101
|
Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D, Darling A, Trotter JH, Stothert AR, Nordhues BA, Lussier A, Baker J, Shelton L, Kahn M, Blair LJ, Stevens SM, Dickey CA. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 2016; 35:1537-49. [PMID: 27261198 PMCID: PMC4946142 DOI: 10.15252/embj.201593489] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dali Zheng
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jonathan J Sabbagh
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Mackenzie D Martin
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - April Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Andrew R Stothert
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Bryce A Nordhues
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - April Lussier
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jeremy Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Lindsey Shelton
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Mahnoor Kahn
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Laura J Blair
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| |
Collapse
|
102
|
CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. Alzheimers Dement 2016; 12:1125-1131. [PMID: 27234211 DOI: 10.1016/j.jalz.2016.04.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. METHODS Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by single molecule array technology with 303 subjects. RESULTS The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls and correlated with cerebrospinal fluid tau. CONCLUSIONS Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD.
Collapse
|
103
|
Medina M, Hernández F, Avila J. New Features about Tau Function and Dysfunction. Biomolecules 2016; 6:biom6020021. [PMID: 27104579 PMCID: PMC4919916 DOI: 10.3390/biom6020021] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/09/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Valderrebollo 5, 28031 Madrid, Spain.
- CIEN Foundation, Valderrebollo 5, 28041 Madrid, Spain.
| | - Félix Hernández
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Valderrebollo 5, 28031 Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás cabrera 1, 28049 Madrid, Spain.
| | - Jesús Avila
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Valderrebollo 5, 28031 Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
104
|
Li N, Mruk DD, Lee WM, Wong CKC, Cheng CY. Is toxicant-induced Sertoli cell injury in vitro a useful model to study molecular mechanisms in spermatogenesis? Semin Cell Dev Biol 2016; 59:141-156. [PMID: 26779951 DOI: 10.1016/j.semcdb.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022]
Abstract
Sertoli cells isolated from rodents or humans and cultured in vitro are known to establish a functional tight junction (TJ)-permeability barrier that mimics the blood-testis barrier (BTB) in vivo. This model has been widely used by investigators to study the biology of the TJ and the BTB. Studies have shown that environmental toxicants (e.g., perfluorooctanesulfonate (PFOS), bisphenol A (BPA) and cadmium) that exert their disruptive effects to induce Sertoli cell injury using this in vitro model are reproducible in studies in vivo. Thus, this in vitro system provides a convenient approach to probe the molecular mechanism(s) underlying toxicant-induced testis injury but also to provide new insights in understanding spermatogenesis, such as the biology of cell adhesion, BTB restructuring that supports preleptotene spermatocyte transport, and others. Herein, we provide a brief and critical review based on studies using this in vitro model of Sertoli cell cultures using primary cells isolated from rodent testes vs. humans to monitor environmental toxicant-mediated Sertoli cell injury. In short, recent findings have shown that environmental toxicants exert their effects on Sertoli cells to induce testis injury through their action on Sertoli cell actin- and/or microtubule-based cytoskeleton. These effects are mediated via their disruptive effects on actin- and/or microtubule-binding proteins. Sertoli cells also utilize differential spatiotemporal expression of these actin binding proteins to confer plasticity to the BTB to regulate germ cell transport across the BTB.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
105
|
Vermilyea SC, Emborg ME. α-Synuclein and nonhuman primate models of Parkinson's disease. J Neurosci Methods 2015; 255:38-51. [PMID: 26247888 PMCID: PMC4604057 DOI: 10.1016/j.jneumeth.2015.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Accumulation of α-synuclein (α-syn) leading to the formation of insoluble intracellular aggregates named Lewy bodies is proposed to have a significant role in Parkinson's disease (PD) pathology. Nonhuman primate (NHP) models of PD have proven essential for understanding the neurobiological basis of the disease and for the preclinical evaluation of first-in-class and invasive therapies. In addition to neurotoxin, aging and intracerebral gene transfer models, a new generation of models using inoculations of α-syn formulations, as well as transgenic methods is emerging. Understanding of their advantages and limitations will be essential when choosing a platform to evaluate α-syn-related pathology and interpreting the test results of new treatments targeting α-syn aggregation. In this review we aim to provide insight on this issue by critically analyzing the differences in endogenous α-syn, as well as α-syn pathology in PD and PD NHP models.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States.
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States; Department of Medical Physics, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI 53715, United States.
| |
Collapse
|
106
|
Suttkus A, Holzer M, Morawski M, Arendt T. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein. Neuroscience 2015; 313:225-35. [PMID: 26621125 DOI: 10.1016/j.neuroscience.2015.11.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a chronic degenerative disorder characterized by fibrillary aggregates of Aß and Tau-protein. Formation and progression of these pathological hallmarks throughout the brain follow a specific spatio-temporal pattern which provides the basis for neuropathological staging. Previously, we could demonstrate that cortical and subcortical neurons are less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called 'perineuronal net' (PN). PNs are composed of large aggregating chondroitin sulfate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R. Recently, PN-associated neurons were shown to be better protected against iron-induced neurodegeneration compared to neurons without PN, indicating a neuroprotective function. Here, we investigated the role of PNs in distribution and internalization of exogenous Tau-protein by using organotypic slice cultures of wildtype mice as well as mice lacking the ECM-components aggrecan, HAPLN1 or tenascin-R. We could demonstrate that PNs restrict both distribution and internalization of Tau. Accordingly, PN-ensheathed neurons were less frequently affected by Tau-internalization, than neurons without PN. Finally, the PNs as well as their three investigated components were shown to modulate the processes of distribution as well as internalization of Tau.
Collapse
Affiliation(s)
- A Suttkus
- University of Leipzig, Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, Liebigstraße 19, 04103 Leipzig, Germany.
| | - M Holzer
- University of Leipzig, Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, Liebigstraße 19, 04103 Leipzig, Germany
| | - M Morawski
- University of Leipzig, Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, Liebigstraße 19, 04103 Leipzig, Germany
| | - T Arendt
- University of Leipzig, Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, Liebigstraße 19, 04103 Leipzig, Germany
| |
Collapse
|
107
|
Katsuda T, Ochiya T. Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Res Ther 2015; 6:212. [PMID: 26560482 PMCID: PMC4642616 DOI: 10.1186/s13287-015-0214-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) play important roles in intercellular communications via their content molecules, and mimic, at least in part, the roles that are played by their originating cells. Consistent with this notion, an increasing number of reports have suggested that EVs derived from mesenchymal stem cells (MSCs), which are therapeutically beneficial to a wide range of diseases, can serve as drugs to treat multiple diseases. EVs contain a variety of molecules, including proteins, microRNAs, and mRNAs, and are associated with biological processes in a content molecule-dependent manner. In this article, we review the latest reports regarding the therapeutic potential of MSC-EVs by focusing on the underlying molecular mechanisms of their effects. Specifically, we feature the effects of MSC-EVs in terms of their content molecules and of the tissue recovery processes endowed by these molecules.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
108
|
Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, Pocock JM. Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Curr Opin Neurobiol 2015; 36:74-81. [PMID: 26517285 DOI: 10.1016/j.conb.2015.10.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/24/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023]
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), and microglia, the brain's resident phagocyte, are pivotal for the immune response observed in AD. Microglia act as sentinel and protective cells, but may become inappropriately reactive in AD to drive neuropathology. Recent Genome Wide Association Studies (GWAS) have identified more than 20 gene variants associated with an increased risk of late-onset AD (LOAD), the most prevalent form of AD [1]. The findings strongly implicate genes related to the immune response (CR1, CD33, MS4A, CLU, ABCA7, EPHA1 and HLA-DRB5-HLA-DRB1), endocytosis (BIN1, PICALM, CD2AP, EPHA1 and SORL1) and lipid biology (CLU, ABCA7 and SORL1) [2-8], and many encode proteins which are highly expressed in microglia [1]. Furthermore, recent identification of a low frequency mutation in the gene encoding the triggering receptor expressed in myeloid cells 2 protein (TREM2) confers increased risk of AD in LOAD cohorts with an effect size similar to that for APOE, until recently the only identified genetic risk factor associated with LOAD [9,10(••)] (Figure 1). The present review summarises our current understanding of the probable roles of microglial genes in the regulation of neuroinflammatory processes in AD and their relation to other processes affecting the disease's progression.
Collapse
Affiliation(s)
- Claudio Villegas-Llerena
- Department of Neuroinflammation, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK; Department of Molecular Neuroscience, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK
| | - Alexandra Phillips
- Department of Neuroinflammation, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK
| | - Pablo Garcia-Reitboeck
- Department of Neuroinflammation, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK; Department of Molecular Neuroscience, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK
| | - John Hardy
- Department of Molecular Neuroscience, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, University College London, Institute of Neurology, 1 Wakefield Street, London WC1 N 1PK, UK.
| |
Collapse
|
109
|
Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA, Pitstick R, Nobuhara CK, Costantino I, Frosch MP, Müller DJ, Irimia D, Hyman BT. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun 2015; 6:8490. [PMID: 26458742 PMCID: PMC4608380 DOI: 10.1038/ncomms9490] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/27/2015] [Indexed: 12/04/2022] Open
Abstract
Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. In Alzheimer's disease, tau spreads throughout the brain, however the nature of the tau species propagating from one neuron to another is not known. Here, Takeda et al. identify a rare, high-molecular-weight tau as the primary species taken up and transferred between synaptically connected neurons.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Susanne Wegmann
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Hansang Cho
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Sarah L DeVos
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Caitlin Commins
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Allyson D Roe
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Samantha B Nicholls
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana 59405, USA
| | - Chloe K Nobuhara
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Isabel Costantino
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Matthew P Frosch
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Bradley T Hyman
- Department of Neurology, Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
110
|
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11:457-70. [PMID: 26195256 PMCID: PMC4694579 DOI: 10.1038/nrneurol.2015.119] [Citation(s) in RCA: 1081] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.
Collapse
Affiliation(s)
| | - Roxana O Carare
- University of Southampton, Faculty of Medicine, Institute for Life Sciences, Southampton General Hospital, Southampton Hampshire, SO16 6YD, UK
| | - Ricardo S Osorio
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Lidia Glodzik
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Tracy Butler
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Els Fieremans
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Leon Axel
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Henry Rusinek
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Charles Nicholson
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute at Keck School of Medicine of University of Southern California, 1501 San Pablo Street Los Angeles, CA 90089, USA
| | - Blas Frangione
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Kaj Blennow
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Joël Ménard
- Université Paris-Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Henrik Zetterberg
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Thomas Wisniewski
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Mony J de Leon
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| |
Collapse
|
111
|
Ren QG, Wang YJ, Gong WG, Xu L, Zhang ZJ. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats. J Alzheimers Dis 2015; 47:61-71. [PMID: 26402755 DOI: 10.3233/jad-143012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Qing-Guo Ren
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan-Juan Wang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei-Gang Gong
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jun Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
112
|
Fontana F, Siva K, Denti MA. A network of RNA and protein interactions in Fronto Temporal Dementia. Front Mol Neurosci 2015; 8:9. [PMID: 25852467 PMCID: PMC4365750 DOI: 10.3389/fnmol.2015.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Kavitha Siva
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
- CNR, Institute of NeurosciencePadua, Italy
| |
Collapse
|
113
|
Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells. J Mol Neurosci 2015; 56:500-8. [PMID: 25687330 DOI: 10.1007/s12031-015-0519-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.
Collapse
|
114
|
Three-dimensional collagen type I matrix up-regulates nuclear isoforms of the microtubule associated protein tau implicated in resistance to paclitaxel therapy in ovarian carcinoma. Int J Mol Sci 2015; 16:3419-33. [PMID: 25658796 PMCID: PMC4346904 DOI: 10.3390/ijms16023419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 01/06/2023] Open
Abstract
Epithelial ovarian carcinoma is the deadliest gynecologic malignancy. One reason underlying treatment failure is resistance to paclitaxel. Expression of the microtubule associated protein tau has recently been proposed as a predictor of response to paclitaxel in ovarian carcinoma patients. Expression of tau was probed using immunohistochemistry in 312 specimens of primary, and 40 specimens of metastatic, ovarian carcinoma. Serous epithelial ovarian carcinoma cell line models were used to determine the expression of tau by Western blot and immunofluorescence staining. Subcellular fractionation and Western blot were employed to examine nuclear and cytoplasmic localization of tau. Gene silencing and clonogenic assays were used to evaluate paclitaxel response. Tau was expressed in 44% of all tested cases. Among the primary serous epithelial ovarian carcinoma cases, 46% were tau-positive. Among the metastatic serous epithelial ovarian carcinomas, 63% were tau-positive. Cell culture experiments demonstrated that tau was expressed in multiple isoforms. Three-dimensional collagen I matrix culture conditions resulted in up-regulation of tau protein. Silencing of tau with specific siRNAs in a combination with three-dimensional culture conditions led to a significant decrease of the clonogenic ability of cells treated with paclitaxel. The data suggest that reduction of tau expression may sensitize ovarian carcinoma to the paclitaxel treatment.
Collapse
|
115
|
Huang CF, Du JX, Deng W, Cheng XC, Zhang SY, Zhao SJ, Tao MJ, Chen GZ, Hao XQ. Effect of prenatal exposure to LPS combined with pre- and post-natal high-fat diet on hippocampus in rat offspring. Neuroscience 2015; 286:364-70. [DOI: 10.1016/j.neuroscience.2014.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
116
|
Repalli J, Meruelo D. Screening strategies to identify HSP70 modulators to treat Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:321-31. [PMID: 25609918 PMCID: PMC4294646 DOI: 10.2147/dddt.s72165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease, the most common type of dementia, is a progressive brain disease that destroys cognitive function and eventually leads to death. In patients with Alzheimer’s disease, beta amyloids and tau proteins form plaques/oligomers and oligomers/tangles that affect the ability of neurons to function properly. Heat shock protein 70 (HSP70) has the ability to prevent aggregation/oligomerization of beta amyloid/tau proteins, making it a potential drug target. To determine this potential, it is essential that we have appropriate in vitro and cell-based assays that help identify specific molecules that affect this aggregation or oligomerization through HSP70. Potential drug candidates could be identified through a series of assays, starting with ATPase assays, followed by aggregation assays with enzymes/proteins and cell-based systems. ATPase assays are effective in identification of ATPase modulators but do not determine the effect of the molecule on beta amyloid and tau proteins. Molecules identified through ATPase assays are validated by thioflavin T aggregation assays in the presence of HSP70. These assays help uncover if a molecule affects beta amyloid and tau through HSP70, but are limited by their in vitro nature. Potential drug candidates are further validated through cell-based assays using mammalian, yeast, or bacterial cultures. However, while these assays are able to determine the effect of a specific molecule on beta amyloid and tau, they fail to determine whether the action is HSP70-dependent. The creation of a novel, direct assay that can demonstrate the antiaggregation effect of a molecule as well as its action through HSP70 would reduce the number of false-positive drug candidates and be more cost-effective and time-effective.
Collapse
Affiliation(s)
- Jayanthi Repalli
- Department of Pathology, New York University, Langone Medical Center, New York, NY, USA
| | - Daniel Meruelo
- Department of Pathology, New York University, Langone Medical Center, New York, NY, USA
| |
Collapse
|
117
|
Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol 2014; 53:818-834. [PMID: 25502465 PMCID: PMC4752585 DOI: 10.1007/s12035-014-9054-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.
Collapse
Affiliation(s)
- Arian Aryani
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
118
|
Latypova X, Martin L. 2015: which new directions for Alzheimer's disease? Front Cell Neurosci 2014; 8:417. [PMID: 25538567 PMCID: PMC4260501 DOI: 10.3389/fncel.2014.00417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/17/2014] [Indexed: 01/06/2023] Open
|
119
|
Do CSF levels of t-Tau, p-Tau and β₁₋₄₂ amyloid correlate with dopaminergic system impairment in patients with a clinical diagnosis of Parkinson disease? A ¹²³I-FP-CIT study in the early stages of the disease. Eur J Nucl Med Mol Imaging 2014; 41:2137-43. [PMID: 25007849 DOI: 10.1007/s00259-014-2841-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the relationships among cerebrospinal fluid (CSF) levels of t-Tau, p-Tau and Aβ₁₋₄₂ amyloid peptide and (123)I-FP-CIT uptake. METHODS The study included 58 subjects (31 men and 27 women, age 67 ± 9 years) with a clinical diagnosis of Parkinson disease diagnosed according to the United Kingdom Parkinson Disease Society Brain Bank criteria. All subjects underwent a CSF assay 28 ± 3 days before (123)I-FP-CIT SPECT scanning. The relationships were evaluated by means of linear regression analysis and Pearson correlation. RESULTS Striatal (123)I-FP-CIT was positively related to both t-Tau and p-Tau CSF values with low levels of t-Tau and p-Tau being related to a low uptake of (123)I-FP-CIT. In particular, differences with higher statistical significance were found for the striatum that is contralateral to theside mainly affected on clinical examination (P<0.001) [corrected].No significant relationships were found between Aβ₁₋₄₂ amyloid peptide and (123)I-FP-CIT binding. CONCLUSION The results of our study suggest that the presynaptic dopaminergic system is more involved in Parkinson disease patients with lower t-Tau and p-Tau CSF values while values of Aβ₁₋₄₂ amyloid peptide seems not to be related to nigrostriatal degeneration in our series.
Collapse
|