101
|
Bhasne K, Sebastian S, Jain N, Mukhopadhyay S. Synergistic Amyloid Switch Triggered by Early Heterotypic Oligomerization of Intrinsically Disordered α-Synuclein and Tau. J Mol Biol 2018; 430:2508-2520. [PMID: 29704492 DOI: 10.1016/j.jmb.2018.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022]
Abstract
Amyloidogenic intrinsically disordered proteins, α-synuclein and tau are linked to Parkinson's disease and Alzheimer's disease, respectively. A body of evidence suggests that α-synuclein and tau, both present in the presynaptic nerve terminals, co-aggregate in many neurological ailments. The molecular mechanism of α-synuclein-tau hetero-assembly is poorly understood. Here we show that amyloid formation is synergistically facilitated by heterotypic association mediated by binding-induced misfolding of both α-synuclein and tau K18. We demonstrate that the intermolecular association is largely driven by the electrostatic interaction between the negatively charged C-terminal segment of α-synuclein and the positively charged tau K18 fragment. This heterotypic association results in rapid formation of oligomers that readily mature into hetero-fibrils with a much shorter lag phase compared to the individual proteins. These findings suggested that the critical intermolecular interaction between α-synuclein and tau can promote facile amyloid formation that can potentially lead to efficient sequestration of otherwise long-lived lethal oligomeric intermediates into innocuous fibrils. We next show that a well-known familial Parkinson's disease mutant (A30P) that is known to aggregate slowly via accumulation of highly toxic oligomeric species during the long lag phase converts into amyloid fibrils significantly faster in the presence of tau K18. The early intermolecular interaction profoundly accelerates the fibrillation rate of A30P α-synuclein and impels the disease mutant to behave similar to wild-type α-synuclein in the presence of tau. Our findings suggest a mechanistic underpinning of bypassing toxicity and suggest a general strategy by which detrimental amyloidogenic precursors are efficiently sequestered into more benign amyloid fibrils.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Sanjana Sebastian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Neha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Present address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
102
|
Andersen KK, Vad BS, Kjær L, Tolker‐Nielsen T, Christiansen G, Otzen DE. Pseudomonas aeruginosa
rhamnolipid induces fibrillation of human α‐synuclein and modulates its effect on biofilm formation. FEBS Lett 2018; 592:1484-1496. [DOI: 10.1002/1873-3468.13038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Kell K. Andersen
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| | - Brian S. Vad
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| | - Lars Kjær
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| | - Tim Tolker‐Nielsen
- Costerton Biofilm Center Department of Immunology and Microbiology University of Copenhagen Denmark
| | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| |
Collapse
|
103
|
Malishev R, Abbasi R, Jelinek R, Chai L. Bacterial Model Membranes Reshape Fibrillation of a Functional Amyloid Protein. Biochemistry 2018; 57:5230-5238. [DOI: 10.1021/acs.biochem.8b00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ravit Malishev
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Razan Abbasi
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
104
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
105
|
Rouse SL, Hawthorne WJ, Berry JL, Chorev DS, Ionescu SA, Lambert S, Stylianou F, Ewert W, Mackie U, Morgan RML, Otzen D, Herbst FA, Nielsen PH, Dueholm M, Bayley H, Robinson CV, Hare S, Matthews S. A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nat Commun 2017; 8:263. [PMID: 28811582 PMCID: PMC5557850 DOI: 10.1038/s41467-017-00361-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
Abstract
Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated β-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences. Gram-negative bacteria assemble biofilms from amyloid fibres, which translocate across the outer membrane as unfolded amyloid precursors through a secretion system. Here, the authors characterise the structural details of the amyloid transporter FapF in Pseudomonas.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - William J Hawthorne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Jamie-Lee Berry
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sebastian Lambert
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Wiebke Ewert
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Uma Mackie
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK.,Walthamstow School for Girls, London, E17 9RZ, UK
| | - R Marc L Morgan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Stephen Hare
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
106
|
Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett 2017; 364:3866593. [DOI: 10.1093/femsle/fnx124] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
|
107
|
Decho AW, Gutierrez T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front Microbiol 2017; 8:922. [PMID: 28603518 PMCID: PMC5445292 DOI: 10.3389/fmicb.2017.00922] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs) or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured 'biofilm' communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called 'marine snow.' Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer of environmental contaminants, and may provide a protective refugia for pathogenic cells within marine systems; one that enhances their survival/persistence. Finally, these secretions are prominent in 'extreme' environments ranging from sea-ice communities to hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems. This overview summarizes some of the roles of exopolymer in oceans.
Collapse
Affiliation(s)
- Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, ColumbiaSC, United States
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, United Kingdom
| |
Collapse
|
108
|
Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C. Critical review on biofilm methods. Crit Rev Microbiol 2016; 43:313-351. [PMID: 27868469 DOI: 10.1080/1040841x.2016.1208146] [Citation(s) in RCA: 562] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.
Collapse
Affiliation(s)
- Joana Azeredo
- a CEB ? Centre of Biological Engineering, LIBRO, Laboratórios de Biofilmes Rosário Oliveira, University of Minho Campus de Gualtar , Braga , Portugal
| | - Nuno F Azevedo
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Romain Briandet
- c Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | - Nuno Cerca
- a CEB ? Centre of Biological Engineering, LIBRO, Laboratórios de Biofilmes Rosário Oliveira, University of Minho Campus de Gualtar , Braga , Portugal
| | - Tom Coenye
- d Laboratory of Pharmaceutical Microbiology , Ghent University , Ghent , Belgium
| | - Ana Rita Costa
- a CEB ? Centre of Biological Engineering, LIBRO, Laboratórios de Biofilmes Rosário Oliveira, University of Minho Campus de Gualtar , Braga , Portugal
| | - Mickaël Desvaux
- e INRA Centre Auvergne-Rhône-Alpes , UR454 Microbiologie , Saint-Genès Champanelle , France
| | - Giovanni Di Bonaventura
- f Department of Medical, Oral, and Biotechnological Sciences, and Center of Excellence on Aging and Translational Medicine (CeSI-MeT) , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Michel Hébraud
- e INRA Centre Auvergne-Rhône-Alpes , UR454 Microbiologie , Saint-Genès Champanelle , France
| | - Zoran Jaglic
- g Department of Food and Feed Safety, Laboratory of Food Bacteriology , Veterinary Research Institute , Brno , Czech Republic
| | - Miroslava Kačániová
- h Department of Microbiology, Faculty of Biotechnology and Food Sciences , Slovak University of Agriculture in Nitra , Nitra , Slovakia
| | - Susanne Knøchel
- i Department of Food Science (FOOD) , University of Copenhagen , Frederiksberg C , Denmark
| | - Anália Lourenço
- j Department of Computer Science , University of Vigo , Ourense , Spain
| | - Filipe Mergulhão
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Rikke Louise Meyer
- k Aarhus University, Interdisciplinary Nanoscience Center (iNANO) , Aarhus , Denmark
| | - George Nychas
- l Agricultural University of Athens, Lab of Microbiology and Biotechnology of Foods , Athens , Greece
| | - Manuel Simões
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Odile Tresse
- m LUNAM Université, Oniris, SECALIM UMR1024 INRA , Université de Nantes , Nantes , France
| | - Claus Sternberg
- n Department of Biotechnology and Biomedicine , Technical University of Denmark , Lyngby, Denmark
| |
Collapse
|
109
|
Stenvang M, Dueholm MS, Vad BS, Seviour T, Zeng G, Geifman-Shochat S, Søndergaard MT, Christiansen G, Meyer RL, Kjelleberg S, Nielsen PH, Otzen DE. Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. J Biol Chem 2016; 291:26540-26553. [PMID: 27784787 DOI: 10.1074/jbc.m116.739953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/07/2016] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.
Collapse
Affiliation(s)
- Marcel Stenvang
- From the Interdisciplinary Nanoscience Center (iNANO).,Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN).,the Sino-Danish Centre for Education and Research (SDC), 8000 Aarhus C, Denmark
| | - Morten S Dueholm
- the Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark
| | - Brian S Vad
- From the Interdisciplinary Nanoscience Center (iNANO).,Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN)
| | - Thomas Seviour
- the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore 637551, Singapore
| | | | - Susana Geifman-Shochat
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, and
| | - Mads T Søndergaard
- the Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark
| | | | - Rikke Louise Meyer
- From the Interdisciplinary Nanoscience Center (iNANO).,the Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Staffan Kjelleberg
- the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore 637551, Singapore.,the Centre for Marine Bio-innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Mosman, New South Wales 2088, Australia
| | - Per Halkjær Nielsen
- the Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark.,the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore 637551, Singapore
| | - Daniel E Otzen
- From the Interdisciplinary Nanoscience Center (iNANO), .,Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN)
| |
Collapse
|
110
|
Koo H, Yamada KM. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol 2016; 42:102-112. [PMID: 27257751 PMCID: PMC5064909 DOI: 10.1016/j.ceb.2016.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 01/22/2023]
Abstract
Microbial biofilms and most eukaryotic tissues consist of cells embedded in a three-dimensional extracellular matrix. This matrix serves as a scaffold for cell adhesion and a dynamic milieu that provides varying chemical and physical signals to the cells. Besides a vast array of specific molecular components, an extracellular matrix can provide locally heterogeneous microenvironments differing in porosity/diffusion, stiffness, pH, oxygen and metabolites or nutrient levels. Mechanisms of matrix formation, mechanosensing, matrix remodeling, and modulation of cell-cell or cell-matrix interactions and dispersal are being revealed. This perspective article aims to identify such concepts from the fields of biofilm or eukaryotic matrix biology relevant to the other field to help stimulate new questions, approaches, and insights.
Collapse
Affiliation(s)
- Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA 19104, USA.
| | - Kenneth M Yamada
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
111
|
Arnaouteli S, MacPhee CE, Stanley-Wall NR. Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr Opin Microbiol 2016; 34:7-12. [PMID: 27458867 DOI: 10.1016/j.mib.2016.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/16/2023]
Abstract
Over the millennia, diverse species of bacteria have evolved multiple independent mechanisms to structure sessile biofilm communities that confer protection and stability to the inhabitants. The Gram-positive soil bacterium Bacillus subtilis biofilm presents as an architecturally complex, highly hydrophobic community that resists wetting by water, solvents, and biocides. This remarkable property is conferred by a small secreted protein called BslA, which self-assembles into an organized lattice at an interface. In the biofilm, production of BslA is tightly regulated and the resultant protein is secreted into the extracellular environment where it forms a very effective communal barrier allowing the resident B. subtilis cells to shelter under the protection of a protein raincoat.
Collapse
Affiliation(s)
- Sofia Arnaouteli
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Cait E MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
112
|
Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 2016; 138:50-59. [PMID: 26979645 DOI: 10.1016/j.mimet.2016.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry, HEALTH, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Bioscience, Science and Technology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| |
Collapse
|
113
|
Shen Y, Huang C, Monroy GL, Janjaroen D, Derlon N, Lin J, Espinosa-Marzal R, Morgenroth E, Boppart SA, Ashbolt NJ, Liu WT, Nguyen TH. Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1779-87. [PMID: 26756120 PMCID: PMC5135099 DOI: 10.1021/acs.est.5b04653] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mechanical and structural properties of biofilms influence the accumulation and release of pathogens in drinking water distribution systems (DWDS). Thus, understanding how long-term residual disinfectants exposure affects biofilm mechanical and structural properties is a necessary aspect for pathogen risk assessment and control. In this study, elastic modulus and structure of groundwater biofilms was monitored by atomic force microscopy (AFM) and optical coherence tomography (OCT) during three months of exposure to monochloramine or free chlorine. After the first month of disinfectant exposure, the mean stiffness of monochloramine- or free-chlorine-treated biofilms was 4 to 9 times higher than those before treatment. Meanwhile, the biofilm thickness decreased from 120 ± 8 μm to 93 ± 6-107 ± 11 μm. The increased surface stiffness and decreased biofilm thickness within the first month of disinfectant exposure was presumably due to the consumption of biomass. However, by the second to third month during disinfectant exposure, the biofilm mean stiffness showed a 2- to 4-fold decrease, and the biofilm thickness increased to 110 ± 7-129 ± 8 μm, suggesting that the biofilms adapted to disinfectant exposure. After three months of the disinfectant exposure process, the disinfected biofilms showed 2-5 times higher mean stiffness (as determined by AFM) and 6-13-fold higher ratios of protein over polysaccharide, as determined by differential staining and confocal laser scanning microscopy (CLSM), than the nondisinfected groundwater biofilms. However, the disinfected biofilms and nondisinfected biofilms showed statistically similar thicknesses (t test, p > 0.05), suggesting that long-term disinfection may not significantly remove net biomass. This study showed how biofilm mechanical and structural properties vary in response to a complex DWDS environment, which will contribute to further research on the risk assessment and control of biofilm-associated-pathogens in DWDS.
Collapse
Affiliation(s)
| | | | | | | | - Nicolas Derlon
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | | | | | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zürich , 8093 Zürich, Switzerland
| | | | - Nicholas J Ashbolt
- School of Public Health, University of Alberta , Edmonton, AB T6G 2G7 Canada
| | | | | |
Collapse
|
114
|
Kim JY, Sahu S, Yau YH, Wang X, Shochat SG, Nielsen PH, Dueholm MS, Otzen DE, Lee J, Delos Santos MMS, Yam JKH, Kang NY, Park SJ, Kwon H, Seviour T, Yang L, Givskov M, Chang YT. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11. J Am Chem Soc 2016; 138:402-7. [DOI: 10.1021/jacs.5b11357] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun-Young Kim
- Department of Chemistry & Med Chem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667, Singapore
| | - Srikanta Sahu
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667, Singapore
| | - Yin-Hoe Yau
- School
of Biological Sciences, Nanyang Technological University, SBS-04s-43,
60 Nanyang Avenue, 637551, Singapore
| | - Xu Wang
- Department of Chemistry & Med Chem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Susana Geifman Shochat
- School
of Biological Sciences, Nanyang Technological University, SBS-04s-43,
60 Nanyang Avenue, 637551, Singapore
| | - Per Halkjær Nielsen
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Morten Simonsen Dueholm
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jungyeol Lee
- Department of Chemistry & Med Chem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | | | - Joey Kuok Hoong Yam
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- Interdisciplinary
Graduate School, Nanyang Technological University, 637551, Singapore
| | - Nam-Young Kang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667, Singapore
| | - Sung-Jin Park
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667, Singapore
| | - Hawyoung Kwon
- Department of Chemistry & Med Chem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Thomas Seviour
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Liang Yang
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- School
of Biological Sciences, Nanyang Technological University, SBS-04s-43,
60 Nanyang Avenue, 637551, Singapore
| | - Michael Givskov
- Singapore
Centre on Environmental Life Science Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- Costerton
Biofilm Center, Department of Immunology and Microbiology, Faculty
of Health and Medical Sciences, University of Copenhagen, Blegdamsvej
3B, DK-2200 Copenhagen, Denmark
| | - Young-Tae Chang
- Department of Chemistry & Med Chem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667, Singapore
| |
Collapse
|