101
|
Dysfunction of Trio GEF1 involves in excitatory/inhibitory imbalance and autism-like behaviors through regulation of interneuron migration. Mol Psychiatry 2021; 26:7621-7640. [PMID: 33963279 DOI: 10.1038/s41380-021-01109-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of highly inheritable neurodevelopmental disorders. Functional mutations in TRIO, especially in the GEF1 domain, are strongly implicated in ASDs, whereas the underlying neurobiological pathogenesis and molecular mechanisms remain to be clarified. Here we characterize the abnormal morphology and behavior of embryonic migratory interneurons (INs) upon Trio deficiency or GEF1 mutation in mice, which are mediated by the Trio GEF1-Rac1 activation and involved in SDF1α/CXCR4 signaling. In addition, the migration deficits are specifically associated with altered neural microcircuit, decreased inhibitory neurotransmission, and autism-like behaviors, which are reminiscent of some features observed in patients with ASDs. Furthermore, restoring the excitatory/inhibitory (E/I) imbalance via activation of GABA signaling rescues autism-like deficits. Our findings demonstrate a critical role of Trio GEF1 mediated signaling in IN migration and E/I balance, which are related to autism-related behavioral phenotypes.
Collapse
|
102
|
Nishikawa M, Ito H, Noda M, Hamada N, Tabata H, Nagata KI. Expression analyses of Rac3, a Rho family small GTPase, during mouse brain development. Dev Neurosci 2021; 44:49-58. [PMID: 34839287 DOI: 10.1159/000521168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Rac3 is a member of Rho family small GTPases which regulates cellular signaling and cytoskeletal dynamics. The RAC3 gene abnormalities have been shown to cause neurodevelopmental disorders with structural brain anomalies, including polymicrogyria/dysgyria, callosal abnormalities, brainstem anomalies, and cerebellar dysplasia. Although this evidence indicates that Rac3 is essential in brain development, not only its molecular mechanism but also the expression profile is yet to be elucidated. In this study, we carried out expression analyses of Rac3 with mouse brain tissues. In immunoblotting, Rac3 exhibited a tissue-dependent expression profile in the young adult mouse and was expressed in a developmental stage-dependent manner in brain. In primary cultured hippocampal neurons, while Rac3 was distributed mainly in the cytoplasm, it was visualized in axon and dendrites with partial localization at synapses, in consistent with the observation in biochemical fractionation analyses. In immunofluorescence analyses with brain slices, Rac3 was distributed strongly and moderately in the axon and cytoplasm, respectively, of cerebral cortex at postnatal day (P) 2 and P18. Similar distribution profile was also observed in hippocampus. Taken together, the results obtained strongly suggest that Rac3 plays an important physiological role in neuronal tissues during corticogenesis, and defects in the Rac3 function induce structural brain anomalies leading to pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hidenori Ito
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Mariko Noda
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Nanako Hamada
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hidenori Tabata
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
103
|
Kimura T, Horikoshi Y, Kuriyagawa C, Niiyama Y. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222111573. [PMID: 34769004 PMCID: PMC8584200 DOI: 10.3390/ijms222111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.
Collapse
Affiliation(s)
- Tetsu Kimura
- Correspondence: ; Tel.: +81-18-884-6175; Fax: +81-18-884-6448
| | | | | | | |
Collapse
|
104
|
Yong Y, Hunter-Chang S, Stepanova E, Deppmann C. Axonal spheroids in neurodegeneration. Mol Cell Neurosci 2021; 117:103679. [PMID: 34678457 PMCID: PMC8742877 DOI: 10.1016/j.mcn.2021.103679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022] Open
Abstract
Axonal spheroids are bubble-like biological features that form on most degenerating axons, yet little is known about their influence on degenerative processes. Their formation and growth has been observed in response to various degenerative triggers such as injury, oxidative stress, inflammatory factors, and neurotoxic molecules. They often contain cytoskeletal elements and organelles, and, depending on the pathological insult, can colocalize with disease-related proteins such as amyloid precursor protein (APP), ubiquitin, and motor proteins. Initial formation of axonal spheroids depends on the disruption of axonal and membrane tension governed by cytoskeleton structure and calcium levels. Shortly after spheroid formation, the engulfment signal phosphatidylserine (PS) is exposed on the outer leaflet of spheroid plasma membrane, suggesting an important role for axonal spheroids in phagocytosis and debris clearance during degeneration. Spheroids can grow until they rupture, allowing pro-degenerative factors to exit the axon into extracellular space and accelerating neurodegeneration. Though much remains to be discovered in this area, axonal spheroid research promises to lend insight into the etiologies of neurodegenerative disease, and may be an important target for therapeutic intervention. This review summarizes over 100 years of work, describing what is known about axonal spheroid structure, regulation and function.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah Hunter-Chang
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Ekaterina Stepanova
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
105
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
106
|
Abraham JA, Blaschke S, Tarazi S, Dreissen G, Vay SU, Schroeter M, Fink GR, Merkel R, Rueger MA, Hoffmann B. NSCs Under Strain-Unraveling the Mechanoprotective Role of Differentiating Astrocytes in a Cyclically Stretched Coculture With Differentiating Neurons. Front Cell Neurosci 2021; 15:706585. [PMID: 34630042 PMCID: PMC8497758 DOI: 10.3389/fncel.2021.706585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
The neural stem cell (NSC) niche is a highly vascularized microenvironment that supplies stem cells with relevant biological and chemical cues. However, the NSCs’ proximity to the vasculature also means that the NSCs are subjected to permanent tissue deformation effected by the vessels’ heartbeat-induced pulsatile movements. Cultivating NSCs under common culture conditions neglects the—yet unknown—influence of this cyclic mechanical strain on neural stem cells. Under the hypothesis that pulsatile strain should affect essential NSC functions, a cyclic uniaxial strain was applied under biomimetic conditions using an in-house developed stretching system based on cross-linked polydimethylsiloxane (PDMS) elastomer. While lineage commitment remained unaffected by cyclic deformation, strain affected NSC quiescence and cytoskeletal organization. Unexpectedly, cyclically stretched stem cells aligned in stretch direction, a phenomenon unknown for other types of cells in the mammalian organism. The same effect was observed for young astrocytes differentiating from NSCs. In contrast, young neurons differentiating from NSCs did not show mechanoresponsiveness. The exceptional orientation of NSCs and young astrocytes in the stretch direction was blocked upon RhoA activation and went along with a lack of stress fibers. Compared to postnatal astrocytes and mature neurons, NSCs and their young progeny displayed characteristic and distinct mechanoresponsiveness. Data suggest a protective role of young astrocytes in mixed cultures of differentiating neurons and astrocytes by mitigating the mechanical stress of pulsatile strain on developing neurons.
Collapse
Affiliation(s)
- Jella-Andrea Abraham
- Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Stefan Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Samar Tarazi
- Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Georg Dreissen
- Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Sabine U Vay
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Rudolf Merkel
- Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Maria A Rueger
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Bernd Hoffmann
- Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
107
|
Li A, Zhu HM, Chen Y, Yan F, Liu ZY, Li ZL, Dong WR, Zhang L, Wang HH. Cdc42 Facilitates Axonogenesis by Enhancing Microtubule Stabilization in Primary Hippocampal Neurons. Cell Mol Neurobiol 2021; 41:1599-1610. [PMID: 33575839 DOI: 10.1007/s10571-021-01051-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
The establishment of polarity is an essential process in early neuronal development. Cdc42, a GTPase of the Rho family, is a key regulator of cytoskeletal dynamics and neuronal polarity. However, the mechanisms underlying the action of cdc42 in regulating axonogenesis have not been elucidated. Here, we expressed wild-type cdc42, a constitutively active cdc42 mutant (cdc42F28L) and a dominant negative cdc42 mutant (cdc42N17), respectively, in the primary hippocampal neurons to alter the activity of cdc42. We found that cdc42 activities were paralleled with the capacities to promote axonogenesis in the cultured neurons. Cdc42 also enhanced microtubule stability in the cultured neurons. Pharmacologically stabilizing microtubules significantly abrogated the defective axonogenesis induced by cdc42 inhibition. Moreover, cdc42 promoted the dephosphorylation of collapsing response mediator protein-2 (CRMP-2) at Thr514 by increasing GSK-3β phosphorylation at Ser9 in the cultured neurons. These findings suggest that cdc42 may facilitate axonogenesis by promoting microtubule stabilization in rat primary hippocampal neurons.
Collapse
Affiliation(s)
- Ang Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Ming Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu Chen
- Experimental Education & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Ying Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhen-Lin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Ren Dong
- Experimental Education & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hai-Hong Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
108
|
Hou Y, Zi J, Ge Z. High Expression of RhoF Predicts Worse Overall Survival: A Potential Therapeutic Target for non-M3 Acute Myeloid Leukemia. J Cancer 2021; 12:5530-5542. [PMID: 34405015 PMCID: PMC8364661 DOI: 10.7150/jca.52648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
Rho GTPases are involved in multiple human malignancies and diverse biological functions. However, the patterns and prognostic significance of the expression of RhoD subfamily in acute myeloid leukemia (AML) remain unknown. Here, we detected the expressions of RhoD subfamily genes in AML on the basis of several published datasets and analyzed the survival of RhoD subfamily across the TCGA profiles and in a GEO series. We found that the expression of RhoF, but not RhoD, increased in AML patients in TCGA and GEO (all P<0.001); the survival analysis of two independent cohorts demonstrated that higher RhoF expression was significantly associated with poorer overall survival (OS) (P<0.001), whereas RhoD expression had no significant effect on OS in patients with AML (P>0.05); the subgroup analysis showed that high RhoF expression was correlated with poor 1-, 3-, and 5-year OS (P<0.05 for all); upregulated RhoF expression had a more significant prognostic value for OS in the younger patients (age<60), the intensive chemotherapy group, and wild-type groups (IDH1, NRAS, and TP53) (P<0.05 for all). Multivariate analysis indicated high RhoF expression as a strongly independent unfavorable prognostic factor for OS in patients without transplantation (P<0.05). Furthermore, a higher RhoF expression was closely associated with an older age, intermediate-/poor-risk cytogenetics and mutations in IDH1, NRAS, and TP53. RhoF expression was negatively correlated with BM blasts (P=0.020) and WBC (P=0.003). These findings suggest that high RhoF expression is associated with worsening OS in AML patients and is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Yue Hou
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Jie Zi
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| |
Collapse
|
109
|
Schmelter C, Fomo KN, Perumal N, Pfeiffer N, Grus FH. Regulation of the HTRA2 Protease Activity by an Inhibitory Antibody-Derived Peptide Ligand and the Influence on HTRA2-Specific Protein Interaction Networks in Retinal Tissues. Biomedicines 2021; 9:biomedicines9081013. [PMID: 34440217 PMCID: PMC8427973 DOI: 10.3390/biomedicines9081013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial serine protease HTRA2 has many versatile biological functions ranging from being an important regulator of apoptosis to being an essential component for neuronal cell survival and mitochondrial homeostasis. Loss of HTRA2 protease function is known to cause neurodegeneration, whereas overactivation of its proteolytic function is associated with cell death and inflammation. In accordance with this, our group verified in a recent study that the synthetic peptide ASGYTFTNYGLSWVR, encoding the hypervariable sequence part of an antibody, showed a high affinity for the target protein HTRA2 and triggered neuroprotection in an in vitro organ culture model for glaucoma. To unravel this neuroprotective mechanism, the present study showed for the first time that the synthetic CDR1 peptide significantly (p < 0.01) inhibited the proteolytic activity of HTRA2 up to 50% using a specific protease function assay. Furthermore, using state-of-the-art co-immunoprecipitation technologies in combination with high-resolution MS, we identified 50 significant protein interaction partners of HTRA2 in the retina of house swine (p < 0.01; log2 fold change > 1.5). Interestingly, 72% of the HTRA2-specific interactions (23 of 31 binders) were inhibited by additional treatment with UCF-101 (HTRA2 protease inhibitor) or the synthetic CDR peptide. On the other hand, the remaining 19 binders of HTRA2 were exclusively identified in the UCF101 and/or CDR group. However, many of the interactors were involved in the ER to Golgi anterograde transport (e.g., AP3D1), aggrephagy (e.g., PSMC1), and the pyruvate metabolism/citric acid cycle (e.g., SHMT2), and illustrated the complex protein interaction networks of HTRA2 in neurological tissues. In conclusion, the present study provides, for the first time, a comprehensive protein catalogue of HTRA2-specific interaction partners in the retina, and will serve as reference map in the future for studies focusing on HTRA2-mediated neurodegeneration.
Collapse
|
110
|
Fatty Acid Amide Hydrolase (FAAH) Inhibition Modulates Amyloid-Beta-Induced Microglia Polarization. Int J Mol Sci 2021; 22:ijms22147711. [PMID: 34299330 PMCID: PMC8306898 DOI: 10.3390/ijms22147711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer’s disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-β peptide (Aβ). The morphological evaluation showed that Aβ treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aβ. Moreover, URB597 reduced both the increase of Rho protein activation in Aβ-treated BV-2 cells and the Aβ-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.
Collapse
|
111
|
Mendoza MB, Gutierrez S, Ortiz R, Moreno DF, Dermit M, Dodel M, Rebollo E, Bosch M, Mardakheh FK, Gallego C. The elongation factor eEF1A2 controls translation and actin dynamics in dendritic spines. Sci Signal 2021; 14:14/691/eabf5594. [PMID: 34257105 DOI: 10.1126/scisignal.abf5594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.
Collapse
Affiliation(s)
- Mònica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Sara Gutierrez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Miquel Bosch
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Sant Cugat del Vallès 08195, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain.
| |
Collapse
|
112
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
113
|
Chung YS, Ahmed PK, Othman I, Shaikh MF. Orthosiphon stamineus Proteins Alleviate Hydrogen Peroxide Stress in SH-SY5Y Cells. Life (Basel) 2021; 11:life11060585. [PMID: 34202937 PMCID: PMC8235403 DOI: 10.3390/life11060585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture—pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the “signaling of interleukin-4 and interleukin-13” pathway as the predominant mechanism in addition to regulating the “attenuation phase” and “HSP90 chaperone cycle for steroid hormone receptors” pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
114
|
Solabre Valois L, Shi V(H, Bishop P, Zhu B, Nakamura Y, Wilkinson KA, Henley JM. Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC C/A). IBRO Neurosci Rep 2021; 10:196-207. [PMID: 34041508 PMCID: PMC8143998 DOI: 10.1016/j.ibneur.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent naturally occurring poisons that act by silencing neurotransmission. Intriguingly, in addition to preventing presynaptic vesicle fusion, BoNT serotype A (BoNT/A) can also promote axonal regeneration in preclinical models. Here we report that the non-toxic C-terminal region of the receptor-binding domain of heavy chain BoNT/A (HCC/A) activates the small GTPase Rac1 and ERK pathway to potentiate axonal outgrowth, dendritic protrusion formation and synaptic vesicle release in hippocampal neurons. These data are consistent with HCC/A exerting neurotrophic properties, at least in part, independent of any BoNT catalytic activity or toxic effect.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Vanilla (Hua) Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
115
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
116
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
117
|
Socodato R, Portugal CC, Canedo T, Rodrigues A, Almeida TO, Henriques JF, Vaz SH, Magalhães J, Silva CM, Baptista FI, Alves RL, Coelho-Santos V, Silva AP, Paes-de-Carvalho R, Magalhães A, Brakebusch C, Sebastião AM, Summavielle T, Ambrósio AF, Relvas JB. Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Rep 2021; 31:107796. [PMID: 32579923 DOI: 10.1016/j.celrep.2020.107796] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/29/2019] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of β-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aβ oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.
Collapse
Affiliation(s)
- Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Teresa Canedo
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Artur Rodrigues
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana F Henriques
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Cátia M Silva
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Renata L Alves
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Roberto Paes-de-Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Cord Brakebusch
- Molecular Pathology Section, BRIC, Københavns Biocenter, Copenhagen, Denmark
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal; Escola Superior de Saúde, Politécnico do Porto, Porto, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal; The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal.
| |
Collapse
|
118
|
Catusi I, Garzo M, Capra AP, Briuglia S, Baldo C, Canevini MP, Cantone R, Elia F, Forzano F, Galesi O, Grosso E, Malacarne M, Peron A, Romano C, Saccani M, Larizza L, Recalcati MP. 8p23.2-pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature. Genes (Basel) 2021; 12:genes12050652. [PMID: 33925474 PMCID: PMC8146486 DOI: 10.3390/genes12050652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
To date only five patients with 8p23.2-pter microdeletions manifesting a mild-to-moderate cognitive impairment and/or developmental delay, dysmorphisms and neurobehavioral issues were reported. The smallest microdeletion described by Wu in 2010 suggested a critical region (CR) of 2.1 Mb including several genes, out of which FBXO25, DLGAP2, CLN8, ARHGEF10 and MYOM2 are the main candidates. Here we present seven additional patients with 8p23.2-pter microdeletions, ranging from 71.79 kb to 4.55 Mb. The review of five previously reported and nine Decipher patients confirmed the association of the CR with a variable clinical phenotype characterized by intellectual disability/developmental delay, including language and speech delay and/or motor impairment, behavioral anomalies, autism spectrum disorder, dysmorphisms, microcephaly, fingers/toes anomalies and epilepsy. Genotype analysis allowed to narrow down the 8p23.3 candidate region which includes only DLGAP2, CLN8 and ARHGEF10 genes, accounting for the main signs of the broad clinical phenotype associated to 8p23.2-pter microdeletions. This region is more restricted compared to the previously proposed CR. Overall, our data favor the hypothesis that DLGAP2 is the actual strongest candidate for neurodevelopmental/behavioral phenotypes. Additional patients will be necessary to validate the pathogenic role of DLGAP2 and better define how the two contiguous genes, ARHGEF10 and CLN8, might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Ilaria Catusi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| | - Maria Garzo
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| | - Anna Paola Capra
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy
| | - Chiara Baldo
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Rachele Cantone
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Flaviana Elia
- Unit of Psychology, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesca Forzano
- Clinical Genetics Department, Guy's & St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Ornella Galesi
- Laboratory of Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Michela Malacarne
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Monica Saccani
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Lidia Larizza
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| | - Maria Paola Recalcati
- Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy
| |
Collapse
|
119
|
Senyuz S, Jang H, Nussinov R, Keskin O, Gursoy A. Mechanistic Differences of Activation of Rac1 P29S and Rac1 A159V. J Phys Chem B 2021; 125:3790-3802. [PMID: 33848152 PMCID: PMC8154616 DOI: 10.1021/acs.jpcb.1c00883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Rac1 is a small GTPase that plays key roles in actin reorganization, cell motility, and cell survival/growth as well as in various cancer types and neurodegenerative diseases. Similar to other Ras superfamily GTPases, Rac1 switches between active GTP-bound and inactive GDP-bound states. Switch I and II regions open and close during GDP/GTP exchange. P29S and A159V (paralogous to K-RasA146) mutations are the two most common somatic mutations of Rac1. Rac1P29S is a known hotspot for melanoma, whereas Rac1A159V most commonly occurs in head and neck cancer. To investigate how these substitutions induce the Rac1 dynamics, we used atomistic molecular dynamics simulations on the wild-type Rac1 and two mutant systems (P29S and A159V) in the GTP bound state, and on the wild-type Rac1 and P29S mutated system in the GDP bound state. Here, we show that P29S and A159V mutations activate Rac1 with different mechanisms. In Rac1P29S-GTP, the substitution increases the flexibility of Switch I based on RMSF and dihedral angle calculations and leads to an open conformation. We propose that the open Switch I conformation is one of the underlying reasons for rapid GDP/GTP exchange of Rac1P29S. On the other hand, in Rac1A159V-GTP, some of the contacts of the guanosine ring of GTP with Rac1 are temporarily lost, enabling the guanosine ring to move toward Switch I and subsequently close the switch. Rac1A159V-GTP adopts a Ras state 2 like conformation, where both switch regions are in closed conformation and Thr35 forms a hydrogen bond with the nucleotide.
Collapse
Affiliation(s)
- Simge Senyuz
- Computational
Science and Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ozlem Keskin
- Chemical
and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Attila Gursoy
- Computer
Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
120
|
Xu J, Simonelli F, Li X, Spinello A, Laporte S, Torre V, Magistrato A. Molecular Mechanisms of the Blockage of Glioblastoma Motility. J Chem Inf Model 2021; 61:2967-2980. [PMID: 33861592 DOI: 10.1021/acs.jcim.1c00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor. GBM has a remarkable degree of motility and is able to infiltrate the healthy brain. In order to perform a rationale-based drug-repositioning study, we have used known inhibitors of two small Rho GTPases, Rac1 and Cdc42, which are upregulated in GBM and are involved in the signaling processes underlying the orchestration of the cytoskeleton and cellular motility. The selected inhibitors (R-ketorolac and ML141 for Cdc42 and R-ketorolac and EHT 1864 for Rac1) have been successfully employed to reduce the infiltration propensity of GBM in live cell imaging studies. Complementarily, all-atom simulations have elucidated the molecular basis of their inhibition mechanism, identifying the binding sites targeted by the inhibitors and dissecting their impact on the small Rho GTPases' function. Our results demonstrate the potential of targeting the Rac1 and Cdc42 proteins with small molecules to contrast GBM infiltration growth and supply precious information for future drug discovery studies aiming to fight GBM and other infiltrative cancer types.
Collapse
Affiliation(s)
- Jing Xu
- International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy.,Institute for Systems Medicine, Suzhou, Jiangsu 215123, P. R. China
| | - Federica Simonelli
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Xiaoyun Li
- International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Angelo Spinello
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Sara Laporte
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Alessandra Magistrato
- National Research Council of Italy - Institute of Materials (CNR-IOM) c/o SISSA, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
121
|
CDC42EP3 promotes colorectal cancer through regulating cell proliferation, cell apoptosis and cell migration. Cancer Cell Int 2021; 21:169. [PMID: 33726765 PMCID: PMC7962261 DOI: 10.1186/s12935-021-01845-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Nowadays, colorectal cancer (CRC) is one of the most commonly diagnosed malignant tumors worldwide, the incidence rate of which is still increasing year by year. Herein, the objective of this study is to investigate whether CDC42EP3 has regulatory effects in CRC. Methods First, CDC42EP3 knockdown cell model based on HCT116 and RKO cell lines was successfully constructed, which was further used for constructing mouse xenotransplantation models. Importantly, effects of CDC42EP3 knockdown on proliferation, colony formation, apoptosis, and migration of CRC were accessed by MTT assay, EdU staining assay, colony formation assay, Flow cytometry, and Transwell assay. Results As the results, we showed that CDC42EP3 was significantly upregulated in CRC, and its high expression was associated with tumor progression. Furthermore, knockdown of CDC42EP3 could inhibit proliferation, colony formation and migration, and promote apoptosis of CRC cells in vitro. In vivo results further confirmed knockdown of CDC42EP3 attenuated tumor growth in CRC. Interestingly, the regulation of CRC by CDC42EP3 involved not only the change of a variety of apoptosis-related proteins, but also the regulation of downstream signaling pathway. Conclusion In conclusion, the role of CDC42EP3 in CRC was clarified and showed its potential as a target of innovative therapeutic approaches for CRC.
Collapse
|
122
|
Harre J, Heinkele L, Steffens M, Warnecke A, Lenarz T, Just I, Rohrbeck A. Potentiation of Brain-Derived Neurotrophic Factor-Induced Protection of Spiral Ganglion Neurons by C3 Exoenzyme/Rho Inhibitor. Front Cell Neurosci 2021; 15:602897. [PMID: 33776650 PMCID: PMC7991574 DOI: 10.3389/fncel.2021.602897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Preservation of the excitability of spiral ganglion neurons (SGN) may contribute to an improved speech perception after cochlear implantation. Thus, the application of exogenous neurotrophic factors such as the neurotrophin brain-derived neurotrophic factor (BDNF) to increase SGN survival in vitro and in vivo is a promising pharmacological approach in cochlear implant (CI) research. Due to the difficult pharmacokinetic profile of proteins such as BDNF, there is a quest for small molecules to mediate the survival of SGN or to increase the efficacy of BDNF. The C3 exoenzyme from Clostridium botulinum could be a potential new candidate for the protection and regeneration of SGN. Inhibition of the RhoA GTPase pathway which can be mediated by C3 is described as a promising strategy to enhance axonal regeneration and to exert pro-survival signals in neurons. Nanomolar concentrations of C3, its enzymatically inactive form C3E174Q, and a 26mer C-terminal peptide fragment covering amino acid 156–181 (C3156-181) potentiated the neuroprotective effect on SGN mediated by BDNF in vitro. The neuroprotective effect of C3/BDNF was reduced to the neuroprotective effect of BDNF alone after the treatment with wortmannin, an inhibitor of the phosphatidylinositol-3-kinase (PI3K).The exoenzyme C3 (wild-type and enzyme-deficient) and the C3 peptide fragment C3154–181 present novel biologically active compounds for the protection of the SGN. The exact underlying intracellular mechanisms that mediate the neuroprotective effect are not clarified yet, but the combination of BDNF (TrkB stimulation) and C3 exoenzyme (RhoA inhibition) can be used to protect SGN in vitro.
Collapse
Affiliation(s)
- Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Laura Heinkele
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Steffens
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
123
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
124
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
125
|
Wang JL, Wang Y, Sun W, Yu Y, Wei N, Du R, Yang Y, Liang T, Wang XL, Ou CH, Chen J. Spinophilin modulates pain through suppressing dendritic spine morphogenesis via negative control of Rac1-ERK signaling in rat spinal dorsal horn. Neurobiol Dis 2021; 152:105302. [PMID: 33609640 DOI: 10.1016/j.nbd.2021.105302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/07/2021] [Accepted: 02/14/2021] [Indexed: 01/07/2023] Open
Abstract
Both spinophilin (SPN, also known as neurabin 2) and Rac1 (a member of Rho GTPase family) are believed to play key roles in dendritic spine (DS) remodeling and spinal nociception. However, how SPN interacts with Rac1 in the above process is unknown. Here, we first demonstrated natural existence of SPN-protein phosphatase 1-Rac1 complex in the spinal dorsal horn (DH) neurons by both double immunofluorescent labeling and co-immunoprecipitation, then the effects of SPN over-expression and down-regulation on mechanical and thermal pain sensitivity, GTP-bound Rac1-ERK signaling activity, and spinal DS density were studied. Over-expression of SPN in spinal neurons by intra-DH pAAV-CMV-SPN-3FLAG could block both mechanical and thermal pain hypersensitivity induced by intraplantar bee venom injection, however it had no effect on the basal pain sensitivity. Over-expression of SPN also resulted in a significant decrease in GTP-Rac1-ERK activities, relative to naive and irrelevant control (pAAV-MCS). In sharp contrast, knockdown of SPN in spinal neurons by intra-DH pAAV-CAG-eGFP-U6-shRNA[SPN] produced both pain hypersensitivity and dramatic elevation of GTP-Rac1-ERK activities, relative to naive and irrelevant control (pAAV-shRNA [NC]). Moreover, knockdown of SPN resulted in increase in DS density while over-expression of it had no such effect. Collectively, SPN is likely to serve as a regulator of Rac1 signaling to suppress DS morphogenesis via negative control of GTP-bound Rac1-ERK activities at postsynaptic component in rat DH neurons wherein both mechanical and thermal pain sensitivity are controlled.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China.
| |
Collapse
|
126
|
Magalhaes YT, Farias JO, Silva LE, Forti FL. GTPases, genome, actin: A hidden story in DNA damage response and repair mechanisms. DNA Repair (Amst) 2021; 100:103070. [PMID: 33618126 DOI: 10.1016/j.dnarep.2021.103070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
The classical small Rho GTPase (Rho, Rac, and Cdc42) protein family is mainly responsible for regulating cell motility and polarity, membrane trafficking, cell cycle control, and gene transcription. Cumulative recent evidence supports important roles for these proteins in the maintenance of genomic stability. Indeed, DNA damage response (DDR) and repair mechanisms are some of the prime biological processes that underlie several disease phenotypes, including genetic disorders, cancer, senescence, and premature aging. Many reports guided by different experimental approaches and molecular hypotheses have demonstrated that, to some extent, direct modulation of Rho GTPase activity, their downstream effectors, or actin cytoskeleton regulation contribute to these cellular events. Although much attention has been paid to this family in the context of canonical actin cytoskeleton remodeling, here we provide a contextualized review of the interplay between Rho GTPase signaling pathways and the DDR and DNA repair signaling components. Interesting questions yet to be addressed relate to the spatiotemporal dynamics of this collective response and whether it correlates with different subcellular pools of Rho GTPases. We highlight the direct and indirect targets, some of which still lack experimental validation data, likely associated with Rho GTPase activation that provides compelling evidence for further investigation in DNA damage-associated events and with potential therapeutic applications in translational medicine.
Collapse
Affiliation(s)
- Yuli T Magalhaes
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Jessica O Farias
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Luiz E Silva
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Fabio L Forti
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
127
|
Kishima K, Tachibana T, Yamanaka H, Kobayashi K, Okubo M, Maruo K, Noguchi K. Role of Rho-associated coiled-coil containing protein kinase in the spinal cord injury induced neuropathic pain. Spine J 2021; 21:343-351. [PMID: 32853793 DOI: 10.1016/j.spinee.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) can lead to increased phosphorylation of p38 in spinal cord microglia. This is one of the main causes for the development of persistent pain. Recently, we reported our study on the activation of p38 mitogen-activated protein kinases (MAPK) in spinal microglia, which has been considered the key molecule for the onset and maintenance of neuropathic pain after peripheral nerve injury, using a rat model. We also reported that the RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) pathway mediates p38 activation in spinal microglia in peripheral nerve injury. But the precise mechanisms of neuropathic pain induced by SCI are still unclear. PURPOSE This study aimed to examine the activation of microglia and the p38 MAPK expression in the lumbar spinal cord after thoracic SCI in rats, and the correlation to the therapeutic effect of ROCK inhibitor ripasudil in rats with SCI. STUDY DESIGN Male Sprague-Dawley rats underwent thoracic (T10) spinal cord contusion injury using an Infinite Horizon impactor device. SCI rats received ROCK inhibitor ripasudil (24 nmol/day or 240 nmol/day) from just before SCI to 3 days after SCI. METHODS The mechanical threshold in the rat's hind paws was measured over four weeks. Morphology of microglia and phosphorylation of p38 (p-p38) in the lumbar spinal cord and were analyzed using immunohistochemistry. RESULTS The p-p38 positive cell and Iba1 (a maker of microglia) positive area were significantly increased at the lumbar spinal dorsal horn (L4-5) 3 days and 7 days after SCI compared with the sham-control (p<.05), whereas phosphorylated p38 was co-localized with microglia. Three days after SCI, the intensity of phosphorylated p38 and Iba1 immunoreactive cells in the dorsal horn was significantly lower in the ripasudil treated groups than in the saline group. However, administration of ROCK inhibitor did not affect the numbers of microglia. Moreover, the withdrawal threshold of the ripasudil-treated rats was significantly higher than that of the saline-injected rats on 14 days and 28 days after SCI. CONCLUSIONS Our results suggest that activation of ROCK in spinal cord microglia is likely to have an important role in the activation of p38 MAPK, which has been considered as a key molecule that switches on neuropathic pain after SCI. Inhibition of ROCK signaling may offer a means in developing a novel neuropathic pain treatment after SCI. It may help patients with neuropathic pain after SCI. CLINICAL SIGNIFICANCE The findings in the present study regarding intracellular mechanisms suggest that modulation of ROCK signaling may be a focus for novel treatment for neuropathic pain after SCI.
Collapse
Affiliation(s)
- Kazuya Kishima
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshiya Tachibana
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Keishi Maruo
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
128
|
Castelli V, Antonucci I, d'Angelo M, Tessitore A, Zelli V, Benedetti E, Ferri C, Desideri G, Borlongan C, Stuppia L, Cimini A. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl Med 2021; 10:251-266. [PMID: 33027557 PMCID: PMC7848376 DOI: 10.1002/sctm.20-0268] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer the basis for the promotion of robust new therapeutic approaches for a variety of human disorders. There are still many limitations to be overcome before clinical therapeutic application, including a better understanding of the mechanism by which stem cell therapies may lead to enhanced recovery. In vitro investigations are necessary to dissect the mechanisms involved and to support the potential development in stem cell-based therapies. In spite of growing interest in human amniotic fluid stem cells, not much is known about the characteristics of their secretome and regarding the potential neuroprotective mechanism in different pathologies, including stroke. To get more insight on amniotic fluid cells therapeutic potential, signal transduction pathways activated by human amniotic fluid stem cells (hAFSCs)-derived secretome in a stroke in vitro model (ischemia/reperfusion [I/R] model) were investigated by Western blot. Moreover, miRNA expression in the exosomal fraction of the conditioned medium was analyzed. hAFSCs-derived secretome was able to activate pro-survival and anti-apoptotic pathways. MicroRNA analysis in the exosomal component revealed a panel of 16 overexpressed miRNAs involved in the regulation of coherent signaling pathways. In particular, the pathways of relevance in ischemia/reperfusion, such as neurotrophin signaling, and those related to neuroprotection and neuronal cell death, were analyzed. The results obtained strongly point toward the neuroprotective effects of the hAFSCs-conditioned medium in the in vitro stroke model here analyzed. This can be achieved by the modulation and activation of pro-survival processes, at least in part, due to the activity of secreted miRNAs.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Michele d'Angelo
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Claudio Ferri
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | | | - Cesar Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Annamaria Cimini
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Sbarro Institute for Cancer Research and Molecular Medicine and Centre for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
129
|
Liu R, Li Y, Zhou H, Wang H, Liu D, Wang H, Wang Z. OIP5-AS1 facilitates Th17 differentiation and EAE severity by targeting miR-140-5p to regulate RhoA/ROCK2 signaling pathway. Life Sci 2021:119108. [PMID: 33515560 DOI: 10.1016/j.lfs.2021.119108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
AIMS Multiple sclerosis (MS) is one of the commonest neurologic disorders globally. LncRNA OIP5-AS1 has been found to be implicated in the etiology of MS. This study was to explore the roles and molecular mechanisms of OIP5-AS1 in the development of MS. MATERIALS AND METHODS RT-qPCR assay was used to measure expressions of OIP5-AS1, miR-140-5p, IL-17A mRNA and RhoA mRNA. CD4+IL-17+ cell proportion was determined by flow cytometry. IL-17A secretion was examined by ELISA assay. Cell inflammatory infiltration and demyelination were assessed by histological analyses. The interaction between miR-140-5p and OIP5-AS1 or RhoA 3'UTR was validated by bioinformatical analysis and luciferase reporter assay. Western blot assay was performed to detect protein expressions of ROCK2 and RhoA. An experimental autoimmune encephalomyelitis (EAE) models was established to explore the role of OIP5-AS1 in MS in vivo. KEY FINDINGS OIP5-AS1 expression was enhanced in MS patients. Also, elevated OIP5-AS1 level was observed during T-helper 17 (Th17) differentiation. Moreover, OIP5-AS1 promoted Th17 differentiation in vitro and contributed to the development of EAE in vivo. Mechanical explorations revealed that OIP5-AS1 targeted miR-140-5p to regulate Th17 differentiation. Moreover, RhoA was a target of miR-140-5p and miR-140-5p inhibited the activation of RhoA/ROCK2 signaling. Also, RhoA upregulation abrogated the inhibitory effects of miR-140-5p on Th17 differentiation. SIGNIFICANCE OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China.
| | - Yan Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Haitao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hao Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Dequan Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Huilin Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Zhenghua Wang
- Department of Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
130
|
Dong J, Fu H, Fu Y, You M, Li X, Wang C, Leng K, Wang Y, Chen J. Maternal Exposure to Di-(2-ethylhexyl) Phthalate Impairs Hippocampal Synaptic Plasticity in Male Offspring: Involvement of Damage to Dendritic Spine Development. ACS Chem Neurosci 2021; 12:311-322. [PMID: 33411500 DOI: 10.1021/acschemneuro.0c00612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to di-(2-ethylhexyl) phthalate (DEHP), a widely used kind of plasticizer, can result in neurodevelopment impairments and learning and memory disorders. We studied the effects and possible mechanisms of maternal DEHP treatment on hippocampal synaptic plasticity in offspring. Pregnant Wistar rats were randomly divided into four groups and received 0, 30, 300, 750 (mg/kg)/d DEHP by gavage from gestational day (GD) 0 to postnatal day (PN) 21. Our data showed that DEHP exposure impaired hippocampal synaptic plasticity, damaged synaptic ultrastructure, and decreased synaptic protein levels in male pups. Furthermore, DEHP decreased the density of dendritic spines, affected F-actin polymerization, and downregulated the Rac1/PAK/LIMK1/cofilin signaling pathway in male offspring. However, the alterations in the hippocampi of female offspring were not observed. These results illustrate that maternal DEHP exposure could impair hippocampal synaptic plasticity by affecting synaptic structure and dendritic spine development in male offspring, which may be attributed to altered cytoskeleton construction induced by downregulation of the Rac1/PAK/LIMK1/cofilin signaling pathway.
Collapse
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Xudong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Chaonan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Kunkun Leng
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples’ Republic of China
| |
Collapse
|
131
|
Yeman KB, Isik S. Down regulation of DNA topoisomerase IIβ exerts neurodegeneration like effect through Rho GTPases in cellular model of Parkinson's disease by Down regulating tyrosine hydroxylase. Neurol Res 2021; 43:464-473. [PMID: 33402057 DOI: 10.1080/01616412.2020.1867949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Initiating the transcriptional activation of neuronal genes, DNA topoisomerase IIβ (topo IIβ) has a crucial role in neural differentiation and brain development. Inhibition of topo IIβ activity causes shorter axons and deteriorated neuronal connections common in neurodegenerative diseases. We previously reported that topo IIβ silencing could give rise to neurodegeneration through dysregulation of Rho GTPases and may contribute to pathogenesis of neurodegenerative diseases. Although there are several studies available proposing a link between Parkinson's Disease (PD) and Rho GTPases, there have been no reports analyzing the topo IIβ-dependent association of PD and Rho GTPases. Here, for the first time, we identified that topo IIβ has a regulatory role on Rho GTPases contributing to PD-like pathology. We analyzed the association between topo IIβ and PD by comparing topo IIβ expression levels of Retinoic Acid (RA) and Brain-derived neutrophic factor (BDNF) induced and MPP+-intoxicated SH-SY5Y cells used as an in vitro PD model. While both mRNA and protein levels of topo IIβ increase in neural differentiated cells, a significant decrease is detected in the PD model. Additionally, silencing of topo IIβ by specific siRNAs caused phenotypic alterations like deteriorated neural connections and transcriptional regulations such as upregulation of RhoA and downregulation of Cdc42, Rac1, and tyrosine hydroxylase gene expressions. Our results suggest that topo IIβ downregulation may cause neurodegeneration through dysregulation of Rho-GTPases leading to PD-like pathology.
Collapse
Affiliation(s)
- Kiyak Bercem Yeman
- Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| |
Collapse
|
132
|
Zhu YT, Zhang Q, Xie HY, Yu KW, Xu GJ, Li SY, Wu Y. Environmental enrichment combined with fasudil promotes motor function recovery and axonal regeneration after stroke. Neural Regen Res 2021; 16:2512-2520. [PMID: 33907042 PMCID: PMC8374579 DOI: 10.4103/1673-5374.313048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fasudil, a Rho-associated protein kinase (ROCK) inhibitor, has a protective effect on the central nervous system. In addition, environmental enrichment is a promising technique for inducing the recovery of motor impairments in ischemic stroke models. The present study aimed to explore whether environmental enrichment combined with fasudil can facilitate motor function recovery and induce cortical axonal regeneration after stroke. First, a mouse model of ischemic cerebral stroke was established by photochemical embolization of the left sensorimotor cortex. Fasudil solution (10 mg/kg per day) was injected intraperitoneally for 21 days after the photothrombotic stroke. An environmental enrichment intervention was performed on days 7–21 after the photothrombotic stroke. The results revealed that environmental enrichment combined with fasudil improved motor function, increased growth-associated protein 43 expression in the infarcted cerebral cortex, promoted axonal regeneration on the contralateral side, and downregulated ROCK, p-LIM domain kinase (LIMK)1, and p-cofilin expression. The combined intervention was superior to monotherapy. These findings suggest that environmental enrichment combined with fasudil treatment promotes motor recovery after stroke, at least partly by stimulating axonal regeneration. The underlying mechanism might involve ROCK/LIMK1/cofilin pathway regulation. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 20160858A232) on February 24, 2016.
Collapse
Affiliation(s)
- Yi-Tong Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gao-Jing Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Si-Yue Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
133
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
134
|
Lavanderos B, Silva I, Cruz P, Orellana-Serradell O, Saldías MP, Cerda O. TRP Channels Regulation of Rho GTPases in Brain Context and Diseases. Front Cell Dev Biol 2020; 8:582975. [PMID: 33240883 PMCID: PMC7683514 DOI: 10.3389/fcell.2020.582975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological and neuropsychiatric disorders are mediated by several pathophysiological mechanisms, including developmental and degenerative abnormalities caused primarily by disturbances in cell migration, structural plasticity of the synapse, and blood-vessel barrier function. In this context, critical pathways involved in the pathogenesis of these diseases are related to structural, scaffolding, and enzymatic activity-bearing proteins, which participate in Ca2+- and Ras Homologs (Rho) GTPases-mediated signaling. Rho GTPases are GDP/GTP binding proteins that regulate the cytoskeletal structure, cellular protrusion, and migration. These proteins cycle between GTP-bound (active) and GDP-bound (inactive) states due to their intrinsic GTPase activity and their dynamic regulation by GEFs, GAPs, and GDIs. One of the most important upstream inputs that modulate Rho GTPases activity is Ca2+ signaling, positioning ion channels as pivotal molecular entities for Rho GTPases regulation. Multiple non-selective cationic channels belonging to the Transient Receptor Potential (TRP) family participate in cytoskeletal-dependent processes through Ca2+-mediated modulation of Rho GTPases. Moreover, these ion channels have a role in several neuropathological events such as neuronal cell death, brain tumor progression and strokes. Although Rho GTPases-dependent pathways have been extensively studied, how they converge with TRP channels in the development or progression of neuropathologies is poorly understood. Herein, we review recent evidence and insights that link TRP channels activity to downstream Rho GTPase signaling or modulation. Moreover, using the TRIP database, we establish associations between possible mediators of Rho GTPase signaling with TRP ion channels. As such, we propose mechanisms that might explain the TRP-dependent modulation of Rho GTPases as possible pathways participating in the emergence or maintenance of neuropathological conditions.
Collapse
Affiliation(s)
- Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
135
|
Chan WWR, Li W, Chang RCC, Lau KF. ARF6-Rac1 signaling-mediated neurite outgrowth is potentiated by the neuronal adaptor FE65 through orchestrating ARF6 and ELMO1. FASEB J 2020; 34:16397-16413. [PMID: 33047393 DOI: 10.1096/fj.202001703r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
136
|
Bu F, Munshi Y, Furr JW, Min JW, Qi L, Patrizz A, Spahr ZR, Urayama A, Kofler JK, McCullough LD, Li J. Activation of neuronal Ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and axonal plasticity in mice. J Neurochem 2020; 157:1366-1376. [PMID: 32964455 DOI: 10.1111/jnc.15195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Long-term disability after stroke is common but the mechanisms of post-stroke recovery remain unclear. Cerebral Ras-related C3 botulinum toxin substrate (Rac) 1 contributes to functional recovery after ischemic stroke in mice. As Rac1 plays divergent roles in individual cell types after central neural system injury, we herein examined the specific role of neuronal Rac1 in post-stroke recovery and axonal regeneration. Young male mice were subjected to 60-min of middle cerebral artery occlusion (MCAO). Inducible deletion of neuronal Rac1 by daily intraperitoneal injection of tamoxifen (2 mg/40 g) into Thy1-creER/Rac1-floxed mice day 7-11 after MCAO worsened cognitive (assayed by novel object recognition test) and sensorimotor (assayed by adhesive removal and pellet reaching tests) recovery day 14-28 accompanied with the reduction of neurofilament-L (NFL) and myelin basic protein (MBP) and the elevation of glial fibrillary acidic protein (GFAP) in the peri-infarct zone assessed by immunostaining. Whereas the brain tissue loss was not altered assayed by cresyl violet staining. In another approach, delayed overexpression of neuronal Rac1 by injection of lentivirus encoding Rac1 with neuronal promotor into both the cortex and striatum (total 4 μl at 1 × 109 transducing units/mL) of stroke side in C57BL/6J mice day 7 promoted stroke outcome, NFL and MBP regrowth and alleviated GFAP invasion. Furthermore, neuronal Rac1 over-expression led to the activation of p21 activating kinases (PAK) 1, mitogen-activated protein kinase kinase (MEK) 1/2 and extracellular signal-regulated kinase (ERK) 1/2, and the elevation of brain-derived neurotrophic factor (BDNF) day 14 after stroke. Finally, we observed higher counts of neuronal Rac1 in the peri-infarct zone of subacute/old ischemic stroke subjects. This work identified a neuronal Rac1 signaling in improving functional recovery and axonal regeneration after stroke, suggesting a potential therapeutic target in the recovery stage of stroke.
Collapse
Affiliation(s)
- Fan Bu
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Yashasvee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - J Weldon Furr
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jia-Wei Min
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Li Qi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Anthony Patrizz
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Zachary R Spahr
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Julia K Kofler
- Division of Neuropathology, University of Pittsburg, PA, USA
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jun Li
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
137
|
Yong Y, Gamage K, Cushman C, Spano A, Deppmann C. Regulation of degenerative spheroids after injury. Sci Rep 2020; 10:15472. [PMID: 32963272 PMCID: PMC7508847 DOI: 10.1038/s41598-020-71906-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal injury leads to rapid, programmed disintegration of axons distal to the site of lesion. Much like other forms of axon degeneration (e.g. developmental pruning, toxic insult from neurodegenerative disorder), Wallerian degeneration associated with injury is preceded by spheroid formation along axons. The mechanisms by which injury leads to formation of spheroids and whether these spheroids have a functional role in degeneration remain elusive. Here, using neonatal mouse primary sympathetic neurons, we investigate the roles of players previously implicated in the progression of Wallerian degeneration in injury-induced spheroid formation. We find that intra-axonal calcium flux is accompanied by actin-Rho dependent growth of calcium rich axonal spheroids that eventually rupture, releasing material to the extracellular space prior to catastrophic axon degeneration. Importantly, after injury, Sarm1-/- and DR6-/-, but not Wlds (excess NAD+) neurons, are capable of forming spheroids that eventually rupture, releasing their contents to the extracellular space to promote degeneration. Supplementation of exogenous NAD+ or expressing WLDs suppresses Rho-dependent spheroid formation and degeneration in response to injury. Moreover, injured or trophically deprived Sarm1-/- and DR6-/-, but not Wlds neurons, are resistant to degeneration induced by conditioned media collected from wild-type axons after spheroid rupture. Taken together, these findings place Rho-actin and NAD+ upstream of spheroid formation and may suggest that other mediators of degeneration, such as DR6 and SARM1, mediate post-spheroid rupture events that lead to catastrophic axon disassembly.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Kanchana Gamage
- Amgen, Massachusetts and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Courtny Cushman
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Anthony Spano
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
| |
Collapse
|
138
|
Takalo M, Wittrahm R, Wefers B, Parhizkar S, Jokivarsi K, Kuulasmaa T, Mäkinen P, Martiskainen H, Wurst W, Xiang X, Marttinen M, Poutiainen P, Haapasalo A, Hiltunen M, Haass C. The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Mol Neurodegener 2020; 15:52. [PMID: 32917267 PMCID: PMC7488484 DOI: 10.1186/s13024-020-00402-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/06/2020] [Indexed: 01/19/2023] Open
Abstract
Background Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. Methods To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. Results Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. Conclusion The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wefers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Samira Parhizkar
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Wurst
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Christian Haass
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany. .,Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
139
|
In Vivo Assessment of Cell Death and Nigrostriatal Pathway Integrity Following Continuous Expression of C3 Transferase. Neuroscience 2020; 442:183-192. [PMID: 32652176 DOI: 10.1016/j.neuroscience.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022]
Abstract
The bacterial exoenzyme C3 transferase (C3) irreversibly inhibits RhoA GTPase leading to stimulation of axonal outgrowth in injured neurons. C3 has been used successfully in models of neurotrauma and shows promise as an option to support cell survival and axonal growth of dopaminergic (DA) neurons in Parkinson's disease (PD) cell therapy. Whether the continuous expression of C3 in DA neurons is well-tolerated is unknown. To assess the potential neurotoxicity of sustained expression of C3 in DA neurons, we generated Cre recombinase-dependent adeno-associated viral vectors (AAV) for targeted C3 delivery to DA neurons of the mouse substantia nigra pars compacta (SNc). The effect of continuous expression of C3 on DA neurons was assessed by immunohistochemistry and compared to that of Enhanced Yellow Fluorescent Protein (EYFP) as negative controls. We did not find significant reduction of tyrosine hydroxylase (TH) expression levels nor the presence of cleaved activated caspase 3. Astrocytic activation as determined by GFAP expression was comparable to EYFP controls. To evaluate the impact of C3 expression on striatal terminals of the nigrostriatal pathway, we compared the rotational behavior of wildtype mice injected unilaterally with either C3 or 6-hydroxydopamine (6-OHDA). Mice injected with C3 exhibited similar ipsiversive rotations to the site of injection in comparison to control mice injected with EYFP and significantly fewer ipsiversive rotations compared to 6-OHDA lesioned mice. Non-significant difference between C3 and EYFP controls in behavioral and histological analyses demonstrate that transduced DA neurons express C3 continuously without apparent adverse effects, supporting the use of C3 in efficacy studies targeting DA neurons.
Collapse
|
140
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
141
|
Transthyretin interacts with actin regulators in a Drosophila model of familial amyloid polyneuropathy. Sci Rep 2020; 10:13596. [PMID: 32788615 PMCID: PMC7423984 DOI: 10.1038/s41598-020-70377-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/23/2020] [Indexed: 11/23/2022] Open
Abstract
Familial amyloid polyneuropathy (FAP) is a neurodegenerative disorder whose major hallmark is the deposition of mutated transthyretin (TTR) in the form of amyloid fibrils in the peripheral nervous system (PNS). The exposure of PNS axons to extracellular TTR deposits leads to an axonopathy that culminates in neuronal death. However, the molecular mechanisms underlying TTR-induced neurodegeneration are still unclear, despite the extensive studies in vertebrate models. In this work we used a Drosophila FAP model, based on the expression of the amyloidogenic TTR (V30M) in the fly retina, to uncover genetic interactions with cytoskeleton regulators. We show that TTR interacts with actin regulators and induces cytoskeleton alterations, leading to axonal defects. Moreover, our study pinpoints an interaction between TTRV30M and members of Rho GTPase signaling pathways, the major actin regulators. Based on these findings we propose that actin cytoskeleton alterations may mediate the axonopathy observed in FAP patients, and highlight a molecular pathway, mediated by Rho GTPases, underlying TTR-induced neurodegeneration. We expect this work to prompt novel studies and approaches towards FAP therapy.
Collapse
|
142
|
Shahraz A, Wißfeld J, Ginolhac A, Mathews M, Sinkkonen L, Neumann H. Phagocytosis-related NADPH oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides. Glia 2020; 69:137-150. [PMID: 32721081 DOI: 10.1002/glia.23890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX-2) in inflammatory neurodegeneration. Cybb-deficient NOX-2 knock-out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 μg/gbw/day LPS. Transcriptome analysis by RNA-seq of total brain tissue indicated increased LPS-induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX-2 KO mice. Validation of up-regulated gene transcripts via qRT-PCR confirmed that LPS-challenged NOX-2 KO mice expressed lower levels of the microglial phagocytosis-related genes Nos2, Cd68, Aif1/Iba1, Cyba, Itgam, and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro-inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX-2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis-related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox.
Collapse
Affiliation(s)
- Anahita Shahraz
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jannis Wißfeld
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L4367, Luxembourg
| | - Mona Mathews
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L4367, Luxembourg
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| |
Collapse
|
143
|
Sekiguchi M, Sobue A, Kushima I, Wang C, Arioka Y, Kato H, Kodama A, Kubo H, Ito N, Sawahata M, Hada K, Ikeda R, Shinno M, Mizukoshi C, Tsujimura K, Yoshimi A, Ishizuka K, Takasaki Y, Kimura H, Xing J, Yu Y, Yamamoto M, Okada T, Shishido E, Inada T, Nakatochi M, Takano T, Kuroda K, Amano M, Aleksic B, Yamomoto T, Sakuma T, Aida T, Tanaka K, Hashimoto R, Arai M, Ikeda M, Iwata N, Shimamura T, Nagai T, Nabeshima T, Kaibuchi K, Yamada K, Mori D, Ozaki N. ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk. Transl Psychiatry 2020; 10:247. [PMID: 32699248 PMCID: PMC7376022 DOI: 10.1038/s41398-020-00917-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia (SCZ) is known to be a heritable disorder; however, its multifactorial nature has significantly hampered attempts to establish its pathogenesis. Therefore, in this study, we performed genome-wide copy-number variation (CNV) analysis of 2940 patients with SCZ and 2402 control subjects and identified a statistically significant association between SCZ and exonic CNVs in the ARHGAP10 gene. ARHGAP10 encodes a member of the RhoGAP superfamily of proteins that is involved in small GTPase signaling. This signaling pathway is one of the SCZ-associated pathways and may contribute to neural development and function. However, the ARHGAP10 gene is often confused with ARHGAP21, thus, the significance of ARHGAP10 in the molecular pathology of SCZ, including the expression profile of the ARHGAP10 protein, remains poorly understood. To address this issue, we focused on one patient identified to have both an exonic deletion and a missense variant (p.S490P) in ARHGAP10. The missense variant was found to be located in the RhoGAP domain and was determined to be relevant to the association between ARHGAP10 and the active form of RhoA. We evaluated ARHGAP10 protein expression in the brains of reporter mice and generated a mouse model to mimic the patient case. The model exhibited abnormal emotional behaviors, along with reduced spine density in the medial prefrontal cortex (mPFC). In addition, primary cultured neurons prepared from the mouse model brain exhibited immature neurites in vitro. Furthermore, we established induced pluripotent stem cells (iPSCs) from this patient, and differentiated them into tyrosine hydroxylase (TH)-positive neurons in order to analyze their morphological phenotypes. TH-positive neurons differentiated from the patient-derived iPSCs exhibited severe defects in both neurite length and branch number; these defects were restored by the addition of the Rho-kinase inhibitor, Y-27632. Collectively, our findings suggest that rare ARHGAP10 variants may be genetically and biologically associated with SCZ and indicate that Rho signaling represents a promising drug discovery target for SCZ treatment.
Collapse
Affiliation(s)
- Mariko Sekiguchi
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Akira Sobue
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Itaru Kushima
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.437848.40000 0004 0569 8970Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi Japan
| | - Chenyao Wang
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuko Arioka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.437848.40000 0004 0569 8970Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi Japan
| | - Hidekazu Kato
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Akiko Kodama
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Hisako Kubo
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Norimichi Ito
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Masahito Sawahata
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kazuhiro Hada
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Ryosuke Ikeda
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Mio Shinno
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Chikara Mizukoshi
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Keita Tsujimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Akira Yoshimi
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kanako Ishizuka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yuto Takasaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Hiroki Kimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Jingrui Xing
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Yanjie Yu
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Maeri Yamamoto
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Takashi Okada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Emiko Shishido
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Toshiya Inada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Masahiro Nakatochi
- grid.27476.300000 0001 0943 978XDivision of Data Science, Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Tetsuya Takano
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Keisuke Kuroda
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Mutsuki Amano
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Branko Aleksic
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Takashi Yamomoto
- grid.257022.00000 0000 8711 3200Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tetsushi Sakuma
- grid.257022.00000 0000 8711 3200Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomomi Aida
- grid.265073.50000 0001 1014 9130Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohichi Tanaka
- grid.265073.50000 0001 1014 9130Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryota Hashimoto
- grid.419280.60000 0004 1763 8916Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Arai
- grid.272456.0Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masashi Ikeda
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teppei Shimamura
- grid.27476.300000 0001 0943 978XDivision of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Taku Nagai
- grid.27476.300000 0001 0943 978XDepartment of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences & Aino University, Toyoake, Aichi Japan
| | - Kozo Kaibuchi
- grid.27476.300000 0001 0943 978XDepartment of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan. .,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan. .,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
| | - Norio Ozaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| |
Collapse
|
144
|
Wesén E, Lundmark R, Esbjörner EK. Role of Membrane Tension Sensitive Endocytosis and Rho GTPases in the Uptake of the Alzheimer's Disease Peptide Aβ(1-42). ACS Chem Neurosci 2020; 11:1925-1936. [PMID: 32497421 PMCID: PMC7497631 DOI: 10.1021/acschemneuro.0c00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraneuronal accumulation of amyloid-β (Aβ) is an early pathological signum of Alzheimer's disease, and compartments of the endolysosomal system have been implicated in both seeding and cell-cell propagation of Aβ aggregation. We have studied how clathrin-independent mechanisms contribute to Aβ endocytosis, exploring pathways that are sensitive to changes in membrane tension and the regulation of Rho GTPases. Using live cell confocal microscopy and flow cytometry, we show the uptake of monomeric Aβ(1-42) into endocytic vesicles and vacuole-like dilations, following relaxation of osmotic pressure-induced cell membrane tension. This indicates Aβ(1-42) uptake via clathrin independent carriers (CLICs), although overexpression of the bar-domain protein GRAF1, a key regulator of CLICs, had no apparent effect. We furthermore report reduced Aβ(1-42) uptake following overexpression of constitutively active forms of the Rho GTPases Cdc42 and RhoA, whereas modulation of Rac1, which is linked to macropinosome formation, had no effect. Our results confirm that uptake of Aβ(1-42) is clathrin- and dynamin-independent and point to the involvement of a new and distinct clathrin-independent endocytic mechanism which is similar to uptake via CLICs or macropinocytosis but that also appear to involve yet uncharacterized molecular players.
Collapse
Affiliation(s)
- Emelie Wesén
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Richard Lundmark
- Department of Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden
| | - Elin K. Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
145
|
De Caris MG, Grieco M, Maggi E, Francioso A, Armeli F, Mosca L, Pinto A, D’Erme M, Mancini P, Businaro R. Blueberry Counteracts BV-2 Microglia Morphological and Functional Switch after LPS Challenge. Nutrients 2020; 12:nu12061830. [PMID: 32575571 PMCID: PMC7353350 DOI: 10.3390/nu12061830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/11/2023] Open
Abstract
Microglia, the innate immune cells of the CNS, respond to brain injury by activating and modifying their morphology. Our study arises from the great interest that has been focused on blueberry (BB) for the antioxidant and pharmacological properties displayed by its components. We analyzed the influence of hydroalcoholic BB extract in resting or lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. BB exerted a protective effect against LPS-induced cytotoxicity, as indicated by cell viability. BB was also able to influence the actin cytoskeleton organization, to recover the control phenotype after LPS insult, and also to reduce LPS-driven migration. We evaluated the activity of Rho and Rac1 GTPases, which regulate both actin cytoskeletal organization and migratory capacity. LPS caused an increase in Rac1 activity, which was counteracted by BB extract. Furthermore, we demonstrated that, in the presence of BB, mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α decreased, as did the immunofluorescence signal of iNOS, whereas that of Arg-1 was increased. Taken together, our results show that, during the inflammatory response, BB extract shifts the M1 polarization towards the M2 phenotype through an actin cytoskeletal rearrangement. Based on that, we might consider BB as a nutraceutical with anti-inflammatory activities.
Collapse
Affiliation(s)
- Maria Giovanna De Caris
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.G.D.C.); (A.P.)
| | - Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (E.M.); (F.A.); (R.B.)
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (E.M.); (F.A.); (R.B.)
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.G.D.C.); (A.P.)
| | - Maria D’Erme
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.G.); (A.F.); (L.M.); (M.D.)
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (M.G.D.C.); (A.P.)
- Correspondence: ; Tel.: +39-064461526
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (E.M.); (F.A.); (R.B.)
| |
Collapse
|
146
|
Najafi H, Naseri M, Zahiri J, Totonchi M, Sadeghizadeh M. Identification of the Molecular Events Involved in the Development of Prefrontal Cortex Through the Analysis of RNA-Seq Data From BrainSpan. ASN Neuro 2020; 11:1759091419854627. [PMID: 31213068 PMCID: PMC6582306 DOI: 10.1177/1759091419854627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human brain development is a complex process that follows sequential
orchestration of gene expression, begins at conceptual stages, and continues
into adulthood. Altered profile of gene expression drives many cellular and
molecular events required for development. Here, the molecular events during
development of human prefrontal cortex (PFC) (as an important executive part of
the brain) were investigated. First, the RNA-sequencing data of BrainSpan were
used to obtain differentially expressed genes between each two developmental
stages and then, the relevant biological processes and signaling pathways were
deduced by gene set enrichment analysis. In addition, the changes in
transcriptome landscape of PFC during development were analyzed and the
potential biological processes underlie the changes were found. Comparison of
the four regions of PFC based on their biological processes showed that
additional to common biological processes and signaling pathways, each PFC
region had its own molecular characteristics, conforming their previously
reported functional roles in brain physiology. The most heterogeneity in
transcriptome between the PFC regions was observed at the time of birth which
was concurrent with the activity of some region-specific regulatory systems such
as DNA methylation, transcription regulation, RNA splicing, and presence of
different transcription factors and microRNAs. In conclusion, this study used
bioinformatics to present a comprehensive molecular overview on PFC development
which may explain the etiology of brain neuropsychiatric disorders originated
from malfunctioning of PFC.
Collapse
Affiliation(s)
- Hadi Najafi
- 1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohadeseh Naseri
- 2 Department of Biophysics, Bioinformatics and Computational Omics Lab (BioCOOL), Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- 2 Department of Biophysics, Bioinformatics and Computational Omics Lab (BioCOOL), Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Totonchi
- 3 Department of Genetics and Stem Cell, Royan Institute, Tehran, Iran
| | - Majid Sadeghizadeh
- 1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
147
|
Travaglione S, Loizzo S, Vona R, Ballan G, Rivabene R, Giordani D, Guidotti M, Dupuis ML, Maroccia Z, Baiula M, Rimondini R, Campana G, Fiorentini C. The Bacterial Toxin CNF1 Protects Human Neuroblastoma SH-SY5Y Cells against 6-Hydroxydopamine-Induced Cell Damage: The Hypothesis of CNF1-Promoted Autophagy as an Antioxidant Strategy. Int J Mol Sci 2020; 21:ijms21093390. [PMID: 32403292 PMCID: PMC7247702 DOI: 10.3390/ijms21093390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Several chronic neuroinflammatory diseases, including Parkinson’s disease (PD), have the so-called ‘redox imbalance’ in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition. Herein, we used SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), a neurotoxin broadly employed to generate experimental models of PD. Cells were pre-treated with the Rho-modulating Escherichia coli cytotoxic necrotizing factor 1 (CNF1), before the addition of 6-OHDA. Then, cell viability, mitochondrial morphology and dynamics, redox profile as well as autophagic markers expression were assessed. We found that CNF1 preserves cell viability and counteracts oxidative stress induced by 6-OHDA. These effects are accompanied by modulation of the mitochondrial network and an increase in macroautophagic markers. Our results confirm the Rho GTPases as suitable pharmacological targets to counteract neuroinflammatory diseases and evidence the potentiality of CNF1, whose beneficial effects on pathological animal models have been already proven to act against oxidative stress through an autophagic strategy.
Collapse
Affiliation(s)
- Sara Travaglione
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
- Correspondence: ; Tel.: +39-06-49903692
| | - Stefano Loizzo
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Rosa Vona
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Giulia Ballan
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Roberto Rivabene
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Danila Giordani
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Marco Guidotti
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Maria Luisa Dupuis
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Zaira Maroccia
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Monica Baiula
- University of Bologna, 40126 Bologna, Italy; (M.B.); (R.Rim); (G.C.)
| | - Roberto Rimondini
- University of Bologna, 40126 Bologna, Italy; (M.B.); (R.Rim); (G.C.)
| | - Gabriele Campana
- University of Bologna, 40126 Bologna, Italy; (M.B.); (R.Rim); (G.C.)
| | - Carla Fiorentini
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy
| |
Collapse
|
148
|
Lacivita E, Niso M, Stama ML, Arzuaga A, Altamura C, Costa L, Desaphy JF, Ragozzino ME, Ciranna L, Leopoldo M. Privileged scaffold-based design to identify a novel drug-like 5-HT 7 receptor-preferring agonist to target Fragile X syndrome. Eur J Med Chem 2020; 199:112395. [PMID: 32442850 DOI: 10.1016/j.ejmech.2020.112395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Recent preclinical studies have shown that activation of the serotonin 5-HT7 receptor has the potential to treat neurodevelopmental disorders such as Fragile X syndrome, a rare disease characterized by autistic features. With the aim to provide the scientific community with diversified drug-like 5-HT7 receptor-preferring agonists, we designed a set of new long-chain arylpiperazines by exploiting structural fragments present in clinically approved drugs or in preclinical candidates (privileged scaffolds). The new compounds were synthesized, tested for their affinity at 5-HT7 and 5-HT1A receptors, and screened for their in vitro stability to microsomal degradation and toxicity. Selected compounds were characterized as 5-HT7 receptor-preferring ligands, endowed with high metabolic stability and low toxicity. Compound 7g emerged as a drug-like 5-HT7 receptor-preferring agonist capable to rescue synaptic plasticity and attenuate stereotyped behavior in a mouse model of Fragile X syndrome.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Madia Letizia Stama
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Anna Arzuaga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari Aldo Moro, Policlinico, piazza Giulio Cesare, 70126, Bari, Italy
| | - Lara Costa
- Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Via Consolare Valeria 1, Messina, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari Aldo Moro, Policlinico, piazza Giulio Cesare, 70126, Bari, Italy
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Lucia Ciranna
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, Catania, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
149
|
Cap KC, Jung YJ, Choi BY, Hyeon SJ, Kim JG, Min JK, Islam R, Hossain AJ, Chung WS, Suh SW, Ryu H, Park JB. Distinct dual roles of p-Tyr42 RhoA GTPase in tau phosphorylation and ATP citrate lyase activation upon different Aβ concentrations. Redox Biol 2020; 32:101446. [PMID: 32046944 PMCID: PMC7264465 DOI: 10.1016/j.redox.2020.101446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/04/2022] Open
Abstract
Both the accumulation of Amyloid-β (Aβ) in plaques and phosphorylation of Tau protein (p-Tau) in neurofibrillary tangles have been identified as two major symptomatic features of Alzheimer's disease (AD). Despite of critical role of Aβ and p-Tau in AD progress, the interconnection of signalling pathways that Aβ induces p-Tau remains elusive. Herein, we observed that a popular AD model mouse (APP/PS1) and Aβ-injected mouse showed an increase in p-Tyr42 Rho in hippocampus of brain. Low concentrations of Aβ (1 μM) induced RhoA-mediated Ser422 phosphorylation of Tau protein (p-Ser422 Tau), but reduced the expression of ATP citrate lyase (ACL) in the HT22 hippocampal neuronal cell line. In contrast, high concentrations of Aβ (10 μM) along with high levels of superoxide production remarkably attenuated accumulation of p-Ser422 Tau, but augmented ACL expression and activated sterol regulatory element-binding protein 1 (SREBP1), leading to cellular senescence. Notably, a high concentration of Aβ (10 μM) induced nuclear localization of p-Tyr42 Rho, which positively regulated NAD kinase (NADK) expression by binding to the NADK promoter. Furthermore, severe AD patient brain showed high p-Tyr42 Rho levels. Collectively, our findings indicate that both high and low concentrations of Aβ are detrimental to neurons via distinct two p-Tyr42 RhoA-mediated signalling pathways in Ser422 phosphorylation of Tau and ACL expression.
Collapse
Affiliation(s)
- Kim Cuong Cap
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
| | - Yeon-Joo Jung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Jung-Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Rokibul Islam
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Abu Jubayer Hossain
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Hallym Clinical and Translational Science Institute, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; eLmed Co., Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea.
| |
Collapse
|
150
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|