20 degrees C, a greater decrease in the AT than in the GC imino 1H-nmr signal was observed upon addition of CuTMpyP (2), suggesting selective outside binding to the AT regions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J A Strickland
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | | | | |
Collapse
|
118
|
Takahashi M, Sakumi K, Sekiguchi M. Interaction of Ada protein with DNA examined by fluorescence anisotropy of the protein. Biochemistry 1990; 29:3431-6. [PMID: 2354146 DOI: 10.1021/bi00466a002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We made use of enhancement of fluorescence anisotropy of protein upon DNA binding to analyze interactions between Ada protein and DNA. Ada protein is a DNA repair enzyme that also acts as a transcription regulator. The isotropic fluorescence was not significantly affected upon interaction with DNA and could not be used as a signal for detection of the binding. The anisotropy did became larger because the binding to DNA reduces diffusion of the protein. The change was reproducible and independent of protein concentration and also independent of the degree of saturation of DNA with the protein when DNA was large; these values can readily be converted to the proportion of the complexed protein. The binding parameters were then determined by direct comparison between experimental and theoretical variations of anisotropy, with increasing concentrations of DNA. The theoretical variations were computed by considering the overlap of potential binding sites on the DNA lattice [McGhee & von Hippel (1974) J. Mol. Biol. 86, 469-489]. Binding does not seem to occur in a cooperative manner. The number of base pairs covered by a protein monomer was 7 +/- 1; this number is independent of the salt concentration. The equilibrium association constant decreased from 4 X 10(7) to 3 X 10(5) M-1 for an increase of NaCl concentration from 0.1 to 0.2 M, thereby indicating the possible involvement of ionic interactions between phosphate groups of DNA and the protein.
Collapse
Affiliation(s)
- M Takahashi
- Groupe de Cancérogénèse et de Mutagénèse Moléculaire et Structurale, CNRS, Strasbourg, France
| | | | | |
Collapse
|
119
|
Mascotti DP, Lohman TM. Thermodynamic extent of counterion release upon binding oligolysines to single-stranded nucleic acids. Proc Natl Acad Sci U S A 1990; 87:3142-6. [PMID: 2326273 PMCID: PMC53850 DOI: 10.1073/pnas.87.8.3142] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major contribution to the binding free energy associated with most protein-nucleic acid complexes is the increase in entropy due to counterion release from the nucleic acid that results from electrostatic interactions. To examine this quantitatively, we have measured the thermodynamic extent of counterion release that results from the interaction between single-stranded homopolynucleotides and a series of oligolysines, possessing net charges z = 2-6, 8, and 10. This was accomplished by measuring the salt dependence of the intrinsic equilibrium binding constants--i.e., (delta log Kobs/delta log[K+])--over the range from 6 mM to 0.5 M potassium acetate. These data provide a rigorous test of linear polyelectrolyte theories that have been used to interpret the effects of changes in bulk salt concentration on protein-DNA binding equilibria, since single-stranded nucleic acids have a lower axial charge density than duplex DNA. Upon binding to poly(U), the thermodynamic extent of counterion release per oligolysine charge, z, is 0.71 +/- 0.03, which is significantly less than unity and less than that measured upon binding duplex DNA. These results are most simply interpreted using the limiting law predictions of counterion condensation and cylindrical Poisson-Boltzmann theories, even at the high salt concentrations used in our experiments. Accurate estimates of the thermodynamic extent of counterion binding and release for model systems such as these facilitate our understanding of the energetics of protein-nucleic acid interactions. These data indicate that for simple oligovalent cations, the number of ionic interactions formed in a complex with a linear nucleic acid can be accurately estimated from a measure of the salt dependence of the equilibrium binding constant, if the thermodynamic extent of ion release is known.
Collapse
Affiliation(s)
- D P Mascotti
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128
| | | |
Collapse
|
120
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
121
|
|
122
|
Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39784-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
123
|
The Effects of Ligand Structure on Binding Mode and Specificity in the Interaction of Unfused Aromatic Cations with DNA. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-94-011-3728-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
124
|
Structural, Thermodynamic and Kinetic Studies of the Interaction of Eσ70 RNA Polymerase with Promoter DNA. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-3-642-84150-7_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
125
|
Characterization of DNA-protein complex formation in nuclear extracts with a sequence from the herpes simplex virus thymidine kinase gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
126
|
Dowd DR, Lloyd RS. Site-directed mutagenesis of the T4 endonuclease V gene: the role of arginine-3 in the target search. Biochemistry 1989; 28:8699-705. [PMID: 2690947 DOI: 10.1021/bi00448a005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endonuclease V, a pyrimidine dimer specific endonuclease in T4 bacteriophage, is able to scan DNA, recognize pyrimidine dimer photoproducts produced by exposure to ultraviolet light, and effectively incise DNA through a two-step mechanism at the damaged bases. The interaction of endonuclease V with nontarget DNA is thought to occur via electrostatic interactions between basic amino acids and the acidic phosphate DNA backbone. Arginine-3 was chosen as a potential candidate for involvement in this protein-nontarget DNA interaction and was extensively mutated to assess its role. The mutations include changes to Asp, Glu, Leu, and Lys and deleting it from the enzyme. Deletion of Arg-3 resulted in an enzyme that retained marginal levels of AP specificity, but no other detectable activity. Charge reversal to Glu-3 and Asp-3 results in proteins that exhibit AP-specific nicking and low levels of dimer-specific nicking. These enzymes are incapable of affecting cellular survival of repair-deficient Escherichia coli after irradiation. Mutations of Arg-3 to Lys-3 or Leu-3 also are unable to complement repair-deficient E. coli. However, these two proteins do exhibit a substantial level of in vitro dimer- and AP-specific nicking. The mechanism by which the Leu-3 and Lys-3 mutant enzymes locate pyrimidine dimers within a population of heavily irradiated plasmid DNA molecules appears to be significantly different from that for the wild-type enzyme. The wild-type endonuclease V processively incises all dimers on an individual plasmid prior to dissociation from that plasmid and subsequent reassociation with other plasmids, yet neither of these mutants exhibits any of the characteristics of this processive nicking activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D R Dowd
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
127
|
Hamilton RW, Lloyd RS. Modulation of the DNA Scanning Activity of the Micrococcus luteus UV Endonuclease. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
128
|
Abstract
Published data on the structure and mechanism of endonuclease V from bacteriophage T4 are reviewed with the objective of developing a working mechanistic model of this enzyme. Endonuclease V is an interesting and important candidate to be the first DNA-repair enzyme to have its structure determined by crystallography, and a more detailed model of the reaction process is needed to mechanistically interpret such a structure. Such a model should be sufficiently detailed to support future investigations of structure/function relationships between the enzyme and the DNA damage repair pathway it initiates, as probed by site-directed mutagenesis techniques and other methods. The early literature is presented in an historical perspective, followed by a description of prior models and biochemical investigations. The biochemical phenotypes of mutants in the enzyme structural gene are discussed. The results of computer analyses aimed at structural interpretations of the protein sequence are given, together with a brief discussion of the strengths and weaknesses of such experiments.
Collapse
Affiliation(s)
- M L Dodson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
129
|
Dowd DR, Lloyd RS. Biological consequences of a reduction in the non-target DNA scanning capacity of a DNA repair enzyme. J Mol Biol 1989; 208:701-7. [PMID: 2681789 DOI: 10.1016/0022-2836(89)90160-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Numerous DNA-interactive proteins have been shown to locate specific sequences within large domains of non-target DNA in vitro and in vivo by a one-dimensional diffusion mechanism; however, the biological significance of this process has not been evaluated. We have examined the biological consequences of sliding for the pyrimidine dimer-specific DNA repair enzyme T4 endonuclease V, an enzyme which scans non-target DNA both in vitro and in vivo. An endonuclease V mutant was constructed whose only altered biochemical characteristic, measured in vitro, was a loss in its ability to slide on non-target DNA. In contrast to the native enzyme, when the mutated endonuclease V was expressed in DNA repair-deficient Escherichia coli, no enhanced ultraviolet survival was conferred. These results suggest that the mechanisms which DNA-interactive proteins employ to enhance the probability of locating their target sequences are of significant biological importance.
Collapse
Affiliation(s)
- D R Dowd
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
130
|
Lohman TM, Chao K, Green JM, Sage S, Runyon GT. Large-scale purification and characterization of the Escherichia coli rep gene product. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81778-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
131
|
Bujalowski W, Lohman TM. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. II. Salt, temperature and oligonucleotide length effects. J Mol Biol 1989; 207:269-88. [PMID: 2661833 DOI: 10.1016/0022-2836(89)90455-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have examined the salt and temperature dependences of the equilibrium binding of the Escherichia coli single strand binding (SSB) tetramer to a series of oligodeoxythymidylates, dT(pT)N-1, with N = 16, 28, 35, 56 and 70. Absolute binding isotherms were obtained, based on the quenching of the intrinsic protein fluorescence upon formation of the complexes. The shorter oligonucleotides, with N = 16, 28 and 35, bind to multiple sites on the SSB tetramer and negative co-operativity is observed among these binding sites. We have quantitatively analyzed these isotherms, using a statistical thermodynamic ("square") model to obtain the intrinsic binding constant KN, and the negative co-operativity constant, sigma N. For all oligonucleotides, we find that KN decreases significantly with increasing concentration of monovalent salt, indicating a large electrostatic component to the free energy of the interaction (e.g. delta log KN/delta log [NaBr] = -2.7, -4.6 and -7.1 for N = 16, 35 and 70, respectively), with contributions from both cations and anions. For oligonucleotides that span two or more subunits, there is a significant unfavorable contribution to the binding free energy for each intersubunit crossing, with an accompanying uptake of anions. Therefore, the extent of anion uptake increases as the number of intersubunit crossings increase. There is a strong temperature dependence for the intrinsic binding of dT(pT)15, such that delta Ho = -26(+/- 3) kcal/mol dT(pT)15. Negative co-operativity exists under all solution conditions tested, i.e. sigma N less than 1, and this is independent of anion concentration and type. However, the negative co-operativity constant does decrease with decreasing concentration of cation. The dependence of sigma 16 on Na+ concentration indicates that an average of one sodium ion is taken up as a result of the negative co-operativity between two dT(pT)15 binding sites. These data and the lack of a temperature dependence for sigma 16 suggest that the molecular basis for the negative co-operativity is predominantly electrostatic and may be due to the repulsion of regions of single-stranded DNA that are required to bind in close proximity on an individual SSB tetramer.
Collapse
Affiliation(s)
- W Bujalowski
- Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843
| | | |
Collapse
|
132
|
Abstract
Electrostatic potentials around DNA are obtained by solving the nonlinear Poisson-Boltzmann (PB) equation. The detailed charge distribution of the DNA and the different polarizabilities of the macromolecule and solvent are included explicitly in the calculations. The PB equation is solved using extensions of a finite difference approach applied previously to proteins. Electrical potentials and ion concentrations are compared to those obtained with simpler models. It is found that the shape of the dielectric boundary between the macromolecule and solvent has significant effects on the calculated potentials near the surface, particularly in the grooves. Sequence-specific patterns are found, the most surprising result being the existence of positive regions of potential near the bases in both the major and minor grooves. The effect of solvent and ionic atmosphere screening of phosphate-phosphate repulsions is studied, and an effective dielectric function, appropriate for molecular mechanics simulations, is derived.
Collapse
|
133
|
Mazur SJ, Record MT. Association kinetics of site-specific protein-DNA interactions: roles of nonspecific DNA sites and of the molecular location of the specific site. Biopolymers 1989; 28:929-53. [PMID: 2742985 DOI: 10.1002/bip.360280503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have applied the formalism developed previously for the kinetics of domain-localized reactions [S. Mazur and M. T. Record, Jr. (1986) Biopolymers 25, 985-1008] to describe complex mechanisms of association of a protein with a specific site on a large DNA molecule also containing many nonspecific binding sites. These nonspecific sites participate in the mechanism of formation of the specific complex through competitive binding and the facilitating mechanisms of sliding and transfer. The effects of localizing the sites in a domain are represented by a simple algebraic expression, and the sequence of interactions within the domain are described by equations closely related to a conventional, homogeneous solution mechanism. We apply this formalism to examine the interplay between sliding and direct transfer in domain-localized interactions in general and in the lac repressor-lac operator interaction in particular. Experimental investigation of the effect of the molecular location of the specific site (e.g., end vs middle of the polymer chain) on the kinetics of association may allow the contributions of sliding and direct transfer to be resolved.
Collapse
|
134
|
Mitsis PG, Wensink PC. Identification of Yolk Protein Factor 1, a Sequence-specific DNA-binding Protein from Drosophila melanogaster. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83717-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
135
|
Mitsis PG, Wensink PC. Purification and Properties of Yolk Protein Factor I, a Sequence-specific DNA-binding Protein from Drosophila melanogaster. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83718-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
136
|
Glackin MP, McCarthy MP, Mallikarachchi D, Matthew JB, Allewell NM. Electrostatic interactions in the assembly of Escherichia coli aspartate transcarbamylase. Proteins 1989; 5:66-77. [PMID: 2664765 DOI: 10.1002/prot.340050108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although ionizable groups are known to play important roles in the assembly, catalytic, and regulatory mechanisms of Escherichia coli aspartate transcarbamylase, these groups have not been characterized in detail. We report the application of static accessibility modified Tanford-Kirkwood theory to model electrostatic effects associated with the assembly of pairs of chains, subunits, and the holoenzyme. All of the interchain interfaces except R1-R6 are stabilized by electrostatic interactions by -2 to -4 kcal-m-1 at pH 8. The pH dependence of the electrostatic component of the free energy of stabilization of intrasubunit contacts (C1-C2 and R1-R6) is qualitatively different from that of intersubunit contacts (C1-C4, C1-R1, and C1-R4). This difference may allow the transmission of information across subunit interfaces to be selectively regulated. Groups whose calculated pK or charge changes as a result of protein-protein interactions have been identified and the results correlated with available information about their function. Both the 240s loop of the c chain and the region near the Zn(II) ion of the r chain contain clusters of ionizable groups whose calculated pK values change by relatively large amounts upon assembly. These pK changes in turn extend to regions of the protein remote from the interface. The possibility that networks of ionizable groups are involved in transmitting information between binding sites is suggested.
Collapse
Affiliation(s)
- M P Glackin
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06457
| | | | | | | | | |
Collapse
|
137
|
Strickland JA, Marzilli LG, Gay KM, Wilson WD. Porphyrin and metalloporphyrin binding to DNA polymers: rate and equilibrium binding studies. Biochemistry 1988; 27:8870-8. [PMID: 3242614 DOI: 10.1021/bi00424a027] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin [TMpyP(4)] with poly[d(G-C)].poly[d(G-C)] [poly[d(G-C)2] and poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2] were studied by equilibrium dialysis and stopped-flow dissociation kinetics as a function of [Na+]. Metalloderivatives of TMpyP(4), NiTMpyP(4), and ZnTMpyP(4) were also investigated. The apparent equilibrium binding constants (Kobs) were approximately the same for TMpyP(4) binding to either poly[d(G-C)2] or poly[d(A-T)2] and decreased with increasing [Na+]. The slopes of the plots of log Kobs vs log [Na+] were similar, with values close to -2.7. Contrary to implications in previously reported studies, these data do not indicate that TMpyP(4) prefers to bind to GC sites at low ionic strength and to AT sites at high ionic strength. In contrast, binding of ZnTMpyP(4) to these two polymers is very different. Comparisons of Kobs values at 0.065 M [Na+] indicate that ZnTMpyP(4) binding to AT sites is approximately 200 times more favorable than binding to GC sites, a finding in agreement with previous qualitative observations. Although the binding of the Zn species to the GC polymer was too weak for us to assess the salt effect, the plot of log Kobs vs log [Na+] gave a slope of -2.0 for ZnTMpyP(4) binding to poly[d(A-T)2]. Application of condensation theory for polyelectrolytes suggests similar charge interactions for ZnTMpyP(4) and for TMpyP(4) binding to poly[d(A-T)2]. Likewise, the rates of dissociation from poly[d(A-T)2] were similar for TMpyP(4) and ZnTMpyP(4) [and also NiTMpyP(4)]. However, whereas TMpyP(4) [and NiTMpyP(4)] dissociation from poly[d(G-C)2] was measurable, that for ZnTMpyP(4) was too fast to measure.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J A Strickland
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | | | | | | |
Collapse
|
138
|
Abstract
RecA protein binding to duplex DNA occurs by a multi-step process. The tau analysis, originally developed to examine the binding of RNA polymerase to promoter DNA, is adapted here to study two kinetically distinguishable reaction segments of RecA-double stranded (ds) DNA complex formation in greater detail. One, which is probably a rapid preequilibrium in which RecA protein binds weakly to native dsDNA, is found to have the following properties: (1) a sensitivity to pH, involving a net release of approximately one proton; (2) a sensitivity to salts; (3) little or no dependence on temperature; (4) little or no dependence on DNA length. The second reaction segment, the rate-limiting nucleation of nucleoprotein filament formation accompanied by partial DNA unwinding, is found to have the following properties: (1) a sensitivity to pH, involving a net uptake of approximately three protons; (2) a sensitivity to salts; (3) a relatively large dependence on temperature, with an Arrhenius activation energy of 39 kcal mol(-1); (4) a sensitivity to DNA topology; (5) a dependence on DNA length. These results contribute to a general mechanism for RecA protein binding to duplex DNA, which can provide a rationale for the apparent preferential binding to altered DNA structures such as pyrimidine dimers and Z-DNA.
Collapse
Affiliation(s)
- B F Pugh
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
139
|
Sawadogo M. Multiple forms of the human gene-specific transcription factor USF. II. DNA binding properties and transcriptional activity of the purified HeLa USF. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37884-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
140
|
Bujalowski W, Overman LB, Lohman TM. Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68829-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
141
|
Tóugu V, Pedak A, Kesvatera T, Aaviksaar A. Acetylcholinesterase as polyelectrolyte in reaction with cationic substrates. FEBS Lett 1987; 225:77-81. [PMID: 3691807 DOI: 10.1016/0014-5793(87)81134-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is shown that the salt effect in acetylcholinesterase-catalyzed hydrolysis of 2-(N-methylmorpholinium)-ethylacetate can be quantitatively described by the equation log(k2/KS) = log(k2/KS) degrees--psi log[M+Z] following from Manning's polyelectrolyte theory; the psi values for salts with univalent and bivalent cations at different pH values of the reaction medium were in accordance with the conclusions of the theory. Manning's polyelectrolyte theory seems to be a useful framework for studying salt effects in the reactions of charged substrates with enzymes as globular polyions.
Collapse
Affiliation(s)
- V Tóugu
- Laboratory of Bioorganic Chemistry, Estonian Academy of Sciences, Tallinn, USSR
| | | | | | | |
Collapse
|
142
|
Whitson PA, Hsieh WT, Wells RD, Matthews KS. Influence of supercoiling and sequence context on operator DNA binding with lac repressor. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47837-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
143
|
Gabrielsen OS, Oyen TB. The requirement for the A block promoter element in tRNA gene transcription in vitro depends on the ionic environment. Nucleic Acids Res 1987; 15:5699-713. [PMID: 3302945 PMCID: PMC306016 DOI: 10.1093/nar/15.14.5699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When yeast cell extracts that faithfully transcribe class III genes are provided with different electrolyte ions, the pattern of transcripts changes. A transcription unit in pBR322, silent with 0.1M potassium chloride, becomes active in the presence of 0.1M potassium acetate. This pseudogene depends on transcription factors B and C and RNA polymerase III like a tRNA gene. The transcribed region contains the only sequence in pBR322 homologous to the modified B block consensus sequence GTTCRDNNC found in normal tRNA genes. The presence of a block A sequence is less evident. When a block A deleted tRNA(GLU) gene was constructed, it behaved similarly: poorly transcribed with 0.1M potassium chloride, well transcribed with 0.1M potassium acetate. In fact, the deletion of the A block promoter element from the tRNA(GLU) gene did not dramatically lower its transcription when tested with potassium acetate, while it had a strong negative effect when tested with potassium chloride. Consequently the requirement for this promoter element is not constant but is a function of the electrolyte composition.
Collapse
|
144
|
|
145
|
Zimmerman SB, Harrison B. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci U S A 1987; 84:1871-5. [PMID: 3550799 PMCID: PMC304543 DOI: 10.1073/pnas.84.7.1871] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Macromolecular crowding extends the range of ionic conditions supporting high DNA polymerase reaction rates. Reactions tested were nick-translation and gap-filling by DNA polymerase I of Escherichia coli, nuclease and polymerase activities of the large fragment of that polymerase, and polymerization by the T4 DNA polymerase. For all of these reactions, high concentrations of nonspecific polymers increased enzymatic activity under otherwise inhibitory conditions resulting from relatively high ionic strength. The primary mechanism of the polymer effect seems to be to increase the binding of polymerase to DNA. We suggest that this effect on protein-DNA complexes is only one example of a general "metabolic buffering" action of crowded solutions on a variety of macromolecular interactions.
Collapse
|
146
|
|
147
|
|
148
|
Whitson PA, Olson JS, Matthews KS. Thermodynamic analysis of the lactose repressor-operator DNA interaction. Biochemistry 1986; 25:3852-8. [PMID: 3527258 DOI: 10.1021/bi00361a017] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kinetic and equilibrium constants for lactose repressor-operator DNA interaction have been examined as a function of salt concentration, size and sequence context of the operator DNA, and temperature. Significant salt effects were observed on kinetic and equilibrium parameters for pLA 322-8, an operator-containing derivative of pBR 322, and pIQ, an operator and pseudooperator-containing derivative of pBR 322. The association rate constant and equilibrium constant for the 40 base pair operator fragment were also salt dependent. Data for all the DNAs were consistent with a sliding mechanism for repressor-operator association/dissociation [Berg, O. G., & Blomberg, C. (1978) Biophys. Chem. 8, 271-280]. Calculation of the number of ionic interactions based on salt dependence yielded a value of approximately 8 for repressor binding to pIQ and pLA 322-8 vs. approximately 6 for the repressor-40 base pair fragment. These data and the differences in binding parameters for the plasmids vs. the 40 base pair operator are consistent with the formation of an intramolecular ternary complex in the plasmid DNAs. Unusual biphasic temperature dependence was observed in the equilibrium and dissociation rate constants for pLA 322-8, pIQ, and the 40 base pair fragment. These observations coupled with a discontinuity found in the inducer association rate constant as a function of temperature suggest a structural change in the protein. The large positive entropy contributions associated with repressor binding to all the DNAs examined provide the significant driving force for the reaction and are consistent with involvement of ionic and apolar interactions in complex formation.
Collapse
|
149
|
Whitson PA, Matthews KS. Dissociation of the lactose repressor-operator DNA complex: effects of size and sequence context of operator-containing DNA. Biochemistry 1986; 25:3845-52. [PMID: 3527257 DOI: 10.1021/bi00361a016] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The dissociation kinetics for repressor-32P-labeled operator DNA have been examined by adding unlabeled operator DNA to trap released repressor or by adding a small volume of concentrated salt solution to shift the Kd of repressor-operator interaction. The dissociation rate constant for pLA 322-8, an operator-containing derivative of pBR 322, was 2.4 X 10(-3) s-1 in 0.15 M KCl. The dissociation rate constant at 0.15 M KCl for both lambda plac and pIQ, each of which contain two pseudooperator sequences, was approximately 6 X 10(-4) s-1. Elimination of flanking nonspecific DNA sequences by use of a 40 base pair operator-containing DNA fragment yielded a dissociation rate constant of 9.3 X 10(-3) s-1. The size and salt dependences of the rate constants suggest that dissociation occurs as a multistep process. The data for all the DNAs examined are consistent with a sliding mechanism of facilitated diffusion to/from the operator site. The ability to form a ternary complex of two operators per repressor, determined by stoichiometry measurements, and the diminished dissociation rates in the presence of intramolecular nonspecific and pseudooperator DNA sites suggest the formation of an intramolecular ternary complex. The salt dependence of the dissociation rate constant for pLA 322-8 at high salt concentrations converges with that for a 40 base pair operator. The similarity in dissociation rate constants for pLA 322-8 and a 40 base pair operator fragment under these conditions indicates a common dissociation mechanism from a primary operator site on the repressor.
Collapse
|
150
|
Mazur SJ, Record MT. Kinetics of nonspecific binding reactions of proteins with DNA flexible coils: site-based and molecule-based association reactions. Biopolymers 1986; 25:985-1008. [PMID: 3730520 DOI: 10.1002/bip.360250603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|