101
|
Bakker R, Tiesinga P, Kötter R. The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content. Neuroinformatics 2015; 13:353-66. [PMID: 25682754 PMCID: PMC4469098 DOI: 10.1007/s12021-014-9258-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Scalable Brain Atlas (SBA) is a collection of web services that provide unified access to a large collection of brain atlas templates for different species. Its main component is an atlas viewer that displays brain atlas data as a stack of slices in which stereotaxic coordinates and brain regions can be selected. These are subsequently used to launch web queries to resources that require coordinates or region names as input. It supports plugins which run inside the viewer and respond when a new slice, coordinate or region is selected. It contains 20 atlas templates in six species, and plugins to compute coordinate transformations, display anatomical connectivity and fiducial points, and retrieve properties, descriptions, definitions and 3d reconstructions of brain regions. The ambition of SBA is to provide a unified representation of all publicly available brain atlases directly in the web browser, while remaining a responsive and light weight resource that specializes in atlas comparisons, searches, coordinate transformations and interactive displays.
Collapse
Affiliation(s)
- Rembrandt Bakker
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands,
| | | | | |
Collapse
|
102
|
Bae J, Deshmukh A, Song Y, Riera J. Brain Source Imaging in Preclinical Rat Models of Focal Epilepsy using High-Resolution EEG Recordings. J Vis Exp 2015:e52700. [PMID: 26131755 PMCID: PMC4545023 DOI: 10.3791/52700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electroencephalogram (EEG) has been traditionally used to determine which brain regions are the most likely candidates for resection in patients with focal epilepsy. This methodology relies on the assumption that seizures originate from the same regions of the brain from which interictal epileptiform discharges (IEDs) emerge. Preclinical models are very useful to find correlates between IED locations and the actual regions underlying seizure initiation in focal epilepsy. Rats have been commonly used in preclinical studies of epilepsy; hence, there exist a large variety of models for focal epilepsy in this particular species. However, it is challenging to record multichannel EEG and to perform brain source imaging in such a small animal. To overcome this issue, we combine a patented-technology to obtain 32-channel EEG recordings from rodents and an MRI probabilistic atlas for brain anatomical structures in Wistar rats to perform brain source imaging. In this video, we introduce the procedures to acquire multichannel EEG from Wistar rats with focal cortical dysplasia, and describe the steps both to define the volume conductor model from the MRI atlas and to uniquely determine the IEDs. Finally, we validate the whole methodology by obtaining brain source images of IEDs and compare them with those obtained at different time frames during the seizure onset.
Collapse
Affiliation(s)
- Jihye Bae
- Biomedical Engineering, Florida International University
| | - Abhay Deshmukh
- Biomedical Engineering, Florida International University
| | - Yinchen Song
- Biomedical Engineering, Florida International University
| | - Jorge Riera
- Biomedical Engineering, Florida International University;
| |
Collapse
|
103
|
Nitzsche B, Frey S, Collins LD, Seeger J, Lobsien D, Dreyer A, Kirsten H, Stoffel MH, Fonov VS, Boltze J. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Front Neuroanat 2015; 9:69. [PMID: 26089780 PMCID: PMC4455244 DOI: 10.3389/fnana.2015.00069] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/12/2015] [Indexed: 01/18/2023] Open
Abstract
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.
Collapse
Affiliation(s)
- Björn Nitzsche
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Stephen Frey
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Louis D Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Johannes Seeger
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University Hospital of Leipzig Leipzig, Germany
| | - Antje Dreyer
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Faculty of Medicine, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig Leipzig, Germany ; LIFE Center (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig Leipzig, Germany
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Vladimir S Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany ; Neurovascular Regulation Laboratory at Neuroscience Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
104
|
A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity. PLoS One 2014; 9:e109113. [PMID: 25330005 PMCID: PMC4201469 DOI: 10.1371/journal.pone.0109113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/08/2014] [Indexed: 01/05/2023] Open
Abstract
Introduction Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies. Methods High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures). Results Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method. Conclusions Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.
Collapse
|
105
|
Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG. Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage 2014; 97:374-86. [PMID: 24726336 PMCID: PMC4160085 DOI: 10.1016/j.neuroimage.2014.04.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for each structure. We have applied a spatial reference system based on internal brain landmarks according to the Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial orientation analysis of neuroanatomical location, and planning and guidance of experimental procedures in the rat brain. The use of Waxholm Space and related infrastructures will connect the atlas to interoperable resources and services for multi-level data integration and analysis across reference spaces.
Collapse
Affiliation(s)
- Eszter A Papp
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
106
|
Otte WM, van Meer MPA, van der Marel K, Zwartbol R, Viergever MA, Braun KPJ, Dijkhuizen RM. Experimental focal neocortical epilepsy is associated with reduced white matter volume growth: results from multiparametric MRI analysis. Brain Struct Funct 2013; 220:27-36. [DOI: 10.1007/s00429-013-0633-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
|
107
|
Kumazawa-Manita N, Katayama M, Hashikawa T, Iriki A. Three-dimensional reconstruction of brain structures of the rodent Octodon degus: a brain atlas constructed by combining histological and magnetic resonance images. Exp Brain Res 2013; 231:65-74. [PMID: 23995563 PMCID: PMC3824219 DOI: 10.1007/s00221-013-3667-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Degus (Octodon degus) are rodents that are becoming more widely used in the neuroscience field. Degus display several more complex behaviors than rats and mice, including complicated social behaviors, vocal communications, and tool usage with superb manual dexterity. However, relatively little information is known about the anatomy of degu brains. Therefore, for these complex behaviors to be correlated with specific brain regions, a contemporary atlas of the degu brain is required. This manuscript describes the construction of a three-dimensional (3D) volume rendered model of the degu brain that combines histological and magnetic resonance images. This atlas provides several advantages, including the ability to visualize the surface of the brain from any angle. The atlas also permits virtual cutting of brain sections in any plane and provides stereotaxic coordinates for all sections, to be beneficial for both experimental surgeries and radiological studies. The reconstructed 3D atlas is freely available online at: http://brainatlas.brain.riken.jp/degu/modules/xoonips/listitem.php?index_id=24 .
Collapse
Affiliation(s)
- Noriko Kumazawa-Manita
- Laboratory for Symbolic Cognitive Development, RIKEN, Brain Science Institute, Wako, Saitama, 351-0198, Japan,
| | | | | | | |
Collapse
|
108
|
Lin ZJ, Ren M, Li L, Liu Y, Su J, Yang SH, Liu H. Interleaved imaging of cerebral hemodynamics and blood flow index to monitor ischemic stroke and treatment in rat by volumetric diffuse optical tomography. Neuroimage 2013; 85 Pt 1:566-82. [PMID: 23872158 DOI: 10.1016/j.neuroimage.2013.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/05/2013] [Accepted: 07/06/2013] [Indexed: 12/29/2022] Open
Abstract
Diffuse optical tomography (DOT) has been used by several groups to assess cerebral hemodynamics of cerebral ischemia in humans and animals. In this study, we combined DOT with an indocyanine green (ICG)-tracking method to achieve interleaved images of cerebral hemodynamics and blood flow index (BFI) using two middle cerebral artery occlusion (MCAO) rat models. To achieve volumetric images with high-spatial resolution, we first integrated a depth compensation algorithm (DCA) with a volumetric mesh-based rat head model to generate three-dimensional (3D) DOT on a rat brain atlas. Then, the experimental DOT data from two rat models were collected using interleaved strategy for cerebral hemodynamics and BFI during and after ischemic stroke, with and without a thrombolytic therapy for the embolic MCAO model. The acquired animal data were further analyzed using the integrated rat-atlas-guided DOT method to form time-evolving 3D images of both cerebral hemodynamics and BFI. In particular, we were able to show and identify therapeutic outcomes of a thrombolytic treatment applied to the embolism-induced ischemic model. This paper demonstrates that volumetric DOT is capable of providing high-quality, interleaved images of cerebral hemodynamics and blood perfusion in small animals during and after ischemic stroke, with excellent 3D visualization and quantifications.
Collapse
Affiliation(s)
- Zi-Jing Lin
- Department of Bioengineering, Joint Graduate Program between University of Texas at Arlington and University of Texas Southwestern Medical Center, University of Texas at Arlington, TX 76019, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Suzuki H, Sumiyoshi A, Kawashima R, Shimokawa H. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats. PLoS One 2013; 8:e56990. [PMID: 23451129 PMCID: PMC3579932 DOI: 10.1371/journal.pone.0056990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. METHODOLOGY/PRINCIPAL FINDINGS An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. CONCLUSION/SIGNIFICANCE This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
110
|
Calabrese E, Badea A, Watson C, Johnson GA. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability. Neuroimage 2013; 71:196-206. [PMID: 23353030 DOI: 10.1016/j.neuroimage.2013.01.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 01/06/2013] [Indexed: 12/01/2022] Open
Abstract
There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease.
Collapse
Affiliation(s)
- Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
111
|
Riss PJ, Brichard L, Ferrari V, Williamson DJ, Fryer TD, Hong YT, Baron JC, Aigbirhio FI. Radiosynthesis and characterization of astemizole derivatives as lead compounds toward PET imaging of τ-pathology. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00017f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
112
|
Johnson GA, Calabrese E, Badea A, Paxinos G, Watson C. A multidimensional magnetic resonance histology atlas of the Wistar rat brain. Neuroimage 2012; 62:1848-56. [PMID: 22634863 PMCID: PMC3408821 DOI: 10.1016/j.neuroimage.2012.05.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/27/2012] [Accepted: 05/18/2012] [Indexed: 11/27/2022] Open
Abstract
We have produced a multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). This MR atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies.
Collapse
Affiliation(s)
- G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|