101
|
Kim N, Cho SG. Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications. Int J Hematol 2015; 103:129-37. [PMID: 26662288 DOI: 10.1007/s12185-015-1918-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the potential to differentiate into different tissue lineages. In addition to their differentiation potential, MSCs possess immunomodulatory properties that have created growing interest in both pre-clinical and clinical research. Over the years, MSCs have been applied rapidly in the clinic in a wide variety of immune-mediated disorders; however, MSC therapy has shown contradictory results, often with poor clinical outcomes. Recently, studies on MSC-based immune modulation have provided possible explanations for the conflicting clinical reports. It is now generally recognized that the immunomodulatory properties of MSCs are not constitutive but are induced by various mediators present in the inflammatory microenvironment. Different inflammatory stimuli are able to polarize MSCs to elicit distinct immunomodulatory phenotypes. Thus, the concepts of plasticity and polarization of MSC-based immune modulation may have important therapeutic implications in the clinic. In this review, we focus on the underlying mechanisms of MSC-mediated immune regulation that contribute to their therapeutic potential. Importantly, we discuss novel strategic approaches that enhance the therapeutic potential of MSCs through a consideration of MSC plasticity in immune modulation.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, #505, Banpo-Dong, Seocho-Ku, Seoul, 137-040, Korea.,Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease (CRCID), Seoul, Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, #505, Banpo-Dong, Seocho-Ku, Seoul, 137-040, Korea. .,Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease (CRCID), Seoul, Korea. .,Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea.
| |
Collapse
|
102
|
Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O, Laman JD, Grinyó JM, Weimar W, Betjes MGH, Baan CC, Hoogduijn MJ. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells 2015; 33:880-91. [PMID: 25376628 DOI: 10.1002/stem.1881] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/25/2014] [Accepted: 10/11/2014] [Indexed: 12/14/2022]
Abstract
Mesenchymal or stromal stem cells (MSC) interact with cells of the immune system in multiple ways. Modulation of the immune system by MSC is believed to be a therapeutic option for autoimmune disease and transplant rejection. In recent years, B cells have moved into the focus of the attention as targets for the treatment of immune disorders. Current B-cell targeting treatment is based on the indiscriminate depletion of B cells. The aim of this study was to examine whether human adipose tissue-derived MSC (ASC) interact with B cells to affect their proliferation, differentiation, and immune function. ASC supported the survival of quiescent B cells predominantly via contact-dependent mechanisms. Coculture of B cells with activated T helper cells led to proliferation and differentiation of B cells into CD19(+) CD27(high) CD38(high) antibody-producing plasmablasts. ASC inhibited the proliferation of B cells and this effect was dependent on the presence of T cells. In contrast, ASC directly targeted B-cell differentiation, independently of T cells. In the presence of ASC, plasmablast formation was reduced and IL-10-producing CD19(+) CD24(high) CD38(high) B cells, known as regulatory B cells, were induced. These results demonstrate that ASC affect B cell biology in vitro, suggesting that they can be a tool for the modulation of the B-cell response in immune disease.
Collapse
Affiliation(s)
- M Franquesa
- Nephrology and Transplantation, Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res Vet Sci 2015; 103:60-9. [DOI: 10.1016/j.rvsc.2015.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
|
104
|
Oliver-Vila I, Coca MI, Grau-Vorster M, Pujals-Fonts N, Caminal M, Casamayor-Genescà A, Ortega I, Reales L, Pla A, Blanco M, García J, Vives J. Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly. Cytotherapy 2015; 18:25-35. [PMID: 26549383 DOI: 10.1016/j.jcyt.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Umbilical cord (UC) has been proposed as a source of mesenchymal stromal cells (MSCs) for use in experimental cell-based therapies provided that its collection does not raise any risk to the donor, and, similar to bone marrow and lipoaspirates, UC-MSCs are multipotent cells with immuno-modulative properties. However, some of the challenges that make a broader use of UC-MSCs difficult include the limited availability of fresh starting tissue, time-consuming processing for successful derivation of cell lines, and the lack of information on identity, potency and genetic stability in extensively expanded UC-MSCs, which are necessary for banking relevant cell numbers for preclinical and clinical studies. METHODS Factors affecting the success of the derivation process (namely, time elapsed from birth to processing and weight of fragments), and methods for establishing a two-tiered system of Master Cell Bank and Working Cell Bank of UC-MSCs were analyzed. RESULTS Efficient derivation of UC-MSCs was achieved by using UC fragments larger than 7 g that were processed within 80 h from birth. Cells maintained their immunophenotype (being highly positive for CD105, CD90 and CD73 markers), multi-potentiality and immuno-modulative properties beyond 40 cumulative population doublings. No genetic abnormalities were found, as determined by G-banding karyotype, human telomerase reverse transcriptase activity was undetectable and no toxicity was observed in vivo after intravenous administration of UC-MSCs in athymic rats. DISCUSSION This works demonstrates the feasibility of the derivation and large-scale expansion of UC-MSCs from small and relatively old fragments of UC typically discarded from public cord blood banking programs.
Collapse
Affiliation(s)
- Irene Oliver-Vila
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Maria Isabel Coca
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Marta Grau-Vorster
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Noèlia Pujals-Fonts
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Marta Caminal
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Alba Casamayor-Genescà
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Isabel Ortega
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Laura Reales
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Arnau Pla
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Margarita Blanco
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joan García
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joaquim Vives
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain.
| |
Collapse
|
105
|
Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, Cascioli S, Rossi F, Guzzo I, Vivarelli M, Dello Strologo L, Emma F, Locatelli F, Carsetti R. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev 2015; 24:93-103. [PMID: 25036865 DOI: 10.1089/scd.2014.0155] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow (BM)-derived mesenchymal stromal cells (MSCs), endowed with immunosuppressive and anti-inflammatory properties, represent a promising tool in immunoregulatory and regenerative cell therapy. Clarifying the interactions between MSCs and B-lymphocytes may be crucial for designing innovative MSC-based strategies in conditions in which B cells play a role, including systemic lupus erythematosus (SLE) and rejection of kidney transplantation. In this study, we show that, both in healthy subjects and in patients, in vitro B-cell proliferation, plasma-cell differentiation, and antibody production are inhibited by BM-derived MSCs when peripheral blood lymphocytes are stimulated with CpG, but not when sorted B cells are cultured with MSCs+CpG. Inhibition is restored in CpG+MSC cocultures when sorted T cells are added to sorted B cells, suggesting that this effect is mediated by T cells, with both CD4(+) and CD8(+) cells playing a role. Moreover, cell-cell contact between MSCs and T cells, but not between MSCs and B cells, is necessary to inhibit B-cell proliferation. Thus, the presence of functional T cells, as well as cell-cell contact between MSCs and T cells, are crucial for B-cell inhibition. This information can be relevant for implementing MSC-based therapeutic immune modulation in patients in whom T-cell function is impaired.
Collapse
Affiliation(s)
- Maria Manuela Rosado
- 1 Immunology Research Area, Ospedale Pediatrico Bambino Gesù, IRCSS , Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Lamas López JR. Regenerative medicine applied to treatment of musculoskeletal diseases. ACTA ACUST UNITED AC 2015; 10:139-40. [PMID: 24801749 DOI: 10.1016/j.reuma.2014.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Affiliation(s)
- José Ramón Lamas López
- Servicio de Reumatología, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, España.
| |
Collapse
|
107
|
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, Quevedo J, Kapczinski F, Rosa AR. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. AN ACAD BRAS CIENC 2015; 87:1435-49. [PMID: 26247151 DOI: 10.1590/0001-3765201520140619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Bruna M Ascoli
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Wollenhaupt-Aguiar
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Pfaffenseller
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Emily G Silva
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Elizabeth O Cirne-Lima
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Adriane R Rosa
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| |
Collapse
|
108
|
Healy ME, Bergin R, Mahon BP, English K. Mesenchymal stromal cells protect against caspase 3-mediated apoptosis of CD19(+) peripheral B cells through contact-dependent upregulation of VEGF. Stem Cells Dev 2015; 24:2391-402. [PMID: 26076727 DOI: 10.1089/scd.2015.0089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The immune suppressive and anti-inflammatory capabilities of bone marrow-derived mesenchymal stromal cells (MSCs) represent an innovative new tool in regenerative medicine and immune regulation. The potent immune suppressive ability of MSC over T cells, dendritic cells, and natural killer cells has been extensively characterized, however, the effect of MSC on B cell function has not yet been clarified. In this study, the direct effect of MSC on peripheral blood B cell function is defined and the mechanism utilized by MSC in enhancing B cell survival in vitro identified. Human MSC supported the activation, proliferation, and survival of purified CD19(+) B cells through a cell contact-dependent mechanism. These effects were not mediated through B cell activating factor or notch signaling. However, cell contact between MSC and B cells resulted in increased production of vascular endothelial growth factor (VEGF) by MSC facilitating AKT phosphorylation within the B cell and inhibiting caspase 3-mediated apoptosis. Blocking studies demonstrated that this cell contact-dependent effect was not dependent on signaling through CXCR4-CXCL12 or through the epidermal growth factor receptor (EGFR). These results suggest that direct cell contact between MSC and B cells supports B cell viability and function, suggesting that MSC may not represent a suitable therapy for B cell-mediated disease.
Collapse
Affiliation(s)
- Marc E Healy
- Institute of Immunology, Maynooth University, National University of Ireland Maynooth , Maynooth, Ireland
| | - Ronan Bergin
- Institute of Immunology, Maynooth University, National University of Ireland Maynooth , Maynooth, Ireland
| | - Bernard P Mahon
- Institute of Immunology, Maynooth University, National University of Ireland Maynooth , Maynooth, Ireland
| | - Karen English
- Institute of Immunology, Maynooth University, National University of Ireland Maynooth , Maynooth, Ireland
| |
Collapse
|
109
|
Uccelli A, de Rosbo NK. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci 2015; 1351:114-26. [PMID: 26152292 DOI: 10.1111/nyas.12815] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are being increasingly investigated as a therapeutic alternative, not only for their possible regenerative potential but also for their immunomodulatory action, which is being exploited for controlling diseases associated with inflammation. Understanding their direct and indirect target cells, as well as their mode of action and relevant pathways, is a prerequisite for the appropriate and optimal use of MSCs in therapy. Here, we review recent findings on the effects of MSCs on adaptive and innate immune cells. We also consider the impact of the environment on MSC profile, both anti- and proinflammatory, and the mechanisms and molecular pathways through which their effects are mediated, both at the MSC and target cell levels.
Collapse
Affiliation(s)
- Antonio Uccelli
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI).,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (DINOGMI)
| |
Collapse
|
110
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
111
|
Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 2015; 8:54-68. [PMID: 26019755 PMCID: PMC4445710 DOI: 10.15283/ijsc.2015.8.1.54] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have rapidly been applied in a broad field of immune-mediated disorders since the first successful clinical use of MSCs for treatment of graft-versus-host disease. Despite the lack of supporting data, expectations that MSCs could potentially treat most inflammatory conditions led to rushed application and development of commercialized products. Today, both pre-clinical and clinical studies present mixed results for MSC therapy and the discrepancy between expected and actual efficacy of MSCs in various diseases has evoked a sense of discouragement. Therefore, we believe that MSC therapy may now be at a critical milestone for re-evaluation and re-consideration. In this review, we summarize the current status of MSC-based clinical trials and focus on the discrepancy between expected and actual outcome of MSC therapy from bench to bedside. Importantly, we discuss the underlying limitations of MSCs and suggest a new guideline for MSC therapy in hopes of improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea ; Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea ; Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea ; Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
112
|
Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015; 2015:394917. [PMID: 25961059 PMCID: PMC4417567 DOI: 10.1155/2015/394917] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD).
Collapse
|
113
|
New Steps in the Use of Mesenchymal Stem Cell in Solid Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
114
|
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014; 6:526-539. [PMID: 25426250 PMCID: PMC4178253 DOI: 10.4252/wjsc.v6.i5.526] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.
Collapse
|
115
|
Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, Casado JG. Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Front Immunol 2014; 5:556. [PMID: 25414703 PMCID: PMC4220146 DOI: 10.3389/fimmu.2014.00556] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
In the recent years, it has been demonstrated that the biological activity of mesenchymal stem cells (MSCs) is mediated through the release of paracrine factors. Many of these factors are released into exosomes, which are small membranous vesicles that participate in cell–cell communication. Exosomes from MSCs are thought to have similar functions to MSCs such as repairing and regeneration of damaged tissue, but little is known about the immunomodulatory effect of these vesicles. Based on an extensive bibliography where the immunomodulatory capacity of MSCs has been demonstrated, here we hypothesized that released exosomes from MSCs may have an immunomodulatory role on the differentiation, activation and function of different lymphocyte subsets. According to this hypothesis, in vitro experiments were performed to characterize the immunomodulatory effect of human adipose MSCs derived exosomes (exo-hASCs) on in vitro stimulated T cells. The phenotypic characterization of cytotoxic and helper T cells (activation and differentiation markers) together with functional assays (proliferation and IFN-γ production) demonstrated that exo-hASCs exerted an inhibitory effect in the differentiation and activation of T cells as well as a reduced T cell proliferation and IFN-γ release on in vitro stimulated cells. In summary, here we demonstrate that MSCs-derived exosomes are a cell-derived product that could be considered as a therapeutic agent for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Rebeca Blazquez
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson , Cáceres , Spain
| | | | - Olga de la Rosa
- Research and Development Department, TiGenix SA, Parque Tecnológico de Madrid , Madrid , Spain
| | | | - Verónica Alvarez
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson , Cáceres , Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura , Cáceres , Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson , Cáceres , Spain
| |
Collapse
|
116
|
Barrio L, Cuevas VD, Menta R, Mancheño-Corvo P, delaRosa O, Dalemans W, Lombardo E, Carrasco YR. Human adipose tissue-derived mesenchymal stromal cells promote B-cell motility and chemoattraction. Cytotherapy 2014; 16:1692-9. [PMID: 25240680 DOI: 10.1016/j.jcyt.2014.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/03/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells hold special interest for cell-based therapy because of their tissue-regenerative and immunosuppressive abilities. B-cell involvement in chronic inflammatory and autoimmune pathologies makes them a desirable target for cell-based therapy. Mesenchymal stromal cells are able to regulate B-cell function; although the mechanisms are little known, they imply cell-to-cell contact. METHODS We studied the ability of human adipose tissue-derived mesenchymal stromal cells (ASCs) to attract B cells. RESULTS We show that ASCs promote B-cell migration through the secretion of chemotactic factors. Inflammatory/innate signals do not modify ASC capacity to mediate B-cell motility and chemotaxis. Analysis of a panel of B cell-related chemokines showed that none of them appeared to be responsible for B-cell motility. Other ASC-secreted factors able to promote cell motility and chemotaxis, such as the cytokine interleukin-8 and prostaglandin E2, did not appear to be implicated. CONCLUSIONS We propose that ASC promotion of B-cell migration by undefined secreted factors is crucial for ASC regulation of B-cell responses.
Collapse
Affiliation(s)
- Laura Barrio
- B Cell Dynamics Laboratory, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, UAM-Campus Cantoblanco, Madrid, Spain
| | - Victor Delgado Cuevas
- B Cell Dynamics Laboratory, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, UAM-Campus Cantoblanco, Madrid, Spain
| | - Ramón Menta
- TiGenix SAU, Parque Tecnológico de Madrid, Madrid, Spain
| | | | - Olga delaRosa
- TiGenix SAU, Parque Tecnológico de Madrid, Madrid, Spain
| | | | | | - Yolanda R Carrasco
- B Cell Dynamics Laboratory, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, UAM-Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
117
|
Kilinc S, Gurkan U, Guven S, Koyuncu G, Tan S, Karaca C, Ozdogan O, Dogan M, Tugmen C, Pala E, Bayol U, Baran M, Kurtulmus Y, Pirim I, Kebapci E, Demirci U. Evaluation of Epithelial Chimerism After Bone Marrow Mesenchymal Stromal Cell Infusion in Intestinal Transplant Patients. Transplant Proc 2014; 46:2125-32. [DOI: 10.1016/j.transproceed.2014.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
118
|
Griffin MD, Elliman SJ, Cahill E, English K, Ceredig R, Ritter T. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots? Stem Cells 2014; 31:2033-41. [PMID: 23766124 DOI: 10.1002/stem.1452] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal (stem) cells (MSCs) continue to be a strong area of focus for academic- and industry-based researchers who share the goal of expanding their therapeutic use for diverse inflammatory and immune-mediated diseases. Recently, there has been an accelerated rate of scientific publication, clinical trial activity, and commercialisation in the field. This has included the reporting of exciting new developments in four areas that will be of key importance to future successful use of MSC-based therapies in large numbers of patients: (a) fundamental biology of the primary cells in bone marrow and other tissues that give rise to MSCs in culture. (b) Mechanisms by which MSCs modulate immune and inflammatory responses in vivo. (c) Insights into MSC kinetics, safety, and efficacy in relevant animal disease models. (d) Isolation, definition, and clinical trial-based testing of human MSCs by biomedical companies and academic medical centers. Despite this progress, it remains unclear whether MSCs will enter mainstream therapeutic practice as a frequently used alternative to pharmacotherapy or surgical/radiological procedures in the foreseeable future. In this review, we summarize some of the most significant new developments for each of the four areas that contribute to the process of translating MSC research to the clinical arena. In the context of this recent progress, we discuss key challenges and specific knowledge gaps which, if not addressed in a coordinated fashion, may hinder the creation of robust "translational pipelines" for consolidating the status of MSC-based therapies.
Collapse
Affiliation(s)
- Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
119
|
Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. Immunol Lett 2014; 159:55-72. [PMID: 24657523 DOI: 10.1016/j.imlet.2014.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)ß, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Alessandra Musso
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy
| | - Irene Dapino
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Istituto Scientifico San Raffaele Milan, 20132 Milan, Italy
| |
Collapse
|
120
|
El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? TISSUE ENGINEERING PART B-REVIEWS 2014; 20:523-44. [PMID: 24552279 DOI: 10.1089/ten.teb.2013.0664] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Reine El Omar
- 1 CNRS UMR UL 7365 , Bâtiment Biopôle, Faculté de médecine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
121
|
Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:455-67. [PMID: 24417705 DOI: 10.1089/ten.teb.2013.0462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of insulin-producing pancreatic β-cells. Cell-based therapies, involving the transplantation of functional β-cells into diabetic patients, have been explored as a potential long-term treatment for this condition; however, success is limited. A tissue engineering approach of culturing insulin-producing cells with extracellular matrix (ECM) molecules in three-dimensional (3D) constructs has the potential to enhance the efficacy of cell-based therapies for diabetes. When cultured in 3D environments, insulin-producing cells are often more viable and secrete more insulin than those in two dimensions. The addition of ECM molecules to the culture environments, depending on the specific type of molecule, can further enhance the viability and insulin secretion. This review addresses the different cell sources that can be utilized as β-cell replacements, the essential ECM molecules for the survival of these cells, and the 3D culture techniques that have been used to benefit cell function.
Collapse
Affiliation(s)
- Luke D Amer
- 1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado
| | | | | |
Collapse
|
122
|
Tanabe S. Role of mesenchymal stem cells in cell life and their signaling. World J Stem Cells 2014; 6:24-32. [PMID: 24567785 PMCID: PMC3927011 DOI: 10.4252/wjsc.v6.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
123
|
From single nucleotide polymorphisms to constant immunosuppression: mesenchymal stem cell therapy for autoimmune diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:929842. [PMID: 24350294 PMCID: PMC3852726 DOI: 10.1155/2013/929842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 12/29/2022]
Abstract
The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs.
Collapse
|
124
|
Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, Santos F, Henriques A, Grãos M, Cardoso CMP, Martinho A, Pais M, da Silva CL, Cabral J, Trindade H, Paiva A. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther 2013; 4:125. [PMID: 24406104 PMCID: PMC3854702 DOI: 10.1186/scrt336] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022] Open
Abstract
Introduction The ability to self-renew, be easily expanded in vitro and differentiate into different mesenchymal tissues, render mesenchymal stem cells (MSCs) an attractive therapeutic method for degenerative diseases. The subsequent discovery of their immunosuppressive ability encouraged clinical trials in graft-versus-host disease and auto-immune diseases. Despite sharing several immunophenotypic characteristics and functional capabilities, the differences between MSCs arising from different tissues are still unclear and the published data are conflicting. Methods Here, we evaluate the influence of human MSCs derived from umbilical cord matrix (UCM), bone marrow (BM) and adipose tissue (AT), co-cultured with phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (MNC), on T, B and natural killer (NK) cell activation; T and B cells’ ability to acquire lymphoblast characteristics; mRNA expression of interleukin-2 (IL-2), forkhead box P3 (FoxP3), T-bet and GATA binding protein 3 (GATA3), on purified T cells, and tumor necrosis factor-alpha (TNF-α), perforin and granzyme B on purified NK cells. Results MSCs derived from all three tissues were able to prevent CD4+ and CD8+ T cell activation and acquisition of lymphoblast characteristics and CD56dim NK cell activation, wherein AT-MSCs showed a stronger inhibitory effect. Moreover, AT-MSCs blocked the T cell activation process in an earlier phase than BM- or UCM-MSCs, yielding a greater proportion of T cells in the non-activated state. Concerning B cells and CD56bright NK cells, UCM-MSCs did not influence either their activation kinetics or PHA-induced lymphoblast characteristics, conversely to BM- and AT-MSCs which displayed an inhibitory effect. Besides, when co-cultured with PHA-stimulated MNC, MSCs seem to promote Treg and Th1 polarization, estimated by the increased expression of FoxP3 and T-bet mRNA within purified activated T cells, and to reduce TNF-α and perforin production by activated NK cells. Conclusions Overall, UCM-, BM- and AT-derived MSCs hamper T cell, B cell and NK cell-mediated immune response by preventing their acquisition of lymphoblast characteristics, activation and changing the expression profile of proteins with an important role in immune function, except UCM-MSCs showed no inhibitory effect on B cells under these experimental conditions. Despite the similarities between the three types of MSCs evaluated, we detect important differences that should be taken into account when choosing the MSC source for research or therapeutic purposes.
Collapse
|
125
|
Chen M, Xiang Z, Cai J. The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res 2013; 1532:63-75. [PMID: 23933426 DOI: 10.1016/j.brainres.2013.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 12/29/2022]
Abstract
Progressive death of retinal ganglion cells (RGCs) is a major cause of irreversible visual impairment after optic nerve injury. Clinically, there are still no effective treatments for recovering the visual function at present. The probable approaches to maintain the vision and RGCs function involve in preventing RGCs from death and/or promoting the regeneration of damaged RGCs. Previous studies have shown that mesenchymal stem cells (MSCs) take neuroprotective effects on ischemia-induced cortical and spinal cord injury, however, whether MSCs have a beneficial effect on the optical nerve injury is not clearly determined. In present study, we transplanted MSCs derived from human umbilical cord blood (hUCB-MSCs) into the vitreous cavity of adult rats and investigated the probable capacity of anti-apoptosis and pro-neuroprotective effects on RGCs. RGCs were retrogradely traced by fluorescent gold particles (FG); cellular apoptosis was investigated by caspase-3 immunohistochemistry and terminal dUTP nick end labeling (TUNEL) staining. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of the retina. Growth associated protein 43 (GAP-43), an established marker for axonal regeneration, was used to visualize the regenerative process over time. Expression of P2X7 receptors (P2X7R), which are responsible for inflammatory and immune responses, was also monitored in our experiments. We found that the hUCB-MSC transplantation significantly decreased cellular apoptosis and promoted the survival of RGCs in early phase. However, this protection was transient and the RGCs could not be protected from death in the end. Consistent with apoptosis detection, P2X7R was also significantly decreased in hUCB-MSC transplanted rats in the early time but without obvious difference to the rats from control group in the end. Thus, our results imply that hUCB-MSCs take anti-apoptotic, pro-neuroregenerative and anti-inflammatory effects in the early time for acute optic nerve injury in adult rats but could not prevent RGCs from death eventually.
Collapse
Affiliation(s)
- Meilan Chen
- Department of Ophthalmology of Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | |
Collapse
|
126
|
Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol 2013; 4:175. [PMID: 23888159 PMCID: PMC3719134 DOI: 10.3389/fimmu.2013.00175] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/18/2013] [Indexed: 12/13/2022] Open
Abstract
Reconstructive transplantation has emerged as clinical reality over the past decade. Long-term graft acceptance has been feasible in extremity and facial vascularized composite allotransplantation (VCA) under standard immunosuppression. Minimizing overall burden of lifelong immunosuppression is key to wider application of these non-life saving grafts. Allograft tolerance is the holy grail of many cell-based immunomodulatory strategies. Recent protocols using mesenchymal stem cells from bone marrow and adipose tissue offer promise and potential in VCA. This article provides an overview of the experimental basis, the scientific background and clinical applications of stem cell-based therapies in the field of reconstructive allotransplantation.
Collapse
Affiliation(s)
- Jan A Plock
- Department of Plastic Surgery, University of Pittsburgh Medical Center , Pittsburgh, PA , USA ; Division of Plastic and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | | | | | | | | |
Collapse
|
127
|
Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie 2013; 95:2271-85. [PMID: 23827856 PMCID: PMC4061727 DOI: 10.1016/j.biochi.2013.06.020] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022]
Abstract
Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS.
Collapse
Affiliation(s)
- Denise Drago
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neurosciences, San Raffaele Scientific Institute, 20132 Milan, Italy; Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
128
|
Hoogduijn MJ, Dor FJMF. Mesenchymal stem cells: are we ready for clinical application in transplantation and tissue regeneration? Front Immunol 2013; 4:144. [PMID: 23781219 PMCID: PMC3678105 DOI: 10.3389/fimmu.2013.00144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 12/24/2022] Open
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
129
|
Ménard C, Tarte K. Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application. Stem Cell Res Ther 2013; 4:64. [PMID: 23742637 PMCID: PMC3706914 DOI: 10.1186/scrt214] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-based therapy holds great promise for treating immune disorders and for regenerative medicine in agreement with their paracrine trophic and immunosuppressive activities. Various processes have been developed worldwide to produce clinical grade MSCs but, so far, it is not known if one given MSC is more efficient than another. In addition, while their broad activity on innate and adaptative immune cell subsets is now widely admitted, the precise mechanisms supporting their immunoregulatory capacities are still a matter of debate. Finally, quantitative immunological potency assays correlated to clinical efficacy and clinically relevant immunomonitoring approaches for MSC-treated patients are sorely needed. Multiple parameters could influence the immunomodulatory potential of therapeutic MSCs. The most important challenge is now to differentiate, within a high number of poorly comparable and even contradictory pre-clinical studies, the parameters that could have some clinical impact from those that are only due to uncontrolled experimental variability. Importantly, besides MSC-related differences, primarily linked to production processes, several important variables associated with immune assays themselves, including selection of effector immune cells, activation signals, and read-out techniques, should be carefully considered to obtain solid results with potential therapeutic application. In this review, we establish a core of common and reproducible immunological properties of MSCs, shed light on technical issues concerning immunomodulatory potential assessment, and put them into perspective when considering clinical application.
Collapse
|
130
|
Reinders ME, Roemeling-van Rhijn M, Khairoun M, Lievers E, de Vries DK, Schaapherder AF, Wong SW, Zwaginga JJ, Duijs JM, van Zonneveld AJ, Hoogduijn MJ, Fibbe WE, de Fijter JW, van Kooten C, Rabelink TJ, Roelofs H. Bone marrow-derived mesenchymal stromal cells from patients with end-stage renal disease are suitable for autologous therapy. Cytotherapy 2013; 15:663-72. [DOI: 10.1016/j.jcyt.2013.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/16/2022]
|
131
|
English K, Wood KJ. Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harb Perspect Med 2013; 3:a015560. [PMID: 23637312 PMCID: PMC3633184 DOI: 10.1101/cshperspect.a015560] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have recently emerged as promising candidates for cell-based immunotherapy in solid organ transplantation (SOT). In addition to immune modulation, MSCs possess proreparative properties and preclinical studies indicate that MSCs have the capacity to prolong graft survival and in some cases induce tolerance. Currently, the application of MSCs in SOT is being evaluated in phase I/II clinical trials. Whereas the mechanisms of action used by MSC immunomodulation have been somewhat elucidated in vitro, the data from preclinical transplant models have been unclear. Furthermore, the optimal timing, dose, and route of administration remain to be elucidated. Importantly, MSCs have the ability to sense their environment, which may influence their function. In this article, we discuss the impact of the local microenvironment on MSCs and the mechanisms of MSC immunomodulation in the setting of SOT.
Collapse
Affiliation(s)
- Karen English
- Cellular Immunology Group, Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland.
| | | |
Collapse
|
132
|
The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation. Curr Opin Organ Transplant 2013; 18:44-50. [DOI: 10.1097/mot.0b013e32835c2939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
133
|
Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunol Cell Biol 2012. [PMID: 23207278 DOI: 10.1038/icb.2012.67] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) have potent anti-inflammatory/immunosuppressive properties which underlie much of their therapeutic potential. This fact has led to the widely accepted belief that MSCs from genetically unrelated individuals (allogeneic (allo)-MSCs) can be used therapeutically with equal efficacy to autologous MSCs and without triggering the donor-specific immune responses that are typically associated with allo-transplants. In this article, we critically review available experimental data to determine whether good in vivo evidence exists in support of the 'immune privileged' status of allo-MSCs. We also examine published studies regarding the immunogenicity of allo-MSCs following activation ('licensing') by inflammatory stimuli or following differentiation. Among the identified studies which have addressed in vivo immunogenicity of allo-MSCs, there was substantial variability as regards experimental species, disease model, route of MSC administration, cell dose and stringency of the immunological assays employed. Nonetheless, the majority of these studies has documented specific cellular (T-cell) and humoral (B-cell/antibody) immune responses against donor antigens following administration of non-manipulated, interferon-γ-activated and differentiated allo-MSCs. The consequences of such anti-donor immune responses were also variable and ranged from reduced in vivo survival of allo-MSCs with accelerated rejection of subsequent allogeneic transplants to apparent promotion of donor-specific tolerance. On the basis of these findings and on existing knowledge of allo-antigen recognition from the field of transplant immunology, we propose that the concept of the immune privileged nature of allo-MSCs should be reconsidered and that the range and clinical implications of anti-donor immune responses elicited by allo-MSCs be more precisely studied in human and animal recipients.
Collapse
Affiliation(s)
- Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), NCBES, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
134
|
Renders L, Heemann U. Chronic renal allograft damage after transplantation: what are the reasons, what can we do? Curr Opin Organ Transplant 2012; 17:634-9. [PMID: 23080067 DOI: 10.1097/mot.0b013e32835a4bfa] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Chronic renal allograft damage is one of the main problems after kidney transplantation. This review enumerates causes, describes available therapeutic options, and discusses options of the future. RECENT FINDINGS Alloantigen-dependent and alloantigen-independent factors are responsible for allograft damage. Prevention of renal allograft damage starts with interventions that occur surrounding the explantation in cadaveric organs. These include the use of dopamine or machine perfusion systems.Followed by the critical phase of ischemia/reperfusion injury, the LCN2/lipocalin-2, HAVCR1, and p38 MAPK pathway are new players involved in that process. Innate immunity plays a part, too. Cold ischemia time is associated with genes of apoptosis. Nondonor-specific antibodies like antihuman leukocyte antibodies-Ia or angiotensin type 1 receptor may also play a role. Recent research indicates that genetic polymorphism like the Ficolin-2 Ala258Ser polymorphism and the mannose-binding lectin-2 polymorphism are involved in that process. New therapeutic options are rare and in the future. However, there is some evidence that drugs interfering with metalloproteinases, sexual hormones like dihydroandrosterone, and mesenchymal stem cell therapy may be of importance. SUMMARY Taken together, although the understanding of chronic rejection has improved, the available therapeutic options remain scarce.
Collapse
Affiliation(s)
- Lutz Renders
- Department of Nephrology, Technical University of Munic, Munic, Germany.
| | | |
Collapse
|
135
|
Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2012; 22:845-54. [PMID: 23002959 DOI: 10.1089/scd.2012.0395] [Citation(s) in RCA: 673] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.
Collapse
Affiliation(s)
- Tingfen Li
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|