101
|
Gullo D, Latina A, Frasca F, Squatrito S, Belfiore A, Vigneri R. Seasonal variations in TSH serum levels in athyreotic patients under L-thyroxine replacement monotherapy. Clin Endocrinol (Oxf) 2017; 87:207-215. [PMID: 28398655 DOI: 10.1111/cen.13351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Whether serum TSH undergoes seasonal fluctuations in euthyroid and hypothyroid residents of temperate climates is controversial. METHODS Monthly TSH and thyroid hormone levels were cross-sectionally analysed in a large cohort of euthyroid subjects (n=11 806) and L-thyroxine (L-T4)-treated athyreotic patients (n=3 934). Moreover, in a small group (n=119) of athyreotic patients treated with an unchanged dosage of L-T4 monotherapy, hormones were measured both in the coldest and in the hottest seasons of the same year (longitudinal study). RESULTS No seasonal hormone change was observed in the euthyroid subjects except for a small FT3 increase in winter (+2.9%, P<.001). In contrast, the L-T4-treated athyreotic patients had significantly higher serum TSH values in the cold season when the FT4 values were significantly lower. The differences were more notable in the longitudinal series (TSH, 0.80 vs. 0.20 mU/L and FT4, 16.3 vs. 17.8 pmol/L in December-March vs. June-September, respectively). In these patients also serum FT3 values significantly decreased in winter (in the longitudinal series, 3.80 in winter vs 4.07 pmol/L in summer). Regression analysis showed that in athyreotic subjects, a greater FT4 change is required to obtain a TSH change similar to that of euthyroid controls and that this effect is more pronounced in the summer. CONCLUSION Athyreotic patients undergoing L-T4 monotherapy have abnormal seasonal variations in TSH. These changes are secondary to the FT4 and FT3 serum decreases in winter, which occur in spite of the constant treatment. The underlying mechanisms are unclear, but in some cases, these changes may be clinically relevant.
Collapse
Affiliation(s)
- Damiano Gullo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Adele Latina
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Sebastiano Squatrito
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - Antonino Belfiore
- Endocrine Unit, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
- CNR, Institute of Biostructures and Bioimaging, Catania, Italy
| |
Collapse
|
102
|
Stoney PN, Rodrigues D, Helfer G, Khatib T, Ashton A, Hay EA, Starr R, Kociszewska D, Morgan P, McCaffery P. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways. Brain Behav Immun 2017; 61:340-352. [PMID: 27993690 PMCID: PMC5325119 DOI: 10.1016/j.bbi.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.
Collapse
Affiliation(s)
- Patrick N. Stoney
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Diana Rodrigues
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK,Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elizabeth A. Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Robert Starr
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Dagmara Kociszewska
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
103
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
104
|
Pereira JC, Pradella Hallinan M, Alves RC. Secondary to excessive melatonin synthesis, the consumption of tryptophan from outside the blood-brain barrier and melatonin over-signaling in the pars tuberalis may be central to the pathophysiology of winter depression. Med Hypotheses 2017; 98:69-75. [DOI: 10.1016/j.mehy.2016.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/27/2016] [Indexed: 12/17/2022]
|
105
|
Identification of an endocannabinoid system in the rat pars tuberalis—a possible interface in the hypothalamic-pituitary-adrenal system? Cell Tissue Res 2016; 368:115-123. [DOI: 10.1007/s00441-016-2544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
|
106
|
Johnston RA, Paxton KL, Moore FR, Wayne RK, Smith TB. Seasonal gene expression in a migratory songbird. Mol Ecol 2016; 25:5680-5691. [DOI: 10.1111/mec.13879] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Rachel A. Johnston
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
| | - Kristina L. Paxton
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
- Department of Biology University of Hawaii Hilo Hilo HI 96720 USA
| | - Frank R. Moore
- Department of Biological Sciences University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
| | - Thomas B. Smith
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 610 Charles E Young Dr. South Rm. 4162 Los Angeles CA 90095 USA
- Center for Tropical Research Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
107
|
Abstract
Endogenous long-term timing is a key component of seasonality. Where and how are such rhythms generated? Recent findings pointed to the pituitary pars tuberalis, already implicated in photoperiod responsiveness. Now, a new study provides mechanistic insights which support this hypothesis.
Collapse
|
108
|
Petri I, Diedrich V, Wilson D, Fernández-Calleja J, Herwig A, Steinlechner S, Barrett P. Orchestration of gene expression across the seasons: Hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster. Sci Rep 2016; 6:29689. [PMID: 27406810 PMCID: PMC4942572 DOI: 10.1038/srep29689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
In nature Siberian hamsters utilize the decrement in day length following the summer solstice to implement physiological adaptations in anticipation of the forthcoming winter, but also exploit an intrinsic interval timer to initiate physiological recrudescence following the winter solstice. However, information is lacking on the temporal dynamics in natural photoperiod of photoperiodically regulated genes and their relationship to physiological adaptations. To address this, male Siberian hamsters born and maintained outdoors were sampled every month over the course of one year. As key elements of the response to photoperiod, thyroid hormone signalling components were assessed in the hypothalamus. From maximum around the summer solstice (late-June), Dio2 expression rapidly declined in advance of physiological adaptations. This was followed by a rapid increase in Mct8 expression (T3/T4 transport), peaking early-September before gradually declining to minimum expression by the following June. Dio3 showed a transient peak of expression beginning late-August. A recrudescence of testes and body mass occurred from mid-February, but Dio2 expression remained low until late-April of the following year, converging with the time of year when responsiveness to short-day length is re-established. Other photoperiodically regulated genes show temporal regulation, but of note is a transient peak in Gpr50 around late-July.
Collapse
Affiliation(s)
- Ines Petri
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Victoria Diedrich
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Dana Wilson
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| | - José Fernández-Calleja
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| | - Annika Herwig
- Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Stephan Steinlechner
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
109
|
Clarke IJ, Arbabi L. New concepts of the central control of reproduction, integrating influence of stress, metabolic state, and season. Domest Anim Endocrinol 2016; 56 Suppl:S165-79. [PMID: 27345314 DOI: 10.1016/j.domaniend.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022]
Abstract
Gonadotropin releasing hormone is the primary driver of reproductive function and pulsatile GnRH secretion from the brain causes the synthesis and secretion of LH and FSH from the pituitary gland. Recent work has revealed that the secretion of GnRH is controlled at the level of the GnRH secretory terminals in the median eminence. At this level, projections of kisspeptin cells from the arcuate nucleus of the hypothalamus are seen to be closely associated with fibers and terminals of GnRH cells. Direct application of kisspeptin into the median eminence causes release of GnRH. The kisspeptin cells are activated at the time of a natural "pulse" secretion of GnRH, as reflected in the secretion of LH. This appears to be due to input to the kisspeptin cells from glutamatergic cells in the basal hypothalamus, indicating that more than 1 neural element is involved in the secretion of GnRH. Because the GnRH secretory terminals are outside the blood-brain barrier, factors such as kisspeptin may be administered systemically to cause GnRH secretion; this offers opportunities for manipulation of the reproductive axis using factors that do not cross the blood-brain barrier. In particular, kisspeptin or analogs of the same may be used to activate reproduction in the nonbreeding season of domestic animals. Another brain peptide that influences reproductive function is gonadotropin inhibitory hormone (GnIH). Work in sheep shows that this peptide acts on GnRH neuronal perikarya, but projections to the median eminence also allow secretion into the hypophysial portal blood and action of GnIH on pituitary gonadotropes. GnIH cells are upregulated in anestrus, and infusion of GnIH can block the ovulatory surge in GnRH and/or LH secretion. Metabolic status may also affect the secretion of reproduction, and this could involve action of gut peptides and leptin. Neuropeptide Y and Y-receptor ligands have a negative impact on reproduction, and Neuropeptide Y production is markedly increased in negative energy balance; this may be the cause of lowered GnRH and gonadotropin secretion in this state. There is a complex interaction between appetite-regulating peptide neurons and kisspeptin neurons that enables the former to regulate the latter both positively and negatively. In terms of how GnRH secretion is reduced during stress, recent data indicate that GnIH cells are integrally involved, with increased input to the GnRH cells. The secretion of GnIH into the portal blood is not increased during stress, so the negative effect is most likely effected at the level of GnRH neuronal cell bodies.
Collapse
Affiliation(s)
- I J Clarke
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| | - L Arbabi
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
110
|
Dardente H, Lomet D, Robert V, Decourt C, Beltramo M, Pellicer-Rubio MT. Seasonal breeding in mammals: From basic science to applications and back. Theriogenology 2016; 86:324-32. [DOI: 10.1016/j.theriogenology.2016.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
|
111
|
Holzer G, Morishita Y, Fini JB, Lorin T, Gillet B, Hughes S, Tohmé M, Deléage G, Demeneix B, Arvan P, Laudet V. Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates. J Biol Chem 2016; 291:16553-66. [PMID: 27311711 DOI: 10.1074/jbc.m116.719047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter.
Collapse
Affiliation(s)
- Guillaume Holzer
- From the Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Yoshiaki Morishita
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109
| | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier 75231 Paris cedex 05, France, and
| | - Thibault Lorin
- From the Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Benjamin Gillet
- From the Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sandrine Hughes
- From the Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Marie Tohmé
- From the Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Gilbert Deléage
- Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique, Université Claude Bernard Lyon 1, CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | - Barbara Demeneix
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier 75231 Paris cedex 05, France, and
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109,
| | - Vincent Laudet
- From the Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France,
| |
Collapse
|
112
|
A neuroendocrine role for chemerin in hypothalamic remodelling and photoperiodic control of energy balance. Sci Rep 2016; 6:26830. [PMID: 27225311 PMCID: PMC4880918 DOI: 10.1038/srep26830] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Long-term and reversible changes in body weight are typical of seasonal animals. Thyroid hormone (TH) and retinoic acid (RA) within the tanycytes and ependymal cells of the hypothalamus have been implicated in the photoperiodic response. We investigated signalling downstream of RA and how this links to the control of body weight and food intake in photoperiodic F344 rats. Chemerin, an inflammatory chemokine, with a known role in energy metabolism, was identified as a target of RA. Gene expression of chemerin (Rarres2) and its receptors were localised within the tanycytes and ependymal cells, with higher expression under long (LD) versus short (SD) photoperiod, pointing to a physiological role. The SD to LD transition (increased food intake) was mimicked by 2 weeks of ICV infusion of chemerin into rats. Chemerin also increased expression of the cytoskeletal protein vimentin, implicating hypothalamic remodelling in this response. By contrast, acute ICV bolus injection of chemerin on a 12 h:12 h photoperiod inhibited food intake and decreased body weight with associated changes in hypothalamic neuropeptides involved in growth and feeding after 24 hr. We describe the hypothalamic ventricular zone as a key site of neuroendocrine regulation, where the inflammatory signal, chemerin, links TH and RA signaling to hypothalamic remodeling.
Collapse
|
113
|
Helfer G, Tups A. Hypothalamic Wnt Signalling and its Role in Energy Balance Regulation. J Neuroendocrinol 2016; 28:12368. [PMID: 26802435 PMCID: PMC4797366 DOI: 10.1111/jne.12368] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders.
Collapse
Affiliation(s)
- G. Helfer
- Rowett Institute of Nutrition and HealthUniversity of AberdeenBucksburnAberdeenUK
| | - A. Tups
- Centre for Neuroendocrinology and Brain Health Research CentreDepartment of PhysiologySchool of Medical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
114
|
Henningsen JB, Gauer F, Simonneaux V. RFRP Neurons - The Doorway to Understanding Seasonal Reproduction in Mammals. Front Endocrinol (Lausanne) 2016; 7:36. [PMID: 27199893 PMCID: PMC4853402 DOI: 10.3389/fendo.2016.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023] Open
Abstract
Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24-h light/dark ratio (i.e., photoperiod), which is translated into the nocturnal production of the pineal hormone melatonin. The annual rhythm in this melatonin signal acts as a synchronizer ensuring that breeding occurs when environmental conditions favor survival of the offspring. Although specific mechanisms might vary among seasonal species, the hypothalamic RF (Arg-Phe) amide-related peptides (RFRP-1 and -3) are believed to play a critical role in the central control of seasonal reproduction and in all seasonal species investigated, the RFRP system is persistently inhibited in short photoperiod. Central chronic administration of RFRP-3 in short day-adapted male Syrian hamsters fully reactivates the reproductive axis despite photoinhibitory conditions, which highlights the importance of the seasonal changes in RFRP expression for proper regulation of the reproductive axis. The acute effects of RFRP peptides, however, depend on species and photoperiod, and recent studies point toward a different role of RFRP in regulating female reproductive activity. In this review, we summarize the recent advances made to understand the role and underlying mechanisms of RFRP in the seasonal control of reproduction, primarily focusing on mammalian species.
Collapse
Affiliation(s)
- Jo B. Henningsen
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - François Gauer
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, Centre national de la recherche scientifique (CNRS), University of Strasbourg, Strasbourg, France
- *Correspondence: Valérie Simonneaux,
| |
Collapse
|
115
|
Abstract
The testis provides not just one but several models of temporal organization. The complexity of its rhythmic function arises in part from its compartmentalization and diversity of cell types: not only does the testis produce gametes, but it also serves as the major source of circulating androgens. Within the seminiferous tubules, the germ cells divide and differentiate while in intimate contact with Sertoli cells. The tubule is highly periodic: a spermatogenic wave travels along its length to determine the timing of the commitment of spermatogonia to differentiate, the phases of meiotic division, and the rate of differentiation of the postmeiotic germ cells. Recent evidence indicates that oscillations of retinoic acid play a major role in determining periodicity of the seminiferous epithelium. In the interstitial space, Leydig cells produce the steroid hormones required both for the completion of spermatogenesis and the development and maintenance of male sexual characteristics throughout the body. This endocrine output also oscillates; although the pulse generator lies outside the gonad, the steroidogenic function of Leydig cells is tuned to a regular episodic input. While the oscillations of the intratubular and interstitial cells have multihour (ultradian) and multiday (infradian) periodicities, respectively, the functions of both compartments also display dramatic seasonal rhythms. Furthermore, circadian rhythms are evident in some of the cell types, although their amplitude and pervasiveness are not as great as in many other tissues of the same organism, and their detection may require methods that recognize the heterogeneity of the testis. This review examines the periodicity of testicular function along multiple time scales.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
116
|
Antibody-Mediated Inhibition of the FGFR1c Isoform Induces a Catabolic Lean State in Siberian Hamsters. Curr Biol 2015; 25:2997-3003. [PMID: 26549257 DOI: 10.1016/j.cub.2015.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
Hypothalamic tanycytes are considered to function as sensors of peripheral metabolism. To facilitate this role, they express a wide range of receptors, including fibroblast growth factor receptor 1 (FGFR1). Using a monoclonal antibody (IMC-H7) that selectively antagonizes the FGFR1c isoform, we investigated possible actions of FGFR1c in a natural animal model of adiposity, the Siberian hamster. Infusion of IMC-H7 into the third ventricle suppressed appetite and increased energy expenditure. Likewise, peripheral treatment with IMC-H7 decreased appetite and body weight and increased energy expenditure and fat oxidation. A greater reduction in body weight and caloric intake was observed in response to IMC-H7 during the long-day fat state as compared to the short-day lean state. This enhanced response to IMC-H7 was also observed in calorically restricted hamsters maintained in long days, suggesting that it is the central photoperiodic state rather than the peripheral adiposity that determines the response to FGFR1c antagonism. Hypothalamic thyroid hormone availability is controlled by deiodinase enzymes (DIO2 and DIO3) expressed in tanycytes and is the key regulator of seasonal cycles of energy balance. Therefore, we determined the effect of IMC-H7 on hypothalamic expression of these deiodinase enzymes. The reductions in food intake and body weight were always associated with decreased expression of DIO2 in the hypothalamic ependymal cell layer containing tanycytes. These data provide further support for the notion the tanycytes are an important component of the mechanism by which the hypothalamus integrates central and peripheral signals to regulate energy intake and expenditure.
Collapse
|
117
|
Wood SH, Christian HC, Miedzinska K, Saer BRC, Johnson M, Paton B, Yu L, McNeilly J, Davis JRE, McNeilly AS, Burt DW, Loudon ASI. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals. Curr Biol 2015; 25:2651-62. [PMID: 26412130 PMCID: PMC4612467 DOI: 10.1016/j.cub.2015.09.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3(+)) or short (CHGA(+)) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation.
Collapse
Affiliation(s)
- Shona H Wood
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Helen C Christian
- Department of Physiology, Anatomy, and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Ben R C Saer
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Mark Johnson
- Department of Physiology, Anatomy, and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Bob Paton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Le Yu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK
| | - Judith McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Julian R E Davis
- Faculty of Medical and Human Science, University of Manchester, Manchester, M13 9PT, UK
| | - Alan S McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PRG, UK.
| | - Andrew S I Loudon
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
118
|
Wilsterman K, Buck CL, Barnes BM, Williams CT. Energy regulation in context: Free-living female arctic ground squirrels modulate the relationship between thyroid hormones and activity among life history stages. Horm Behav 2015; 75:111-9. [PMID: 26416501 DOI: 10.1016/j.yhbeh.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022]
Abstract
Thyroid hormones (THs), key regulators of lipid and carbohydrate metabolism, are likely modulators of energy allocation within and among animal life history stages. Despite their role in modulating metabolism, few studies have investigated whether THs vary among life history stages in free-living animals or if they exhibit stage-specific relationships to total energy expenditure and activity levels. We measured plasma total triiodothyronine (tT3) and thyroxine (tT4) at four, discrete life history stages of female arctic ground squirrels from two different populations in northern Alaska to test whether plasma THs correlate with life history stage-specific changes in metabolic rate and energy demand. We also tested whether THs explained individual variation in aboveground activity levels within life history stages. T3 peaked during lactation and was lowest during pre-hibernation fattening, consistent with known changes in basal metabolism and core body temperature. In contrast, T4 was elevated shortly after terminating hibernation but remained low and stable across other life-history stages in the active season. THs were consistently higher in the population that spent more time above-ground but the relationship between THs and activity varied among life history stages. T3 was positively correlated with activity only during lactation (r(2)=0.50) whereas T4 was positively correlated with activity immediately following lactation (r(2)=0.48) and during fattening (r(2)=0.53). Our results support the hypothesis that THs are an important modulator of basal metabolism but also suggest that the relationship between THs and activity varies among life history stages.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94704, USA.
| | - C Loren Buck
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
119
|
Gardell AM, Dillon DM, Smayda LC, von Hippel FA, Cresko WA, Postlethwait JH, Buck CL. Perchlorate exposure does not modulate temporal variation of whole-body thyroid and androgen hormone content in threespine stickleback. Gen Comp Endocrinol 2015; 219:45-52. [PMID: 25733204 PMCID: PMC4508209 DOI: 10.1016/j.ygcen.2015.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Previously we showed that exposure of threespine stickleback (Gasterosteus aculeatus) to the endocrine disruptor perchlorate results in pronounced structural changes in thyroid and gonad, while surprisingly, whole-body thyroid hormone concentrations remain unaffected. To test for hormone titer variations on a finer scale, we evaluated the interactive effects of time (diel and reproductive season) and perchlorate exposure on whole-body contents of triiodothyronine (T3), thyroxine (T4), and 11-ketotestosterone (11-KT) in captive stickleback. Adult stickleback were exposed to 100ppm perchlorate or control water and sampled at 4-h intervals across the 24-hday and at one time-point (1100h) weekly across the reproductive season (May-July). Neither whole-body T3 nor T4 concentration significantly differed across the day in control or perchlorate treated stickleback. Across the reproductive season, whole-body T3 concentration remained stable while T4 significantly increased. However, neither hormone concentration was significantly affected by perchlorate, verifying our previous studies. The concentration of whole-body 11-KT, a major fish androgen, displayed significant diel variation and also steadily declined across the reproductive season in untreated males; perchlorate exposure did not influence the concentration of 11-KT in either diel or reproductive season schedules. Diel and reproductive season variations in 11-KT content in male stickleback are likely related to reproductive physiology and behavior. The observed increase in T4 content across the reproductive season may be reflective of increased energy investment in reproduction near the end of the life cycle.
Collapse
Affiliation(s)
- Alison M Gardell
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Danielle M Dillon
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Lauren C Smayda
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| |
Collapse
|
120
|
Johnston JD, Skene DJ. 60 YEARS OF NEUROENDOCRINOLOGY: Regulation of mammalian neuroendocrine physiology and rhythms by melatonin. J Endocrinol 2015; 226:T187-98. [PMID: 26101375 DOI: 10.1530/joe-15-0119] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2015] [Indexed: 12/15/2022]
Abstract
The isolation of melatonin was first reported in 1958. Since the demonstration that pineal melatonin synthesis reflects both daily and seasonal time, melatonin has become a key element of chronobiology research. In mammals, pineal melatonin is essential for transducing day-length information into seasonal physiological responses. Due to its lipophilic nature, melatonin is able to cross the placenta and is believed to regulate multiple aspects of perinatal physiology. The endogenous daily melatonin rhythm is also likely to play a role in the maintenance of synchrony between circadian clocks throughout the adult body. Pharmacological doses of melatonin are effective in resetting circadian rhythms if taken at an appropriate time of day, and can acutely regulate factors such as body temperature and alertness, especially when taken during the day. Despite the extensive literature on melatonin physiology, some key questions remain unanswered. In particular, the amplitude of melatonin rhythms has been recently associated with diseases such as type 2 diabetes mellitus but understanding of the physiological significance of melatonin rhythm amplitude remains poorly understood.
Collapse
Affiliation(s)
- Jonathan D Johnston
- Faculty of Health and Medical SciencesUniversity of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Debra J Skene
- Faculty of Health and Medical SciencesUniversity of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
121
|
Kripke DF, Elliott JA, Welsh DK, Youngstedt SD. Photoperiodic and circadian bifurcation theories of depression and mania. F1000Res 2015; 4:107. [PMID: 26180634 PMCID: PMC4490783 DOI: 10.12688/f1000research.6444.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
Seasonal effects on mood have been observed throughout much of human history. Seasonal changes in animals and plants are largely mediated through the changing photoperiod (i.e., the photophase or duration of daylight). We review that in mammals, daylight specifically regulates SCN (suprachiasmatic nucleus) circadian organization and its control of melatonin secretion. The timing of melatonin secretion interacts with gene transcription in the pituitary pars tuberalis to modulate production of TSH (thyrotropin), hypothalamic T3 (triiodothyronine), and tuberalin peptides which modulate pituitary production of regulatory gonadotropins and other hormones. Pituitary hormones largely mediate seasonal physiologic and behavioral variations. As a result of long winter nights or inadequate illumination, we propose that delayed morning offset of nocturnal melatonin secretion, suppressing pars tuberalis function, could be the main cause for winter depression and even cause depressions at other times of year. Irregularities of circadian sleep timing and thyroid homeostasis contribute to depression. Bright light and sleep restriction are antidepressant and conversely, sometimes trigger mania. We propose that internal desynchronization or bifurcation of SCN circadian rhythms may underlie rapid-cycling manic-depressive disorders and perhaps most mania. Much further research will be needed to add substance to these theories.
Collapse
Affiliation(s)
- Daniel F Kripke
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, CA, 92093-0603, USA
| | - Jeffrey A Elliott
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, CA, 92093-0603, USA
| | - David K Welsh
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, CA, 92093-0603, USA
| | - Shawn D Youngstedt
- College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, 85004-4431, USA
| |
Collapse
|
122
|
Lin XW, Blum ID, Storch KF. Clocks within the Master Gland: Hypophyseal Rhythms and Their Physiological Significance. J Biol Rhythms 2015; 30:263-76. [PMID: 25926680 DOI: 10.1177/0748730415580881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Various aspects of mammalian endocrine physiology show a time-of-day variation with a period of 24 h, which represents an adaptation to the daily environmental fluctuations resulting from the rotation of the earth. These 24-h rhythms in hormone abundance and consequently hormone function may rely on rhythmic signals produced by the master circadian clock, which resides in the suprachiasmatic nucleus and is thought to chiefly dictate the pattern of rest and activity in mammals in conjunction with the light/dark (LD) cycle. However, it is likely that clocks intrinsic to elements of the endocrine axes also contribute to the 24-h rhythms in hormone function. Here we review the evidence for rhythm generation in the endocrine master gland, the pituitary, and its physiological significance in the context of endocrine axes regulation and function.
Collapse
Affiliation(s)
- Xue-Wei Lin
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada Douglas Mental Health University Institute, Montreal, Quebec, Canada Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Ian David Blum
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada Douglas Mental Health University Institute, Montreal, Quebec, Canada Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
123
|
Weems PW, Goodman RL, Lehman MN. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters. Front Neuroendocrinol 2015; 37:43-51. [PMID: 25582913 PMCID: PMC4405450 DOI: 10.1016/j.yfrne.2014.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
Abstract
Seasonal reproduction is a common adaptive strategy among mammals that allows for breeding to occur at times of the year when it is most advantageous for the subsequent survival and growth of offspring. A major mechanism responsible for seasonal reproduction is a striking increase in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the negative feedback effects of estradiol. The neural and neuroendocrine circuitry responsible for mammalian seasonal reproduction has been primarily studied in three animal models: the sheep, and two species of hamsters. In this review, we first describe the afferent signals, neural circuitry and transmitters/peptides responsible for seasonal reproductive transitions in sheep, and then compare these mechanisms with those derived from studies in hamsters. The results suggest common principles as well as differences in the role of specific brain nuclei and neuropeptides, including that of kisspeptin cells of the hypothalamic arcuate nucleus, in regulating seasonal reproduction among mammals.
Collapse
Affiliation(s)
- Peyton W Weems
- Program in Neuroscience, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA; Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39232, USA
| | - Robert L Goodman
- Department of Physiology & Pharmacology, West Virginia University, PO Box 6201, Morgantown, WV 26506, USA
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39232, USA.
| |
Collapse
|
124
|
"Seasonal changes in the neuroendocrine system": some reflections. Front Neuroendocrinol 2015; 37:3-12. [PMID: 25462591 DOI: 10.1016/j.yfrne.2014.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
This perspective considers first the general issue of seasonality and how it is shaped ecologically. It asks what is the relative importance of "strategic" (photoperiod-dependent) versus "tactical" (supplemental) cues in seasonality and what neural circuits are involved? It then considers recent developments as reflected in the Special Issue. What don't we understand about the photoperiodic clock and also the long-term timing mechanisms underlying refractoriness? Are these latter related to the endogenous annual rhythms? Can we finally identify the opsins involved in photodetection? What is the present position with regard to melatonin as "the" annual calendar? An exciting development has been the recognition of the involvement of thyroid hormones in seasonality but how does the Dio/TSH/thyroid hormone pathway integrate with downstream components of the photoperiodic response system? Finally, there are the seasonal changes within the central nervous system itself--perhaps the most exciting aspect of all.
Collapse
|
125
|
|
126
|
Hardman JA, Haslam IS, Farjo N, Farjo B, Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS One 2015; 10:e0121878. [PMID: 25822259 PMCID: PMC4379003 DOI: 10.1371/journal.pone.0121878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/18/2015] [Indexed: 02/01/2023] Open
Abstract
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Collapse
Affiliation(s)
- Jonathan A. Hardman
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Bio centre, University of Manchester, Manchester, United Kingdom
| | - Iain S. Haslam
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nilofer Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Bessam Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Ralf Paus
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Muenster, Muenster, Germany
| |
Collapse
|
127
|
Lorgen M, Casadei E, Król E, Douglas A, Birnie MJ, Ebbesson LOE, Nilsen TO, Jordan WC, Jørgensen EH, Dardente H, Hazlerigg DG, Martin SAM. Functional divergence of type 2 deiodinase paralogs in the Atlantic salmon. Curr Biol 2015; 25:936-41. [PMID: 25802152 DOI: 10.1016/j.cub.2015.01.074] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
Thyroid hormone (TH) is an ancestral signal linked to seasonal life history transitions throughout vertebrates. TH action depends upon tissue-localized regulation of levels of active TH (triiodothyronine, T3), through spatiotemporal expression of thyroid hormone deiodinase (dio) genes. We investigated the dio gene family in juvenile Atlantic salmon (Salmo salar) parr, which prepare for seaward migration in the spring (smoltification) through TH-dependent changes in physiology. We identified two type 2 deiodinase paralogs, dio2a and dio2b, responsible for conversion of thyroxine (T4) to T3. During smoltification, dio2b was induced in the brain and gills in zones of cell proliferation following increasing day length. Contrastingly, dio2a expression was induced in the gills by transfer to salt water (SW), with the magnitude of the response proportional to the plasma chloride level. This response reflected a selective enrichment for osmotic response elements (OREs) in the dio2a promoter region. Transcriptomic profiling of gill tissue from fish transferred to SW plus or minus the deiodinase inhibitor, iopanoic acid, revealed SW-induced increases in cellular respiration as the principal consequence of gill dio2 activity. Divergent evolution of dio2 paralogs supports organ-specific timing of the TH-dependent events governing the phenotypic plasticity required for migration to sea.
Collapse
Affiliation(s)
- Marlene Lorgen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elisa Casadei
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Mike J Birnie
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Lars O E Ebbesson
- Uni Research Environment, Uni Research AS, Thormøhlensgt 49B, 5006 Bergen, Norway
| | - Tom O Nilsen
- Uni Research Environment, Uni Research AS, Thormøhlensgt 49B, 5006 Bergen, Norway
| | - William C Jordan
- Zoological Society London, Institute of Zoology, London NW1 4RY, UK
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, Faculty of BioSciences, Fisheries and Economy, University of Tromsø, 9037 Tromsø, Norway
| | - Hugues Dardente
- INRA UMR85, CNRS UMR7247, Université de Tours, IFCE, 37380 Nouzilly, France
| | - David G Hazlerigg
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Department of Arctic and Marine Biology, Faculty of BioSciences, Fisheries and Economy, University of Tromsø, 9037 Tromsø, Norway.
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
128
|
Ross AW, Russell L, Helfer G, Thomson LM, Dalby MJ, Morgan PJ. Photoperiod regulates lean mass accretion, but not adiposity, in growing F344 rats fed a high fat diet. PLoS One 2015; 10:e0119763. [PMID: 25789758 PMCID: PMC4366045 DOI: 10.1371/journal.pone.0119763] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/16/2015] [Indexed: 01/10/2023] Open
Abstract
In this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.
Collapse
Affiliation(s)
- Alexander W. Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Laura Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Lynn M. Thomson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Matthew J. Dalby
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Peter J. Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
129
|
Tavolaro FM, Thomson LM, Ross AW, Morgan PJ, Helfer G. Photoperiodic effects on seasonal physiology, reproductive status and hypothalamic gene expression in young male F344 rats. J Neuroendocrinol 2015; 27:79-87. [PMID: 25443173 PMCID: PMC4329330 DOI: 10.1111/jne.12241] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
Seasonal or photoperiodically sensitive animals respond to altered day length with changes in physiology (growth, food intake and reproductive status) and behaviour to adapt to predictable yearly changes in the climate. Typically, different species of hamsters, voles and sheep are the most studied animal models of photoperiodism. Although laboratory rats are generally considered nonphotoperiodic, one rat strain, the inbred Fischer 344 (F344) rat, has been shown to be sensitive to the length of daylight exposure by changing its physiological phenotype and reproductive status according to the season. The present study aimed to better understand the nature of the photoperiodic response in the F344 rat. We examined the effects of five different photoperiods on the physiological and neuroendocrine responses. Young male F344 rats were held under light schedules ranging from 8 h of light/day to 16 h of light/day, and then body weight, including fat and lean mass, food intake, testes weights and hypothalamic gene expression were compared. We found that rats held under photoperiods of ≥ 12 h of light/day showed increased growth and food intake relative to rats held under photoperiods of ≤ 10 h of light/day. Magnetic resonance imaging analysis confirmed that these changes were mainly the result of a change in lean body mass. The same pattern was evident for reproductive status, with higher paired testes weight in photoperiods of ≥ 12 h of light/day. Accompanying the changes in physiological status were major changes in hypothalamic thyroid hormone (Dio2 and Dio3), retinoic acid (Crabp1 and Stra6) and Wnt/β-Catenin signalling genes (sFrp2 and Mfrp). Our data demonstrate that a photoperiod schedule of 12 h of light/day is interpreted as a stimulatory photoperiod by the neuroendocrine system of young male F344 rats.
Collapse
Affiliation(s)
- F M Tavolaro
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - L M Thomson
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - A W Ross
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - P J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - G Helfer
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
- Correspondence to: Gisela Helfer, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK (e-mail: )
| |
Collapse
|
130
|
Kang SW, Kuenzel WJ. Deep-brain photoreceptors (DBPs) involved in the photoperiodic gonadal response in an avian species, Gallus gallus. Gen Comp Endocrinol 2015; 211:106-13. [PMID: 25486342 DOI: 10.1016/j.ygcen.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
Three primitive photoreceptors [melanopsin (Opn4), neuropsin/opsin5 (Opn5) and vertebrate ancient opsin (VAOpn)] were reported as possible avian deep-brain photoreceptors (DBPs) involved in the perception of photoperiodic information affecting the onset and development of reproduction. The objective of this study was to determine the effect of long-day photostimulation and/or sulfamethazine treatment (SMZ, a compound known to advance light-induced testes development) on gene expression of DBPs and key hypothalamic and pituitary genes involved in avian reproductive function. Two-week old chicks were randomly selected into four experimental groups: short-day control (SC, LD8:16), short-day+SMZ (SS, LD8:16, 0.2% diet SMZ), long-day control (LC, LD16:8), and long-day+SMZ (LS, LD16:8, 0.2% diet SMZ). Birds were sampled on days 3, 7, and 28 after initiation of a long-day photoperiod and/or SMZ dietary treatments. Three brain regions [septal-preoptic, anterior hypothalamic (SepPre/Ant-Hypo) region, mid-hypothalamic (Mid-Hypo) region, posterior-hypothalamic (Post-Hypo) region], and anterior pituitary gland were dissected. Using quantitative real-time RT-PCR, we determined changes of expression levels of genes in distinct brain regions; Opn4 and Opn5 in SepPre/Ant-Hypo and Post-Hypo regions and, VAOpn in the Mid-Hypo region. Long-day treatment resulted in a significantly elevated testes weight on days 7 and 28 compared to controls, and SMZ augmented testes weight in both short- and long-day treatment after day 7 (P<0.05). Long-day photoperiodic treatment on the third day unexpectedly induced a large 8.4-fold increase of VAOpn expression in the Mid-Hypo region, a 15.4-fold increase of Opn4 and a 97.8-fold increase of Opn5 gene expression in the Post-Hypo region compared to SC birds (P<0.01). In contrast, on days 7 and 28, gene expression of the three DBPs was barely detectable. LC group showed a significant increase in GnRH-1 and TRH mRNA in the Mid-Hypo compared to SC on day 3. Pituitary LHβ and FSHβ mRNA were significantly elevated in LC and LS groups compared to SC on days 3 and 7 (P<0.05). On days 3 and 7, TSHβ mRNA level was significantly elevated by long-day treatment compared to the SC groups (P<0.05). Results suggest that long-day photoperiodic activation of DBPs is robust, transient, and temporally related with neuroendocrine genes involved in reproductive function. Additionally, results indicate that two subsets of GnRH-1 neurons exist based upon significantly different gene expression from long-day photostimulation and long-day plus SMZ administration. Taken together, the data indicate that within 3 days of a long-day photoperiod, an eminent activation of all three types of DBPs might be involved in priming the neuroendocrine system to activate reproductive function in birds.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
131
|
Flamant F, Koibuchi N, Bernal J. Editorial: "Thyroid Hormone in Brain and Brain Cells". Front Endocrinol (Lausanne) 2015; 6:99. [PMID: 26157419 PMCID: PMC4475825 DOI: 10.3389/fendo.2015.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/29/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
- Frédéric Flamant
- CNRS, INRA, Université de Lyon, Université Lyon 1, Lyon, France
- CNRS, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
- *Correspondence: Frédéric Flamant,
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Juan Bernal
- Consejo Superior de Investigaciones Científicas, Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
132
|
Wood S, Loudon A. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. J Endocrinol 2014; 222:R39-59. [PMID: 24891434 PMCID: PMC4104039 DOI: 10.1530/joe-14-0141] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptation to the environment is essential for survival, in all wild animal species seasonal variation in temperature and food availability needs to be anticipated. This has led to the evolution of deep-rooted physiological cycles, driven by internal clocks, which can track seasonal time with remarkable precision. Evidence has now accumulated that a seasonal change in thyroid hormone (TH) availability within the brain is a crucial element. This is mediated by local control of TH-metabolising enzymes within specialised ependymal cells lining the third ventricle of the hypothalamus. Within these cells, deiodinase type 2 enzyme is activated in response to summer day lengths, converting metabolically inactive thyroxine (T4) to tri-iodothyronine (T3). The availability of TH in the hypothalamus appears to be an important factor in driving the physiological changes that occur with season. Remarkably, in both birds and mammals, the pars tuberalis (PT) of the pituitary gland plays an essential role. A specialised endocrine thyrotroph cell (TSH-expressing) is regulated by the changing day-length signal, leading to activation of TSH by long days. This acts on adjacent TSH-receptors expressed in the hypothalamic ependymal cells, causing local regulation of deiodinase enzymes and conversion of TH to the metabolically active T3. In mammals, the PT is regulated by the nocturnal melatonin signal. Summer-like melatonin signals activate a PT-expressed clock-regulated transcription regulator (EYA3), which in turn drives the expression of the TSHβ sub-unit, leading to a sustained increase in TSH expression. In this manner, a local pituitary timer, driven by melatonin, initiates a cascade of molecular events, led by EYA3, which translates to seasonal changes of neuroendocrine activity in the hypothalamus. There are remarkable parallels between this PT circuit and the photoperiodic timing system used in plants, and while plants use different molecular signals (constans vs EYA3) it appears that widely divergent organisms probably obey a common set of design principles.
Collapse
Affiliation(s)
- Shona Wood
- Faculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| | - Andrew Loudon
- Faculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
133
|
Hut R, Dardente H, Riede S. Seasonal Timing: How Does a Hibernator Know When to Stop Hibernating? Curr Biol 2014; 24:R602-5. [DOI: 10.1016/j.cub.2014.05.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|