101
|
Abstract
Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.
Collapse
Affiliation(s)
- Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
102
|
Abstract
A multifunctional microRNA, miR-155, has been recently recognized as an important modulator of numerous biological processes. In our previous in vitro studies, miR-155 was identified as a potential regulator of the endothelial morphogenesis. The present study demonstrates that in vivo inhibition of miR-155 supports cerebral vasculature after experimental stroke. Intravenous injections of a specific miR-155 inhibitor were initiated at 48 h after mouse distal middle cerebral artery occlusion (dMCAO). Microvasculature in peri-infarct area, infarct size, and animal functional recovery were assessed at 1, 2, and 3 weeks after dMCAO. Using in vivo two-photon microscopy, we detected improved blood flow and microvascular integrity in the peri-infarct area of miR-155 inhibitor-injected mice. Electron microscopy revealed that, in contrast to the control group, these animals demonstrated well preserved capillary tight junctions (TJs). Western blot analysis data indicate that improved TJ integrity in the inhibitor-injected animals could be associated with stabilization of the TJ protein ZO-1 and mediated by the miR-155 target protein Rheb. MRI analysis showed significant (34%) reduction of infarct size in miR-155 inhibitor-injected animals at 21 d after dMCAO. Reduced brain injury was confirmed by electron microscopy demonstrating decreased neuronal damage in the peri-infarct area of stroke. Preservation of brain tissue was reflected in efficient functional recovery of inhibitor-injected animals. Based on our findings, we propose that in vivo miR-155 inhibition after ischemia supports brain microvasculature, reduces brain tissue damage, and improves the animal functional recovery. Significance statement: In the present study, we investigated an effect of the in vivo inhibition of a microRNA, miR-155, on brain recovery after experimental cerebral ischemia. To our knowledge, this is the first report describing the efficiency of intravenous anti-miRNA injections in a mouse model of ischemic stroke. The role of miRNAs in poststroke revascularization has been unexplored and in vivo regulation of miRNAs during the subacute phase of stroke has not yet been proposed. Our investigation introduces a new and unexplored approach to cerebral regeneration: regulation of poststroke angiogenesis and recovery through direct modulation of specific miRNA activity. We expect that our findings will lead to the development of novel strategies for regulating neurorestorative processes in the postischemic brain.
Collapse
|
103
|
Iaci JF, Parry TJ, Huang Z, Pavlopoulos E, Finklestein SP, Ren J, Caggiano A. An optimized dosing regimen of cimaglermin (neuregulin 1β3, glial growth factor 2) enhances molecular markers of neuroplasticity and functional recovery after permanent ischemic stroke in rats. J Neurosci Res 2015; 94:253-65. [PMID: 26660233 PMCID: PMC4737294 DOI: 10.1002/jnr.23699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Cimaglermin (neuregulin 1β3, glial growth factor 2) is a neuregulin growth factor family member in clinical development for chronic heart failure. Previously, in a permanent middle cerebral artery occlusion (pMCAO) rat stroke model, systemic cimaglermin treatment initiated up to 7 days after ischemia onset promoted recovery without reduced lesion volume. Presented here to extend the evidence are two studies that use a rat stroke model to evaluate the effects of cimaglermin dose level and dose frequency initiated 24 hr after pMCAO. Forelimb‐ and hindlimb‐placing scores (proprioceptive behavioral tests), body‐swing symmetry, and infarct volume were compared between treatment groups (n = 12/group). Possible mechanisms underlying cimaglermin‐mediated neurologic recovery were examined through axonal growth and synapse formation histological markers. Cimaglermin was evaluated over a wider dose range (0.02, 0.1, or 1.0 mg/kg) than doses previously shown to be effective but used the same dosing regimen (2 weeks of daily intravenous administration, then 1 week without treatment). The dose‐frequency study used the dose‐ranging study's most effective dose (1.0 mg/kg) to compare daily, once per week, and twice per week dosing for 3 weeks (then 1 week without treatment). Dose‐ and frequency‐dependent functional improvements were observed with cimaglermin without reduced lesion volume. Cimaglermin treatment significantly increased growth‐associated protein 43 expression in both hemispheres (particularly somatosensory and motor cortices) and also increased synaptophysin expression. These data indicate that cimaglermin enhances recovery after stroke. Immunohistochemical changes were consistent with axonal sprouting and synapse formation but not acute neuroprotection. Cimaglermin represents a potential clinical development candidate for ischemic stroke treatment. © 2015 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Tom J Parry
- Acorda Therapeutics, Inc., Ardsley, New York
| | | | | | | | | | | |
Collapse
|
104
|
Li B, Wang Y, Lu J, Liu J, Yuan Y, Yu Y, Wang P, Zhao X, Wang Z. Evaluating the effects of Danhong injection in treatment of acute ischemic stroke: study protocol for a multicenter randomized controlled trial. Trials 2015; 16:561. [PMID: 26654631 PMCID: PMC4673756 DOI: 10.1186/s13063-015-1076-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Danhong injection (DHI) has been widely prescribed to patients with acute ischemic stroke (AIS). However, due to methodological deficiencies, previous research has not yet provided rigorous evidence to support the use of DHI in the treatment of AIS. Therefore, we designed this multicenter, randomized, controlled, and double-blind trial to evaluate the efficacy and safety of DHI for AIS. Methods/Design It is a randomized, multicenter, double-blind, placebo-controlled, adaptive clinical trial. A total of 864 eligible patients will be randomized into either the DHI or placebo group in a 2:1 ratio. All patients will be given the standard medical care as recommended by guidelines. Participants will undergo a 2-week treatment regimen and 76-day follow-up period. The primary outcome is the proportion of patients with a favorable outcome, defined as a score of 0–1 on the modified Rankin scale at day 90. Secondary outcomes include a change in the total score of the Chinese medicine symptom scales of “Xueyu Zheng” (blood stasis syndrome), the proportion of patients with a Barthel Index score of ≥90, the proportion of patients with an improvement in NIHSS score of ≥4 or NIHSS score of 0–1, quality of life measured by the EQ-5D scale, etc. Safety outcomes such as global disability (mRS ≥3) at day 90 will also be assessed. The changes in mRNA and microRNA profiles in 96 patients selected from certain centers will also be assessed. As this is an adaptive design, two interim analyses are prospectively planned, which will be carried out after one-third and two-thirds of patients have completed the trial, respectively. Based on the results of the interim analyses, the Data Monitoring Committee (DMC) will decide how to modify the study. Discussion This trial will provide high-quality evidence for DHI in treatment of AIS. Trial registration Clinical Trials.gov NCT01677208 (Date of registration 22 December 2012). Electronic supplementary material The online version of this article (doi:10.1186/s13063-015-1076-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China. .,Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Yilong Wang
- Beijing Tiantan Hospital Affiliated to Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Jingjing Lu
- Beijing Tiantan Hospital Affiliated to Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Ye Yuan
- Changzhou TCM Hospital, Heping North Road, Changzhou, Jiangsu, 213004, China.
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Pengqian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Xingquan Zhao
- Beijing Tiantan Hospital Affiliated to Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
105
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
106
|
Long Q, Hei Y, Luo Q, Tian Y, Yang J, Li J, Wei L, Liu W. BMSCs transplantation improves cognitive impairment via up-regulation of hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion. Neuroscience 2015; 311:464-73. [DOI: 10.1016/j.neuroscience.2015.10.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
|
107
|
Yan F, Yue W, Zhang YL, Mao GC, Gao K, Zuo ZX, Zhang YJ, Lu H. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke. Neural Regen Res 2015; 10:1421-6. [PMID: 26604902 PMCID: PMC4625507 DOI: 10.4103/1673-5374.163466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.
Collapse
Affiliation(s)
- Feng Yan
- Department of Neurosurgery, the Third Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China ; Department of Neurosurgery, the Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi Province, China
| | - Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue-Lin Zhang
- Department of Neurosurgery, the Third Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Guo-Chao Mao
- Department of Neurosurgery, the Third Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Ke Gao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhen-Xing Zuo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ya-Jing Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
108
|
Kempermann G. Activity Dependency and Aging in the Regulation of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018929. [PMID: 26525149 PMCID: PMC4632662 DOI: 10.1101/cshperspect.a018929] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of "neural reserve," the brain's ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
109
|
Ma F, Morancho A, Montaner J, Rosell A. Endothelial progenitor cells and revascularization following stroke. Brain Res 2015; 1623:150-9. [DOI: 10.1016/j.brainres.2015.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/02/2023]
|
110
|
Lake EMR, Chaudhuri J, Thomason L, Janik R, Ganguly M, Brown M, McLaurin J, Corbett D, Stanisz GJ, Stefanovic B. The effects of delayed reduction of tonic inhibition on ischemic lesion and sensorimotor function. J Cereb Blood Flow Metab 2015; 35:1601-9. [PMID: 25966952 PMCID: PMC4640317 DOI: 10.1038/jcbfm.2015.86] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 02/02/2023]
Abstract
To aid in development of chronic stage treatments for sensorimotor deficits induced by ischemic stroke, we investigated the effects of GABA antagonism on brain structure and fine skilled reaching in a rat model of focal ischemia induced via cortical microinjections of endothelin-1 (ET-1). Beginning 7 days after stroke, animals were administered a gamma-aminobutyric acid (GABAA) inverse agonist, L-655,708, at a dose low enough to afford α5-GABAA receptor specificity. A week after stroke, the ischemic lesion comprised a small hypointense necrotic core (6±1 mm(3)) surrounded by a large (62±11 mm(3)) hyperintense perilesional region; the skilled reaching ability on the Montoya staircase test was decreased to 34%±2% of the animals' prestroke performance level. On L-655,708 treatment, animals showed a progressive decrease in total stroke volume (13±4 mm(3) per week), with no change in animals receiving placebo. Concomitantly, treated animals' skilled reaching progressively improved by 9%±1% per week, so that after 2 weeks of treatment, these animals performed at 65%±6% of their baseline ability, which was 25%±11% better than animals given placebo. These data indicate beneficial effects of delayed, sustained low-dose GABAA antagonism on neuroanatomic injury and skilled reaching in the chronic stage of stroke recovery in an ET-1 rat model of focal ischemia.
Collapse
Affiliation(s)
- Evelyn M R Lake
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Joydeep Chaudhuri
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lynsie Thomason
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rafal Janik
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Milan Ganguly
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mary Brown
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dale Corbett
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University Lublin, Lublin, Poland
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University Lublin, Lublin, Poland
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
111
|
Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, Dezawa M. Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells 2015; 34:160-73. [DOI: 10.1002/stem.2206] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/12/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroki Uchida
- Department of Stem Cell Biology and Histology
- Department of Neurosurgery
| | - Takahiro Morita
- Department of Stem Cell Biology and Histology
- Department of Neurosurgery
| | | | | | | | | | | | - Yoshiya Matsuzaka
- Department of Physiology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hajime Mushiake
- Department of Physiology; Tohoku University Graduate School of Medicine; Sendai Japan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair; University of South Florida College of Medicine; Tampa Florida USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology
- Department of Anatomy and Anthropology
| |
Collapse
|
112
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
113
|
Aizman I, Vinodkumar D, McGrogan M, Bates D. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations. Stem Cells Dev 2015; 24:1623-34. [PMID: 25873141 PMCID: PMC4499789 DOI: 10.1089/scd.2015.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beneficial effects of intracerebral transplantation of mesenchymal stromal cells (MSC) and their derivatives are believed to be mediated mostly by factors produced by engrafted cells. However, the mesenchymal cell engraftment rate is low, and the majority of grafted cells disappear within a short post-transplantation period. Here, we hypothesize that dying transplanted cells can affect surrounding tissues by releasing their active intracellular components. To elucidate the type, amounts, and potency of these putative intracellular factors, freeze/thaw extracts of MSC or their derivatives were tested in enzyme-linked immunosorbent assays and bioassays. We found that fibroblast growth factor (FGF)2 and FGF1, but not vascular endothelial growth factor and monocyte chemoattractant protein 1 levels were high in extracts despite being low in conditioned media. Extracts induced concentration-dependent proliferation of rat cortical neural progenitor cells and human umbilical vein endothelial cells; these proliferative responses were specifically blocked by FGF2-neutralizing antibody. In the neuropoiesis assay with rat cortical cells, both MSC extracts and killed cells induced expression of nestin, but not astrocyte differentiation. However, suspensions of killed cells strongly potentiated the astrogenic effects of live MSC. In transplantation-relevant MSC injury models (peripheral blood cell-mediated cytotoxicity and high cell density plating), MSC death coincided with the release of intracellular FGF2. The data showed that MSC contain a major depot of active FGF2 that is released upon cell injury and is capable of acutely stimulating neuropoiesis and angiogenesis. We therefore propose that both dying and surviving grafted MSC contribute to tissue regeneration.
Collapse
Affiliation(s)
- Irina Aizman
- 1 Department of Research, SanBio, Inc. , Mountain View, California
| | | | - Michael McGrogan
- 2 Department of Production Development, SanBio, Inc. , Mountain View, California
| | - Damien Bates
- 1 Department of Research, SanBio, Inc. , Mountain View, California
| |
Collapse
|
114
|
Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015; 272:97-108. [PMID: 25987538 DOI: 10.1016/j.expneurol.2015.05.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
Vascular dementia (VaD) is the second leading form of dementia after Alzheimer's disease (AD) plaguing the elderly population. VaD is a progressive disease caused by reduced blood flow to the brain, and it affects cognitive abilities especially executive functioning. VaD is poorly understood and lacks suitable animal models, which constrain the progress on understanding the basis of the disease and developing treatments. This review article discusses VaD, its risk factors, induced cognitive disability, various animal (rodent) models of VaD, pathology, and mechanisms of VaD and treatment options.
Collapse
Affiliation(s)
- Poornima Venkat
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Physics, Oakland University, Rochester, MI, USA.
| | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Physics, Oakland University, Rochester, MI, USA.
| | - Jieli Chen
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China.
| |
Collapse
|
115
|
Kassis H, Shehadah A, Chopp M, Roberts C, Zhang ZG. Stroke Induces Nuclear Shuttling of Histone Deacetylase 4. Stroke 2015; 46:1909-15. [PMID: 25967576 DOI: 10.1161/strokeaha.115.009046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Histone deacetylases (HDACs) 4 and 5 are abundantly expressed in the brain and have been implicated in the regulation of neurodegeneration. Under physiological conditions, HDACs 4 and 5 are expressed in the cytoplasm of brain cells where they cannot directly access chromatin. In response to external stimuli, they can shuttle to the nucleus and regulate gene expression. However, the effect of stroke on nuclear shuttling of HDACs 4 and 5 remains unknown. METHODS Using a rat model of middle cerebral artery occlusion, we examined the subcellular localization of HDACs 4 and 5 in the peri-infarct cortex during brain repair after stroke. RESULTS Stroke significantly increased nuclear HDAC4 immunoreactivity in neurons, but not in astrocytes or in oligodendrocytes, of the peri-infarct cortex at 2, 7, and 14 days after middle cerebral artery occlusion. Neurons with nuclear HDAC4 immunoreactivity distributed across all layers of the peri-infarct cortex and were Ctip2+ excitatory and parvalbumin+ inhibitory neurons. These neurons were not TUNEL or BrdU positive. Furthermore, nuclear HDAC4 immunoreactivity was positively and significantly correlated with increased dendritic, axonal, and myelin densities as determined by microtubule-associated protein 2, phosphorylated neurofilament heavy chain, and myelin basic protein, respectively. Unlike HDAC4, stroke did not alter nuclear localization of HDAC5. CONCLUSIONS Our data show that stroke induces nuclear shuttling of HDAC4 in neurons in the peri-infarct cortex, and that increased nuclear HDAC4 is strongly associated with neuronal remodeling but not with neuronal cell death, suggesting a role for nuclear HDAC4 in promoting neuronal recovery after ischemic injury.
Collapse
Affiliation(s)
- Haifa Kassis
- From the Department of Neurology, Henry Ford Health System, Detroit, MI (H.K., A.S., M.C., C.R., Z.G.Z.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Amjad Shehadah
- From the Department of Neurology, Henry Ford Health System, Detroit, MI (H.K., A.S., M.C., C.R., Z.G.Z.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Health System, Detroit, MI (H.K., A.S., M.C., C.R., Z.G.Z.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Cynthia Roberts
- From the Department of Neurology, Henry Ford Health System, Detroit, MI (H.K., A.S., M.C., C.R., Z.G.Z.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Zheng Gang Zhang
- From the Department of Neurology, Henry Ford Health System, Detroit, MI (H.K., A.S., M.C., C.R., Z.G.Z.); and Department of Physics, Oakland University, Rochester, MI (M.C.).
| |
Collapse
|
116
|
Li QQ, Qiao GQ, Ma J, Fan HW, Li YB. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature. Neural Regen Res 2015; 10:277-85. [PMID: 25883628 PMCID: PMC4392677 DOI: 10.4103/1673-5374.152383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/04/2022] Open
Abstract
The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.
Collapse
Affiliation(s)
- Qing-Quan Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guan-Qun Qiao
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Wei Fan
- Department of Neurosurgery, the First Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Bin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
117
|
Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 2015; 352:1-11. [PMID: 25818674 DOI: 10.1016/j.jns.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Stroke is the second main cause of morbidity and mortality worldwide. The rationale for the use of mesenchymal stem cells (MSCs) in stroke is based on the capacity of MSCs to secrete a large variety of bioactive molecules such as growth factors, cytokines and chemokines leading to reduction of inflammation, increased neurogenesis from the germinative niches of central nervous system, increased angiogenesis, effects on astrocytes, oligodendrocytes and axons. This review presents the data derived from experimental studies and the evidence available from clinical trials about the use of MSCs in stroke therapy.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. "Carol Davila", Fundeni Clinical Institute, Department of Neurology, 258 Sos. Fundeni, Sector 2, Bucharest, Romania.
| |
Collapse
|
118
|
Offermanns S, Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. Trends Mol Med 2015; 21:245-55. [PMID: 25766751 DOI: 10.1016/j.molmed.2015.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
Abstract
Neuroinflammation is a pathology common to many neurological diseases, including multiple sclerosis (MS) and stroke. However, therapeutic attempts to modulate neuroinflammation have proved difficult. Neuroinflammatory cells express HCA2, a receptor for the endogenous neuroprotective ketone body β-hydroxybutyrate (BHB) as well as for the drugs dimethyl fumarate (DMF) and nicotinic acid, which have established efficacy in the treatment of MS and experimental stroke, respectively. This review summarizes the evidence that HCA2 is involved in the therapeutic effects of DMF, nicotinic acid, and ketone bodies in reducing neuroinflammation. Furthermore, we discuss the mechanisms underlying the beneficial effects of HCA2 activation in neuroinflammatory diseases and the therapeutic potential of recently developed synthetic ligands of HCA2.
Collapse
Affiliation(s)
- Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; Medical Faculty, J.W. Goethe University, Frankfurt, Germany.
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany.
| |
Collapse
|
119
|
Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf) 2015; 213:60-83. [PMID: 25362848 DOI: 10.1111/apha.12416] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Innovative, more stringent diagnostic and prognostic biomarkers and effective treatment options are needed to lessen its burden. In recent years, microRNAs have emerged as master regulators of gene expression - they bind to complementary sequences within the mRNAs of their target genes and inhibit their expression by either mRNA degradation or translational repression. microRNAs have been implicated in all major cellular processes, including cell cycle, differentiation and metabolism. Their unique mode of action, fine-tuning gene expression rather than turning genes on/off, and their ability to simultaneously regulate multiple elements of relevant pathways makes them enticing potential biomarkers and therapeutic targets. Indeed, cardiovascular patients have specific patterns of circulating microRNA levels, often early in the disease process. This article provides a systematic overview of the role of microRNAs in the pathophysiology, diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- A. Wronska
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| | - I. Kurkowska-Jastrzebska
- Department of Experimental and Clinical Pharmacology; Medical University of Warsaw; Warsaw Poland
- 2nd Department of Neurology; National Institute of Psychiatry and Neurology; Warsaw Poland
| | - G. Santulli
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| |
Collapse
|
120
|
Kuzenkov VS, Krushynsky AL. [A protective role of the nitrite/nitrate reductase system in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:58-66. [PMID: 26978642 DOI: 10.17116/jnevro201511512258-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To reveal a protective role of the nitrite/nitrate reductase system in NO- synthase (NOS) inhibition in ischemic stroke. MATERIAL AND METHODS An effect of the non-selective NOS inhibitor Nω-nitro-L-arginine (L-NNA) introduced in dose of 25 mg/kg and nitrates (КNO3, NaNO3, Mg(NO3)2, Ca(NO3) in doses of 5 mg/kg) on ischemic stroke induced by the occlusion of carotid arteries in an experimental model was studied. The animals (Wistar rats) were stratified into 20 experimental groups (n=480) and 4 control groups (n=96). One of nitrates or L-NNA along with one of nitrates or L-NNA alone were administered to experimental groups 1h before brain ischemia or 5s after carotid artery occlusion. 0.9% NaCl was used in the control rats. RESULTS L-NNA increases neurological deficit and lethality in brain ischemia. Depending on a cation, the nitrite/nitrate reductase system may play a protective role in the inhibition of NOS-system in brain ischemia. CONCLUSION In brain ischemia and NOS inhibition, Mg(NO3)2 has the greatest protective effect.
Collapse
|
121
|
Lengfeld J, Cutforth T, Agalliu D. The role of angiogenesis in the pathology of multiple sclerosis. Vasc Cell 2014; 6:23. [PMID: 25473485 PMCID: PMC4253611 DOI: 10.1186/s13221-014-0023-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, or the growth of new blood vessels from existing vasculature, is critical for the proper development of many organs. This process is inhibited and tightly regulated in adults, once endothelial cells have acquired organ-specific properties. Within the central nervous system (CNS), angiogenesis and acquisition of blood-brain barrier (BBB) properties by endothelial cells is essential for CNS function. However, the role of angiogenesis in CNS pathologies associated with impaired barrier function remains unclear. Although vessel abnormalities characterized by abnormal barrier function are well documented in multiple sclerosis (MS), a demyelinating disease of the CNS resulting from an immune cell attack on oligodendrocytes, histological analysis of human MS samples has shown that angiogenesis is prevalent in and around the demyelinating plaques. Experiments using an animal model that mimics several features of human MS, Experimental Autoimmune Encephalomyelitis (EAE), have confirmed these human pathological findings and shed new light on the contribution of pre-symptomatic angiogenesis to disease progression. The CNS-infiltrating inflammatory cells that are a hallmark of both MS and EAE secrete several factors that not only contribute to exacerbating the inflammatory process but also promote and stimulate angiogenesis. Moreover, chemical or biological inhibitors that directly or indirectly block angiogenesis provide clinical benefits for disease progression. While the precise mechanism of action for these inhibitors is unknown, preventing pathological angiogenesis during EAE progression holds great promise for developing effective treatment strategies for human MS.
Collapse
Affiliation(s)
- Justin Lengfeld
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Tyler Cutforth
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Dritan Agalliu
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| |
Collapse
|