101
|
Santarino IB, Vieira OV. Maturation of phagosomes containing different erythrophagocytic particles in primary macrophages. FEBS Open Bio 2017; 7:1281-1290. [PMID: 28904858 PMCID: PMC5586347 DOI: 10.1002/2211-5463.12262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/19/2022] Open
Abstract
Erythrophagocytosis is a physiological process that aims to remove damaged red blood cells from the circulation in order to avoid hemolysis and uncontrolled liberation of iron. Many efforts have been made to understand heme trafficking inside macrophages, but little is known about the maturation of phagosomes containing different types of erythrophagocytic particles with different signals at their surfaces. Therefore, we performed a comparative study on the maturation of phagosomes containing three different models of red blood cells (RBC): aged/senescent, complement-opsonized, and IgG-opsonized. We also used two types of professional phagocytes: bone marrow-derived and peritoneal macrophages. By comparing markers from different stages of phagosomal maturation, we found that phagosomes carrying aged RBC reach lysosomes with a delay compared to those containing IgG- or complement-opsonized RBC, in both types of macrophages. These findings contribute to understanding the importance of the different signals at the RBC surface in phagolysosome biogenesis, as well as in the dynamics of RBC removal.
Collapse
Affiliation(s)
- Inês B. Santarino
- CEDOCNOVA Medical School, Faculdade de Ciências MédicasUniversidade NOVA de LisboaPortugal
| | - Otília V. Vieira
- CEDOCNOVA Medical School, Faculdade de Ciências MédicasUniversidade NOVA de LisboaPortugal
| |
Collapse
|
102
|
Georgatzakou HT, Tzounakas VL, Kriebardis AG, Velentzas AD, Kokkalis AC, Antonelou MH, Papassideri IS. Short-term effects of hemodiafiltration versus conventional hemodialysis on erythrocyte performance. Can J Physiol Pharmacol 2017; 96:249-257. [PMID: 28854342 DOI: 10.1139/cjpp-2017-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hemodiafiltration (HDF) is a renal replacement therapy that is based on the principles of diffusion and convection for the elimination of uremic toxins. A significant and increasing number of end-stage renal disease (ESRD) patients are treated with HDF, even in the absence of definite and conclusive survival and anemia treatment data. However, its effects on red blood cell (RBC) physiological features have not been examined in depth. In this study, ESRD patients under regular HDF or conventional hemodialysis (cHD) treatment were examined for RBC-related parameters, including anemia, hemolysis, cell shape, redox status, removal signaling, membrane protein composition, and microvesiculation, in repeated paired measurements accomplished before and right after each dialysis session. The HDF group was characterized by better redox potential and suppressed exovesiculation of blood cells compared with the cHD group pre-dialysis. However, HDF was associated with a temporary but acute, oxidative-stress-driven increase in hemolysis, RBC removal signaling, and stomatocytosis, probably associated with the effective clearance of dialyzable natural antioxidant components, including uric acid, from the uremic plasma. The nature of these adverse short-term effects of HDF on post-dialysis plasma and RBCs strongly suggests the use of a parallel antioxidant therapy during the HDF session.
Collapse
Affiliation(s)
- Hara T Georgatzakou
- a Department of Biology, Section of Cell Biology & Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Greece
| | - Vassilis L Tzounakas
- a Department of Biology, Section of Cell Biology & Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Greece
| | - Anastasios G Kriebardis
- b Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute (TEI) of Athens, Greece
| | - Athanassios D Velentzas
- a Department of Biology, Section of Cell Biology & Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Greece
| | | | - Marianna H Antonelou
- a Department of Biology, Section of Cell Biology & Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Greece
| | - Issidora S Papassideri
- a Department of Biology, Section of Cell Biology & Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Greece
| |
Collapse
|
103
|
Kozlova E, Chernysh A, Moroz V, Sergunova V, Gudkova O, Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci Rep 2017; 7:7846. [PMID: 28798476 PMCID: PMC5552796 DOI: 10.1038/s41598-017-08255-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
Transfusion of packed red blood cells (PRBC) to patients in critical states is often accompanied by post-transfusion complications. This may be related with disturbance of properties of PRBC and their membranes during long-term storage in the hemopreservative solution. The purpose of our work is the study of transformation of morphology, membranes stiffness and nanostructure for assessment of PRBC quality, in vitro. By atomic force microscopy we studied the transformation of cell morphology, the appearance of topological nanodefects of membranes and by atomic force spectroscopy studied the change of membrane stiffness during 40 days of storage of PRBC. It was shown that there is a transition period (20–26 days), in which we observed an increase in the Young’s modulus of the membranes 1.6–2 times and transition of cells into irreversible forms. This process was preceded by the appearance of topological nanodefects of membranes. These parameters can be used for quality assessment of PRBC and for improvement of transfusion rules.
Collapse
Affiliation(s)
- E Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation. .,Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow StateMedical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.
| | - A Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation.,Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow StateMedical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - V Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - V Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - O Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - E Manchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| |
Collapse
|
104
|
Life history written in blood: erythrocyte parameters in a small hibernator, the edible dormouse. J Comp Physiol B 2017; 188:359-371. [DOI: 10.1007/s00360-017-1111-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
|
105
|
Santarino IB, Viegas MS, Domingues NS, Ribeiro AM, Soares MP, Vieira OV. Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosis. Sci Rep 2017; 7:5812. [PMID: 28724916 PMCID: PMC5517431 DOI: 10.1038/s41598-017-05687-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/01/2017] [Indexed: 01/20/2023] Open
Abstract
Erythrophagocytosis, the phagocytic removal of damaged red blood cells (RBC), and subsequent phagolysosome biogenesis are important processes in iron/heme metabolism and homeostasis. Phagolysosome biogenesis implies the interaction of nascent phagosomes with endocytic compartments and also autophagy effectors. Here, we report that besides recruitment of microtubule-associated protein-1-light chain 3 (LC3), additional autophagy machinery such as sequestosome 1 (p62) is also acquired by single-membrane phagosomes at very early stages of the phagocytic process and that its acquisition is very important to the outcome of the process. In bone marrow-derived macrophages (BMDM) silenced for p62, RBC degradation is inhibited. P62, is also required for nuclear translocation and activation of the transcription factor Nuclear factor E2-related Factor 2 (NRF2) during erythrophagocytosis. Deletion of the Nrf2 allele reduces p62 expression and compromises RBC degradation. In conclusion, we reveal that erythrophagocytosis relies on an interplay between p62 and NRF2, potentially acting as protective mechanism to maintain reactive oxygen species at basal levels and preserve macrophage homeostasis.
Collapse
Affiliation(s)
- Inês B Santarino
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | - Michelle S Viegas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Neuza S Domingues
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | - Ana M Ribeiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Miguel P Soares
- Instituto Gulbenkian de Ciência, Oeiras, Portugal, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Otília V Vieira
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
106
|
Leonard C, Conrard L, Guthmann M, Pollet H, Carquin M, Vermylen C, Gailly P, Van Der Smissen P, Mingeot-Leclercq MP, Tyteca D. Contribution of plasma membrane lipid domains to red blood cell (re)shaping. Sci Rep 2017; 7:4264. [PMID: 28655935 PMCID: PMC5487352 DOI: 10.1038/s41598-017-04388-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Although lipid domains have been evidenced in several living cell plasma membranes, their roles remain largely unclear. We here investigated whether they could contribute to function-associated cell (re)shaping. To address this question, we used erythrocytes as cellular model since they (i) exhibit a specific biconcave shape, allowing for reversible deformation in blood circulation, which is lost by membrane vesiculation upon aging; and (ii) display at their outer plasma membrane leaflet two types of submicrometric domains differently enriched in cholesterol and sphingomyelin. We here reveal the specific association of cholesterol- and sphingomyelin-enriched domains with distinct curvature areas of the erythrocyte biconcave membrane. Upon erythrocyte deformation, cholesterol-enriched domains gathered in high curvature areas. In contrast, sphingomyelin-enriched domains increased in abundance upon calcium efflux during shape restoration. Upon erythrocyte storage at 4 °C (to mimick aging), lipid domains appeared as specific vesiculation sites. Altogether, our data indicate that lipid domains could contribute to erythrocyte function-associated (re)shaping.
Collapse
Affiliation(s)
- C Leonard
- FACM Unit, Louvain Drug Research Institute & Université catholique de Louvain, 1200, Brussels, Belgium.,CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - L Conrard
- CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - M Guthmann
- CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - H Pollet
- CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - M Carquin
- CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - C Vermylen
- PEDI Unit, Institut de Recherche expérimentale et clinique & Université catholique de Louvain, 1200, Brussels, Belgium
| | - P Gailly
- CEMO Unit, Institute of Neuroscience & Université catholique de Louvain, 1200, Brussels, Belgium
| | - P Van Der Smissen
- CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - M P Mingeot-Leclercq
- FACM Unit, Louvain Drug Research Institute & Université catholique de Louvain, 1200, Brussels, Belgium
| | - D Tyteca
- CELL Unit, de Duve Institute & Université catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
107
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
108
|
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, 66421 Germany.,Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, 66041, Germany
| | - Giampaolo Minetti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
109
|
Métayer LE, Vilalta A, Burke GAA, Brown GC. Anti-CD47 antibodies induce phagocytosis of live, malignant B cells by macrophages via the Fc domain, resulting in cell death by phagoptosis. Oncotarget 2017; 8:60892-60903. [PMID: 28977832 PMCID: PMC5617392 DOI: 10.18632/oncotarget.18492] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/14/2017] [Indexed: 02/04/2023] Open
Abstract
When expressed on the surface of cells, CD47 inhibits phagocytosis of these cells by phagocytes. Most human cancers overexpress CD47, and antibodies to CD47 have shown a remarkable ability to clear a range of cancers in animal models. However, the mechanism by which these antibodies cause cancer cell death is unclear. We find that CD47 is expressed on the surface of three B-cell lines from human malignancies: 697 (pre-B-ALL lymphoblasts), Ramos and DG-75 (both mature B-cells, Burkitt’s lymphoma), and anti-CD47 antibodies greatly increase the phagocytosis of all three cell line by macrophages. In the presence of macrophages, the antibodies cause clearance of the lymphoblasts within hours, but in the absence of macrophages, the antibodies have no effect on lymphoblast viability. Macrophages engulf viable lymphoblasts containing mitochondria with a normal membrane potential, but following engulfment the mitochondrial membrane potential is lost indicating a loss of viability. Inhibition of phagocytosis protects lymphoblasts from death indicating that phagocytosis is required for anti-CD47 mediated cell death. Blocking either the antibody Fc domain or Fc receptors inhibits antibody-induced phagocytosis. Antibodies against cell surface markers CD10 or CD19 also induced Fc-domain-dependent phagocytosis, but at a lower level commensurate with expression. Thus, phagoptosis may contribute to the efficacy of a number of therapeutic antibodies used in cancer therapy, as well as potentially endogenous antibodies. We conclude that anti-CD47 antibodies induce phagocytosis by binding CD47 on lymphoblast and Fc receptors on macrophages, resulting in cell death by phagocytosis, i.e. phagoptosis.
Collapse
Affiliation(s)
- Lucy E Métayer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - G A Amos Burke
- Department of Pediatrics, University of Cambridge, Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
110
|
Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A, Hänggi P, Hertz L, Danielczok J, Vercellati C, Mirra N, Zanella A, Cortelezzi A, Barcellini W, Kaestner L, Bianchi P. 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep 2017; 7:1744. [PMID: 28496185 PMCID: PMC5431847 DOI: 10.1038/s41598-017-01591-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
Collapse
Affiliation(s)
- Elisa Fermo
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Bogdanova
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Polina Petkova-Kirova
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Anna Zaninoni
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Paola Marcello
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Asya Makhro
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Jens Danielczok
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Cristina Vercellati
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nadia Mirra
- UOC Pronto soccorso, Pediatria ambulatoriale e DH/MAC. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zanella
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Agostino Cortelezzi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Universita' degli Studi di Milano, Milano, Italy
| | - Wilma Barcellini
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar, Germany
| | - Paola Bianchi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
111
|
Understanding quasi-apoptosis of the most numerous enucleated components of blood needs detailed molecular autopsy. Ageing Res Rev 2017; 35:46-62. [PMID: 28109836 DOI: 10.1016/j.arr.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Erythrocytes are the most numerous cells in human body and their function of oxygen transport is pivotal to human physiology. However, being enucleated, they are often referred to as a sac of molecules and their cellularity is challenged. Interestingly, their programmed death stands a testimony to their cell-hood. They are capable of self-execution after a defined life span by both cell-specific mechanism and that resembling the cytoplasmic events in apoptosis of nucleated cells. Since the execution process lacks the nuclear and mitochondrial events in apoptosis, it has been referred to as quasi-apoptosis or eryptosis. Several studies on molecular mechanisms underlying death of erythrocytes have been reported. The data has generated a non-cohesive sketch of the process. The lacunae in the present knowledge need to be filled to gain deeper insight into the mechanism of physiological ageing and death of erythrocytes, as well as the effect of age of organism on RBCs survival. This would entail how the most numerous cells in the human body die and enable a better understanding of signaling mechanisms of their senescence and premature eryptosis observed in individuals of advanced age.
Collapse
|
112
|
Freitas Leal JK, Adjobo-Hermans MJ, Brock R, Bosman GJ. Acetylcholinesterase provides new insights into red blood cell ageing in vivo and in vitro. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:232-238. [PMID: 28518050 PMCID: PMC5448829 DOI: 10.2450/2017.0370-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 04/25/2023]
Abstract
BACKGROUND During its 120 days sojourn in the circulation, the red blood cell (RBC) remodels its membrane. Acetylcholinesterase (AChE) is a glycosylphosphatidylinositol (GPI)-linked enzyme that may serve as a marker for membrane processes occurring this ageing-associated remodelling process. MATERIALS AND METHODS Expression and enzymatic activity of AChE were determined on RBCs of various ages, as obtained by separation based on volume and density (ageing in vivo), and on RBCs of various times of storage in blood bank conditions (ageing in vitro), as well as on RBC-derived vesicles. RESULTS During ageing in vivo, the enzymatic activity of AChE decreases, but not the AChE protein concentration. In contrast, neither AChE activity nor concentration show a consistent, significant decrease during ageing in vitro. CD59, another GPI-linked protein that protects against complement-induced removal, also remains constant during storage. The cellular content of the integral membrane protein glycophorin A, however, decreases with storage time in the more dense RBC fractions. The latter are enriched in echinocytes and other misshapen cells during storage. DISCUSSION Our findings suggest that, during RBC ageing, GPI-linked proteins and integral membrane proteins are differentially sorted. Also, the vesicles that are generated in vitro show a fast and extensive loss of AChE activity, but not of AChE expression. Thus, AChE characteristics may constitute sensitive biomarkers of RBC ageing in vivo, and a source of information on the structural and functional changes that GPI-linked proteins undergo during ageing in vivo and in vitro. This information may help to understand RBC homeostasis and the effects of transfusion, especially in immunologically compromised patients.
Collapse
Affiliation(s)
| | | | | | - Giel J.C.G.M. Bosman
- Correspondence: Giel Bosman, Department of Biochemistry (286), Radboud University Medical Center, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands, e-mail:
| |
Collapse
|
113
|
Hidden IgG Antibodies to the Tumor-Associated Thomsen-Friedenreich Antigen in Gastric Cancer Patients: Lectin Reactivity, Avidity, and Clinical Relevance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6097647. [PMID: 28316982 PMCID: PMC5339540 DOI: 10.1155/2017/6097647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
Natural antibodies to the tumor-associated Thomsen-Friedenreich antigen (TF) are related to tumor immunosurveillance and cancer patients' survival. Hidden IgG antibodies (HAbs) to TF, their lectin reactivity, avidity, and clinical relevance were studied. HAbs were present in cancer patients and controls. A decreased level of IgG HAbs was detected in cancer. The HAbs level positively correlated with the sialospecific SNA lectin binding in purified total IgG (tIgG) in donors and cancer patients, indicating that HAbs are higher sialylated. The avidity of anti-TF IgG in tIgG samples was lower in cancer patients (P = 0.025) while no difference in the avidity of free anti-TF IgG was established. A negative correlation between the avidity of anti-TF IgG in tIgG and SNA binding in both groups was observed (P < 0.0001). The HAbs level negatively correlated with the anti-TF IgG avidity in tIgG only in donors (P = 0.003). Changes in the level of HAbs and Abs avidity showed a rather good stage- and gender-dependent diagnostic accuracy. Cancer patients with a lower anti-TF IgG avidity in tIgG showed a benefit in survival. Thus the TF-specific HAbs represent a particular subset of anti-TF IgG that differ from free serum anti-TF IgG in SNA reactivity, avidity, diagnostic potential, and relation to survival.
Collapse
|
114
|
Roussel C, Dussiot M, Marin M, Morel A, Ndour PA, Duez J, Le Van Kim C, Hermine O, Colin Y, Buffet PA, Amireault P. Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion. Transfusion 2017; 57:1007-1018. [PMID: 28150311 DOI: 10.1111/trf.14015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/30/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Storage lesion may explain the rapid clearance of up to 25% of transfused red blood cells (RBCs) in recipients. Several alterations affect stored RBC but a quantitative, whole cell-based predictor of transfusion yield is lacking. Because RBCs with reduced surface area are retained by the spleen, we quantified changes in RBC dimensions during storage. STUDY DESIGN AND METHODS Using imaging flow cytometry we observed the dimension and morphology of RBCs upon storage, along with that of conventional biochemical and mechanical markers of storage lesion. We then validated these findings using differential interference contrast (DIC) microscopy and quantified the accumulation of microparticles (MPs). RESULTS Mean projected surface area of the whole RBC population decreased from 72.4 to 68.4 µm2 , a change resulting from the appearance of a well-demarcated subpopulation of RBCs with reduced mean projected surface (58 µm2 , 15.2%-19.9% reduction). These "small RBCs" accounted for 4.9 and 23.6% of all RBCs on Days 3 and 42 of storage, respectively. DIC microscopy confirmed that small RBCs had shifted upon storage from discocytes to echinocytes III, spheroechinocytes, and spherocytes. Glycophorin A-positive MPs and small RBCs appeared after similar kinetics. CONCLUSION The reduction in surface area of small RBCs is expected to induce their retention by the spleen. We propose that small RBCs generated by MP-induced membrane loss are preferentially cleared from the circulation shortly after transfusion of long-stored blood. Their operator-independent quantification using imaging flow cytometry may provide a marker of storage lesion potentially predictive of transfusion yield.
Collapse
Affiliation(s)
- Camille Roussel
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge.,Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, CNRS, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d'Excellence GR-Ex
| | - Michaël Dussiot
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, CNRS, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d'Excellence GR-Ex
| | - Mickaël Marin
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge
| | - Alexandre Morel
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, CNRS, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d'Excellence GR-Ex
| | - Papa Alioune Ndour
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge
| | - Julien Duez
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge
| | - Caroline Le Van Kim
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge
| | - Olivier Hermine
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, CNRS, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d'Excellence GR-Ex.,Department of Adult Hematology, Necker Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Yves Colin
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge
| | - Pierre A Buffet
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge
| | - Pascal Amireault
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge.,Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, CNRS, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d'Excellence GR-Ex
| |
Collapse
|
115
|
Harisa GI, Badran MM, Alanazi FK. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach: Erythrocyte nanovesicles. Saudi Pharm J 2017; 25:8-17. [PMID: 28223857 PMCID: PMC5310160 DOI: 10.1016/j.jsps.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
Nanovesicles (NVs) represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs). Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.
Collapse
Affiliation(s)
- Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
116
|
Qadri SM, Chen D, Schubert P, Perruzza DL, Bhakta V, Devine DV, Sheffield WP. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion 2016; 57:661-673. [DOI: 10.1111/trf.13959] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Syed M. Qadri
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Deborah Chen
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Darian L. Perruzza
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
| | - Dana V. Devine
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
117
|
Patel P, Kearney JF. Immunological Outcomes of Antibody Binding to Glycans Shared between Microorganisms and Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4201-4209. [PMID: 27864551 PMCID: PMC5119654 DOI: 10.4049/jimmunol.1600872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Glycans constitute basic cellular components of living organisms across biological kingdoms, and glycan-binding Abs participate in many cellular interactions during immune defense against pathogenic organisms. Glycan epitopes are expressed as carbohydrate-only entities or as oligomers or polymers on proteins and lipids. Such epitopes on glycoproteins may be formed by posttranslational modifications or neoepitopes resulting from metabolic-catabolic processes and can be altered during inflammation. Pathogenic organisms can display host-like glycans to evade the host immune response. However, Abs to glycans, shared between microorganisms and the host, exist naturally. These Abs are able to not only protect against infectious disease, but also are involved in host housekeeping functions and can suppress allergic disease. Despite the reactivity of these Abs to glycans shared between microorganisms and host, diverse tolerance-inducing mechanisms permit the B cell precursors of these Ab-secreting cells to exist within the normal B cell repertoire.
Collapse
Affiliation(s)
- Preeyam Patel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
118
|
Ramaiah L, Hinrichs MJ, Skuba EV, Iverson WO, Ennulat D. Interpreting and Integrating Clinical and Anatomic Pathology Results. Toxicol Pathol 2016; 45:223-237. [DOI: 10.1177/0192623316677068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.
Collapse
Affiliation(s)
- Lila Ramaiah
- Envigo, East Millstone, New Jersey, USA
- Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | | | - Elizabeth V. Skuba
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | | | | |
Collapse
|
119
|
Zaka-Ur-Rab Z, Adnan M, Ahmad SM, Islam N. Effect of Oral Iron on Markers of Oxidative Stress and Antioxidant Status in Children with Iron Deficiency Anaemia. J Clin Diagn Res 2016; 10:SC13-SC19. [PMID: 27891416 DOI: 10.7860/jcdr/2016/23601.8761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/17/2016] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Conflicting reports are available on the relationship of Iron Deficiency Anaemia (IDA) and iron therapy with oxidative stress. AIM To study the levels of markers of oxidative stress and anti-oxidant status in children with IDA and to assess the effect of iron therapy on the same. MATERIALS AND METHODS This prospective, single centre, hospital based study was a sub-study of a randomized controlled trial conducted in the Department of Paediatrics, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh in collaboration with the Department of Biochemistry (of the same institution) between October 2009 to February 2011. The sub-study was conducted in two parts: in the first part, levels of a biomarker of oxidative stress {Malondialdehyde (MDA)} and anti-oxidant enzymes {Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPx)} were assessed and compared between 67 children with IDA and 31 non-anaemic controls; in the second part, the effect of oral iron (6mg/kg/day) for eight weeks on these markers was studied in a subset of 35 children with IDA. The Bivariate correlations procedure was used to compute pair wise associations for a set of variables. T-tests (Independent samples t-test/Paired sample t-test) and Non-parametric tests (Mann-Whitney test/Wilcoxon signed-rank test) were applied as applicable for normally and non-normally distributed data, respectively. RESULTS Levels of anti-oxidant enzymes were significantly lower (p<0.001) in children with IDA as compared to controls, viz., SOD {median, 8.63 (IQR, 8.60-8.66) vs. 9.46 (IQR, 9.14-9.62) units/mg protein}, CAT {median, 8.49 (IQR, 8.46-8.50) vs. 9.10 (IQR, 9.04-9.14) μmol H2O2/min/mg protein} and GPx {median, 49.19 (IQR, 48.99-49.60) vs. 56.94(IQR, 56.80-57.14) mol NADPH oxidized /min/ mg protein}. Whereas, levels of MDA were significantly higher (p<0.001) in IDA group {median, 1.50 (IQR, 1.48-1.52) vs. 1.24 (IQR, 1.20-1.27) moles/ml of serum}. Levels of Haemoglobin (Hb) and markers of iron status (serum iron, transferrin saturation and ferritin) had a very strong, highly significant positive correlation (p<0.001) with levels of anti-oxidant enzymes (SOD, CAT, and GPx) but a very strong, highly significant negative correlation (p<0.001) with MDA. Total Iron Binding Capacity (TIBC) on the other hand, had a strong, highly significant (p<0.001) negative correlation with SOD, CAT, and GPx but a strong, highly significant positive correlation (p<0.001) with MDA. After eight weeks of daily iron therapy, a highly significant rise (p<0.001) from baseline was observed in levels of SOD, CAT, and GPx in subjects with IDA. On the other hand, MDA levels declined significantly (p<0.001). CONCLUSION Lipid peroxidation is increased and anti-oxidant defenses lowered in IDA. These changes, however, may be mitigated effectively with oral iron therapy.
Collapse
Affiliation(s)
- Zeeba Zaka-Ur-Rab
- Associate Professor, Department of Paediatrics, Jawaharlal Nehru Medical College, A.M.U. , Aligarh, Uttar Pradesh, India
| | - Mohammad Adnan
- Ex-Resident, Department of Paediatrics, Jawaharlal Nehru Medical College, A.M.U. , Aligarh, Uttar Pradesh, India
| | - Syed Moiz Ahmad
- Ex-Senior Resident, Department of Paediatrics, Jawaharlal Nehru Medical College, A.M.U. , Aligarh, Uttar Pradesh, India
| | - Najmul Islam
- Professor, Department of Biochemistry, Jawaharlal Nehru Medical College, A.M.U. , Aligarh, Uttar Pradesh, India
| |
Collapse
|
120
|
Al-Quraishy SA, Dkhil MA, Abdel-Baki AAA, Delic D, Wunderlich F. Protective Vaccination against Blood-Stage Malaria of Plasmodium chabaudi: Differential Gene Expression in the Liver of Balb/c Mice toward the End of Crisis Phase. Front Microbiol 2016; 7:1087. [PMID: 27471498 PMCID: PMC4943960 DOI: 10.3389/fmicb.2016.01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023] Open
Abstract
Protective vaccination induces self-healing of otherwise fatal blood-stage malaria of Plasmodium chabaudi in female Balb/c mice. To trace processes critically involved in self-healing, the liver, an effector against blood-stage malaria, is analyzed for possible changes of its transcriptome in vaccination-protected in comparison to non-protected mice toward the end of the crisis phase. Gene expression microarray analyses reveal that vaccination does not affect constitutive expression of mRNA and lincRNA. However, malaria induces significant (p < 0.01) differences in hepatic gene and lincRNA expression in vaccination-protected vs. non-vaccinated mice toward the end of crisis phase. In vaccination-protected mice, infections induce up-regulations of 276 genes and 40 lincRNAs and down-regulations of 200 genes and 43 lincRNAs, respectively, by >3-fold as compared to the corresponding constitutive expressions. Massive up-regulations, partly by >100-fold, are found for genes as RhD, Add2, Ank1, Ermap, and Slc4a, which encode proteins of erythrocytic surface membranes, and as Gata1 and Gfi1b, which encode transcription factors involved in erythrocytic development. Also, Cldn13 previously predicted to be expressed on erythroblast surfaces is up-regulated by >200-fold, though claudins are known as main constituents of tight junctions acting as paracellular barriers between epithelial cells. Other genes are up-regulated by <100- and >10-fold, which can be subgrouped in genes encoding proteins known to be involved in mitosis, in cell cycle regulation, and in DNA repair. Our data suggest that protective vaccination enables the liver to respond to P. chabaudi infections with accelerated regeneration and extramedullary erythropoiesis during crisis, which contributes to survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Saleh A Al-Quraishy
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan UniversityCairo, Egypt
| | - Abdel-Azeem A Abdel-Baki
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef, Egypt
| | - Denis Delic
- Boehringer-Ingelheim Pharma Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|
121
|
CD47-SIRPα Interactions Regulate Macrophage Uptake of Plasmodium falciparum-Infected Erythrocytes and Clearance of Malaria In Vivo. Infect Immun 2016; 84:2002-2011. [PMID: 27091932 DOI: 10.1128/iai.01426-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/15/2016] [Indexed: 01/02/2023] Open
Abstract
CD47 engagement by the macrophage signal regulatory protein alpha (SIRPα) inhibits phagocytic activity and protects red blood cells (RBCs) from erythrophagocytosis. The role of CD47-SIRPα in the innate immune response to Plasmodium falciparum infection is unknown. We hypothesized that disruption of SIRPα signaling may enhance macrophage uptake of malaria parasite-infected RBCs. To test this hypothesis, we examined in vivo clearance in CD47-deficient mice infected with Plasmodium berghei ANKA and in vitro phagocytosis of P. falciparum-infected RBCs by macrophages from SHP-1-deficient (Shp-1(-/-)) mice and NOD.NOR-Idd13.Prkdc(scid) (NS-Idd13) mice, as well as human macrophages, following disruption of CD47-SIRPα interactions with anti-SIRPα antibodies or recombinant SIRPα-Fc fusion protein. Compared to their wild-type counterparts, Cd47(-/-) mice displayed significantly lower parasitemia, decreased endothelial activation, and enhanced survival. Using macrophages from SHP-1-deficient mice or from NS-Idd13 mice, which express a SIRPα variant that does not bind human CD47, we showed that altered SIRPα signaling resulted in enhanced phagocytosis of P. falciparum-infected RBCs. Moreover, disrupting CD47-SIRPα engagement using anti-SIRPα antibodies or SIRPα-Fc fusion protein also increased phagocytosis of P. falciparum-infected RBCs. These results indicate an important role for CD47-SIRPα interactions in innate control of malaria and suggest novel targets for intervention.
Collapse
|
122
|
Clafshenkel WP, Murata H, Andersen J, Creeger Y, Koepsel RR, Russell AJ. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes. PLoS One 2016; 11:e0157641. [PMID: 27331401 PMCID: PMC4917246 DOI: 10.1371/journal.pone.0157641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022] Open
Abstract
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.
Collapse
Affiliation(s)
- William P. Clafshenkel
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Hironobu Murata
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jill Andersen
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yehuda Creeger
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Richard R. Koepsel
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Alan J. Russell
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
123
|
Bevers EM, Williamson PL. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane. Physiol Rev 2016; 96:605-45. [PMID: 26936867 DOI: 10.1152/physrev.00020.2015] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure.
Collapse
Affiliation(s)
- Edouard M Bevers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Biology, Amherst College, Amherst, Massachusetts
| | - Patrick L Williamson
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Biology, Amherst College, Amherst, Massachusetts
| |
Collapse
|
124
|
Hellhammer K, Zeus T, Verde PE, Veulemanns V, Kahlstadt L, Wolff G, Erkens R, Westenfeld R, Navarese EP, Merx MW, Rassaf T, Kelm M. Red cell distribution width in anemic patients undergoing transcatheter aortic valve implantation. World J Cardiol 2016; 8:220-230. [PMID: 26981217 PMCID: PMC4766272 DOI: 10.4330/wjc.v8.i2.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the impact of red blood cell distribution width on outcome in anemic patients undergoing transcatheter aortic valve implantation (TAVI).
METHODS: In a retrospective single center cohort study we determined the impact of baseline red cell distribution width (RDW) and anemia on outcome in 376 patients with aortic stenosis undergoing TAVI. All patients were discussed in the institutional heart team and declined for surgical aortic valve replacement due to high operative risk. Collected data included patient characteristics, imaging findings, periprocedural in hospital data, laboratory results and follow up data. Blood samples for hematology and biochemistry analysis were taken from every patient before and at fixed intervals up to 72 h after TAVI including blood count and creatinine. Descriptive statistics were used for patient’s characteristics. Kaplan-Meier survival curves were used for time to event outcomes. A recursive partitioning regression and classification was used to investigate the association between potential risk factors and outcome variables.
RESULTS: Mean age in our study population was 81 ± 6.1 years. Anemia was prevalent in 63.6% (n = 239) of our patients. Age and creatinine were identified as risk factors for anemia. In our study population, anemia per se did influence 30-d mortality but did not predict longterm mortality. In contrast, a RDW > 14% showed to be highly predictable for a reduced short- and longterm survival in patients with aortic valve disease after TAVI procedure.
CONCLUSION: Age and kidney function determine the degree of anemia. The anisocytosis of red blood cells in anemic patients supplements prognostic information in addition to that derived from the WHO-based definition of anemia.
Collapse
|
125
|
Nagata S, Suzuki J, Segawa K, Fujii T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 2016; 23:952-61. [PMID: 26891692 DOI: 10.1038/cdd.2016.7] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylserine (PtdSer) is a phospholipid that is abundant in eukaryotic plasma membranes. An ATP-dependent enzyme called flippase normally keeps PtdSer inside the cell, but PtdSer is exposed by the action of scramblase on the cell's surface in biological processes such as apoptosis and platelet activation. Once exposed to the cell surface, PtdSer acts as an 'eat me' signal on dead cells, and creates a scaffold for blood-clotting factors on activated platelets. The molecular identities of the flippase and scramblase that work at plasma membranes have long eluded researchers. Indeed, their identity as well as the mechanism of the PtdSer exposure to the cell surface has only recently been revealed. Here, we describe how PtdSer is exposed in apoptotic cells and in activated platelets, and discuss PtdSer exposure in other biological processes.
Collapse
Affiliation(s)
- S Nagata
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - J Suzuki
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Segawa
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Fujii
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
126
|
Huang YX, Tuo WW, Wang D, Kang LL, Chen XY, Luo M. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid. J Cell Mol Med 2016; 20:294-301. [PMID: 26576513 PMCID: PMC4727560 DOI: 10.1111/jcmm.12721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/19/2015] [Indexed: 11/29/2022] Open
Abstract
Membrane sialic acid (SA) plays an important role in the survival of red blood cells (RBCs), the age-related reduction in SA content negatively impacts both the structure and function of these cells. We have therefore suggested that remodelling the SA in the membrane of aged cells would help recover cellular functions characteristic of young RBCs. We developed an effective method for the re-sialylation of aged RBCs by which the cells were incubated with SA in the presence of cytidine triphosphate (CTP) and α-2,3-sialytransferase. We found that RBCs could be re-sialylated if they had available SA-binding groups and after the re-sialylation, aged RBCs could restore their membrane SA to the level in young RBCs. Once the membrane SA was restored, the aged RBCs showed recovery of their biophysical and biochemical properties to similar levels as in young RBCs. Their life span in circulation was also extended to twofold. Our findings indicate that remodelling membrane SA not only helps restore the youth of aged RBCs, but also helps recover injured RBCs.
Collapse
Affiliation(s)
- Yao-Xiong Huang
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Wei-Wei Tuo
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Di Wang
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Li-Li Kang
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Xing-Yao Chen
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Man Luo
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| |
Collapse
|
127
|
Morabito R, Romano O, La Spada G, Marino A. H2O2-Induced Oxidative Stress Affects SO4= Transport in Human Erythrocytes. PLoS One 2016; 11:e0146485. [PMID: 26745155 PMCID: PMC4712827 DOI: 10.1371/journal.pone.0146485] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and -SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in -SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or -SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.
Collapse
Affiliation(s)
- Rossana Morabito
- Department of Human and Social Sciences, University of Messina, Messina, Italy
| | | | - Giuseppa La Spada
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|
128
|
Jeanne A, Schneider C, Martiny L, Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol 2015; 6:252. [PMID: 26578962 PMCID: PMC4625054 DOI: 10.3389/fphar.2015.00252] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a large matricellular glycoprotein known to be overexpressed within tumor stroma in several cancer types. While mainly considered as an endogenous angiogenesis inhibitor, TSP-1 exhibits multifaceted functionalities in a tumor context depending both on TSP-1 concentration as well as differential receptor expression by cancer cells and on tumor-associated stromal cells. Besides, the complex modular structure of TSP-1 along with the wide variety of its soluble ligands and membrane receptors considerably increases the complexity of therapeutically targeting interactions involving TSP-1 ligation of cell-surface receptors. Despite the pleiotropic nature of TSP-1, many different antireceptor strategies have been developed giving promising results in preclinical models. However, transition to clinical trials often led to nuanced outcomes mainly due to frequent severe adverse effects. In this review, we will first expose the intricate and even sometimes opposite effects of TSP-1-related signaling on tumor progression by paying particular attention to modulation of angiogenesis and tumor immunity. Then, we will provide an overview of current developments and prospects by focusing particularly on the cell-surface molecules CD47 and CD36 that function as TSP-1 receptors; including antibody-based approaches, therapeutic gene modulation and the use of peptidomimetics. Finally, we will discuss original approaches specifically targeting TSP-1 domains, as well as innovative combination strategies with a view to producing an overall anticancer response.
Collapse
Affiliation(s)
- Albin Jeanne
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France ; SATT Nord Lille, France
| | - Christophe Schneider
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Laurent Martiny
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Stéphane Dedieu
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| |
Collapse
|
129
|
D'Alessandro A, Nemkov T, Hansen KC, Szczepiorkowski ZM, Dumont LJ. Red blood cell storage in additive solution-7 preserves energy and redox metabolism: a metabolomics approach. Transfusion 2015; 55:2955-66. [PMID: 26271632 DOI: 10.1111/trf.13253] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/05/2015] [Accepted: 06/21/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Storage and transfusion of red blood cells (RBCs) has a huge medical and economic impact. Routine storage practices can be ameliorated through the implementation of novel additive solutions (ASs) that tackle the accumulation of biochemical and morphologic lesion during routine cold liquid storage in the blood bank, such as the recently introduced alkaline solution AS-7. Here we hypothesize that AS-7 might exert its beneficial effects through metabolic modulation during routine storage. STUDY DESIGN AND METHODS Apheresis RBCs were resuspended either in control AS-3 or experimental AS-7, before ultrahigh-performance liquid chromatography-mass spectrometry metabolomics analysis. RESULTS Unambiguous assignment and relative quantitation was achieved for 229 metabolites. AS-3 and AS-7 results in many similar metabolic trends over storage, with AS-7 RBCs being more metabolically active in the first storage week. AS-7 units had faster fueling of the pentose phosphate pathway, higher total glutathione pools, and increased flux through glycolysis as indicated by higher levels of pathway intermediates. Metabolite differences are especially observed at 7 days of storage, but were still maintained throughout 42 days. CONCLUSION AS-7 formulation (chloride free and bicarbonate loading) appears to improve energy and redox metabolism in stored RBCs in the early storage period, and the differences, though diminished, are still appreciable by Day 42. Energy metabolism and free fatty acids should be investigated as potentially important determinants for preservation of RBC structure and function. Future studies will be aimed at identifying metabolites that correlate with in vitro and in vivo circulation times.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Larry J Dumont
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
130
|
Hesketh EE, Dransfield I, Kluth DC, Hughes J. Circulating IgM Requires Plasma Membrane Disruption to Bind Apoptotic and Non-Apoptotic Nucleated Cells and Erythrocytes. PLoS One 2015; 10:e0131849. [PMID: 26121639 PMCID: PMC4488261 DOI: 10.1371/journal.pone.0131849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
Autoimmunity is associated with defective phagocytic clearance of apoptotic cells. IgM deficient mice exhibit an autoimmune phenotype consistent with a role for circulating IgM antibodies in apoptotic cell clearance. We have extensively characterised IgM binding to non-apoptotic and apoptotic mouse thymocytes and human Jurkat cells using flow cytometry, confocal imaging and electron microscopy. We demonstrate strong specific IgM binding to a subset of Annexin-V (AnnV)+PI (Propidium Iodide)+ apoptotic cells with disrupted cell membranes. Electron microscopy studies indicated that IgM+AnnV+PI+ apoptotic cells exhibited morphologically advanced apoptosis with marked plasma membrane disruption compared to IgM-AnnV+PI+ apoptotic cells, suggesting that access to intracellular epitopes is required for IgM to bind. Strong and comparable binding of IgM to permeabilised non-apoptotic and apoptotic cells suggests that IgM bound epitopes are 'apoptosis independent' such that IgM may bind any cell with profound disruption of cell plasma membrane integrity. In addition, permeabilised erythrocytes exhibited significant IgM binding thus supporting the importance of cell membrane epitopes. These data suggest that IgM may recognize and tag damaged nucleated cells or erythrocytes that exhibit significant cell membrane disruption. The role of IgM in vivo in conditions characterized by severe cell damage such as ischemic injury, sepsis and thrombotic microangiopathies merits further exploration.
Collapse
Affiliation(s)
- Emily E. Hesketh
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ian Dransfield
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - David C. Kluth
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
131
|
Kumar D, Rizvi SI. Markers of oxidative stress in senescent erythrocytes obtained from young and old age rats. Rejuvenation Res 2015; 17:446-52. [PMID: 25065263 DOI: 10.1089/rej.2014.1573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of oxidative stress during aging is well documented. Evidence is available linking animal life span to the development of oxidative stress. Up to a certain limit of oxidative stress, cells function to counteract the oxidant effects and to restore redox balance by resetting critical homeostatic parameters. Red blood cells (RBCs) offer a very good model to study cellular senescence. In vivo aging of red blood cells is associated with increased cellular density, which corresponds to increased cell age. The present study aims to investigate age-dependent oxidative stress in RBC subpopulations obtained after Percoll density gradient centrifugation from young and old rats. We observe an increase in plasma membrane redox system (PMRS) activity (p<0.001) and lipid peroxidation (p<0.001) between less dense and senescent RBCs in both young and old rats. Our findings provide evidence of a higher level of oxidative stress in senescent erythrocytes, with the effect being more pronounced in old (24-month-old) rats compared to young (4-month-old) rats. The present findings emphasize the role of oxidative stress not only in organismal aging but also in cell senescence.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Allahabad , Allahabad, India
| | | |
Collapse
|
132
|
Bielitza M, Belorgey D, Ehrhardt K, Johann L, Lanfranchi DA, Gallo V, Schwarzer E, Mohring F, Jortzik E, Williams DL, Becker K, Arese P, Elhabiri M, Davioud-Charvet E. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats. Antioxid Redox Signal 2015; 22:1337-51. [PMID: 25714942 PMCID: PMC4410756 DOI: 10.1089/ars.2014.6047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/28/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
AIMS Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. RESULTS We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure-activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. INNOVATION The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. CONCLUSION This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations.
Collapse
Affiliation(s)
- Max Bielitza
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Didier Belorgey
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Katharina Ehrhardt
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
- Department of Infectiology, University of Heidelberg, Heidelberg, Germany
| | - Laure Johann
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Don Antoine Lanfranchi
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Valentina Gallo
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Evelin Schwarzer
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - David L. Williams
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - Paolo Arese
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Mourad Elhabiri
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Elisabeth Davioud-Charvet
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| |
Collapse
|
133
|
Quaye IK. Extracellular hemoglobin: the case of a friend turned foe. Front Physiol 2015; 6:96. [PMID: 25941490 PMCID: PMC4403290 DOI: 10.3389/fphys.2015.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Hemoglobin (Hb) is a highly conserved molecule present in all life forms and functionally tied to the complexity of aerobic organisms on earth in utilizing oxygen from the atmosphere and delivering to cells and tissues. This primary function sustains the energy requirements of cells and maintains cellular homeostasis. Decades of intensive research has presented a paradigm shift that shows how the molecule also functions to facilitate smooth oxygen delivery through the cardiovascular system for cellular bioenergetic homeostasis and signaling for cell function and defense. These roles are particularly highlighted in the binding of Hb to gaseous molecules carbon dioxide (CO2), nitric oxide (NO) and carbon monoxide (CO), while also serving indirectly or directly as sources of these signaling molecules. The functional activities impacted by Hb outside of bioenergetics homeostasis, include fertilization, signaling functions, modulation of inflammatory responses for defense and cell viability. These activities are efficiently executed while Hb is sequestered safely within the confines of the red blood cell (rbc). Outside of rbc confines, Hb disaggregates and becomes a danger molecule to cell survival. In these perpectives, Hb function is broadly dichotomous, either a friend in its natural environment providing and facilitating the means for cell function or foe when dislocated from its habitat under stress or pathological condition disrupting cell function. The review presents insights into how this dichotomy in function manifests.
Collapse
Affiliation(s)
- Isaac K Quaye
- Department of Biochemistry, University of Namibia School of Medicine Windhoek, Namibia
| |
Collapse
|
134
|
Reinhart WH, Piety NZ, Deuel JW, Makhro A, Schulzki T, Bogdanov N, Goede JS, Bogdanova A, Abidi R, Shevkoplyas SS. Washing stored red blood cells in an albumin solution improves their morphologic and hemorheologic properties. Transfusion 2015; 55:1872-81. [PMID: 25752902 DOI: 10.1111/trf.13052] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/04/2015] [Accepted: 01/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prolonged storage of red blood cells (RBCs) leads to storage lesions, which may impair clinical outcomes after transfusion. A hallmark of storage lesions is progressive echinocytic shape transformation, which can be partially reversed by washing in albumin solutions. Here we have investigated the impact of this shape recovery on biorheologic variables. STUDY DESIGN AND METHODS RBCs stored hypothermically for 6 to 7 weeks were washed in a 1% human serum albumin (HSA) solution. RBC deformability was measured with osmotic gradient ektacytometry. The viscosity of RBC suspensions was measured with a Couette-type viscometer. The flow behavior of RBCs suspended at 40% hematocrit was tested with an artificial microvascular network (AMVN). RESULTS Washing in 1% albumin reduced higher degrees of echinocytes and increased the frequency of discocytes, thereby shifting the morphologic index toward discocytosis. Washing also reduced RBC swelling. This shape recovery was not seen after washing in saline, buffer, or plasma. RBC shape normalization did not improve cell deformability measured by ektacytometry, but it tended to decrease suspension viscosities at low shear rates and improved the perfusion of an AMVN. CONCLUSIONS Washing of stored RBCs in a 1% HSA solution specifically reduces echinocytosis, and this shape recovery has a beneficial effect on microvascular perfusion in vitro. Washing in 1% albumin may represent a new approach to improving the quality of stored RBCs and thus potentially reducing the likelihood of adverse clinical outcomes associated with transfusion of blood stored for longer periods of time.
Collapse
Affiliation(s)
- Walter H Reinhart
- Department of Internal Medicine, Kantonsspital Graubünden, Chur, Switzerland
| | - Nathaniel Z Piety
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | | | - Asya Makhro
- Institute of Veterinary Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Schulzki
- Department of Internal Medicine, Kantonsspital Graubünden, Chur, Switzerland
| | - Nikolay Bogdanov
- Institute of Veterinary Physiology, University of Zürich, Zürich, Switzerland
| | | | - Anna Bogdanova
- Institute of Veterinary Physiology, University of Zürich, Zürich, Switzerland
| | - Rajaa Abidi
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | | |
Collapse
|
135
|
Attenuating a sickle cell crisis with annexin V. Med Hypotheses 2015; 84:434-6. [PMID: 25665862 DOI: 10.1016/j.mehy.2015.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/29/2023]
Abstract
A sickle cell crisis is a painful and dangerous condition that defies effective treatment but fortunately it usually terminates spontaneously and patients spend far more time crisis free than in its painful throes. This suggests that an unstable physiologic balance exists between steady state sickle cell disease (SCD) and the crisis state and if this is so a therapeutic nudge during a crisis may help to terminate it. Annexin V may be able to provide this push. The phosphatidylserine (PS) molecules normally appear on the surface of senescent erythrocytes where they are recognized by macrophages and rapidly removed so that normally only about 1% are present in the circulation but in SCD 30-40% are prematurely senescent and their removal is delayed. The PS+ sickle erythrocytes remaining in the circulation adhere to the endothelium and their exposed PS acts as a platform for the initiation of the coagulation cascade that is responsible for clot propagation. Annexin V's great affinity for PS allows it to bond to it forming a shield that blocks both of these actions suggesting that its therapeutic administration during a sickle crisis may be able to hasten its termination.
Collapse
|
136
|
D'Alessandro A, Nemkov T, Kelher M, West FB, Schwindt RK, Banerjee A, Moore EE, Silliman CC, Hansen KC. Routine storage of red blood cell (RBC) units in additive solution-3: a comprehensive investigation of the RBC metabolome. Transfusion 2014; 55:1155-68. [PMID: 25556331 DOI: 10.1111/trf.12975] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND In most countries, red blood cells (RBCs) can be stored up to 42 days before transfusion. However, observational studies have suggested that storage duration might be associated with increased morbidity and mortality. While clinical trials are under way, impaired metabolism has been documented in RBCs stored in several additive solutions (ASs). Here we hypothesize that, despite reported beneficial effects, storage in AS-3 results in metabolic impairment weeks before the end of the unit shelf life. STUDY DESIGN AND METHODS Five leukofiltered AS-3 RBC units were sampled before, during, and after leukoreduction Day 0 and then assayed on a weekly basis from storage Day 1 through Day 42. RBC extracts and supernatants were assayed using a ultra-high-performance liquid chromatography separations coupled online with mass spectrometry detection metabolomics workflow. RESULTS Blood bank storage significantly affects metabolic profiles of RBC extracts and supernatants by Day 14. In addition to energy and redox metabolism impairment, intra- and extracellular accumulation of amino acids was observed proportionally to storage duration, suggesting a role for glutamine and serine metabolism in aging RBCs. CONCLUSION Metabolomics of stored RBCs could drive the introduction of alternative ASs to address some of the storage-dependent metabolic lesions herein reported, thereby increasing the quality of transfused RBCs and minimizing potential links to patient morbidity.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Rani K Schwindt
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Denver Health Medical Center, Denver, Colorado
| | - Ernest E Moore
- Department of Surgery, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Denver Health Medical Center, Denver, Colorado
| | - Christopher C Silliman
- Department of Surgery, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Research Laboratory, Bonfils Blood Center, Denver, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
137
|
(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc Natl Acad Sci U S A 2014; 111:E5455-62. [PMID: 25453091 DOI: 10.1073/pnas.1414221111] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na(+) levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na(+) homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.
Collapse
|
138
|
D'Alessandro A, Hansen KC, Silliman CC, Moore EE, Kelher M, Banerjee A. Metabolomics of AS-5 RBC supernatants following routine storage. Vox Sang 2014; 108:131-40. [PMID: 25200932 DOI: 10.1111/vox.12193] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/16/2014] [Accepted: 08/11/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES The safety and efficacy of stored red blood cells (RBCs) transfusion has been long debated due to retrospective clinical evidence and laboratory results, indicating a potential correlation between increased morbidity and mortality following transfusion of RBC units stored longer than 14 days. We hypothesize that storage in Optisol additive solution-5 leads to a unique metabolomics profile in the supernatant of stored RBCs. MATERIALS AND METHODS Whole blood was drawn from five healthy donors, RBC units were manufactured, and prestorage leucoreduced by filtration. Samples were taken on days 1 and 42, the cells removed, and mass spectrometry-based metabolomics was performed. RESULTS The results confirmed the progressive impairment of RBC energy metabolism by day 42 with indirect markers of a parallel alteration of glutathione and NADPH homeostasis. Moreover, oxidized pro-inflammatory lipids accumulated by the end of storage. CONCLUSION The supernatants from stored RBCs may represent a burden to the transfused recipients from a metabolomics standpoint.
Collapse
Affiliation(s)
- A D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
139
|
D'Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS, Zolla L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 2014; 55:205-19. [DOI: 10.1111/trf.12804] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics; University of Colorado Denver-Anschutz Medical Campus; Aurora Colorado
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions; Technological Educational Institute of Athens; Athens Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences; University of Tuscia; Viterbo Italy
| | - Marianna H. Antonelou
- Department of Cell Biology and Biophysics; Faculty of Biology; University of Athens; Athens Greece
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics; University of Colorado Denver-Anschutz Medical Campus; Aurora Colorado
| | - Issidora S. Papassideri
- Department of Cell Biology and Biophysics; Faculty of Biology; University of Athens; Athens Greece
| | - Lello Zolla
- Department of Ecological and Biological Sciences; University of Tuscia; Viterbo Italy
| |
Collapse
|
140
|
Kaestner L, Bogdanova A. Regulation of red cell life-span, erythropoiesis, senescence, and clearance. Front Physiol 2014; 5:269. [PMID: 25101005 PMCID: PMC4102833 DOI: 10.3389/fphys.2014.00269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lars Kaestner
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| | - Anna Bogdanova
- Vetsuisse Faculty, and the Zurich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland
| |
Collapse
|
141
|
Flatt JF, Bawazir WM, Bruce LJ. The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol 2014; 5:214. [PMID: 24987374 PMCID: PMC4060409 DOI: 10.3389/fphys.2014.00214] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Stored blood components are a critical life-saving tool provided to patients by health services worldwide. Red cells may be stored for up to 42 days, allowing for efficient blood bank inventory management, but with prolonged storage comes an unwanted side-effect known as the "storage lesion", which has been implicated in poorer patient outcomes. This lesion is comprised of a number of processes that are inter-dependent. Metabolic changes include a reduction in glycolysis and ATP production after the first week of storage. This leads to an accumulation of lactate and drop in pH. Longer term damage may be done by the consequent reduction in anti-oxidant enzymes, which contributes to protein and lipid oxidation via reactive oxygen species. The oxidative damage to the cytoskeleton and membrane is involved in increased vesiculation and loss of cation gradients across the membrane. The irreversible damage caused by extensive membrane loss via vesiculation alongside dehydration is likely to result in immediate splenic sequestration of these dense, spherocytic cells. Although often overlooked in the literature, the loss of the cation gradient in stored cells will be considered in more depth in this review as well as the possible effects it may have on other elements of the storage lesion. It has now become clear that blood donors can exhibit quite large variations in the properties of their red cells, including microvesicle production and the rate of cation leak. The implications for the quality of stored red cells from such donors is discussed.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK
| | - Waleed M Bawazir
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK ; School of Biochemistry, University of Bristol Bristol, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK
| |
Collapse
|
142
|
Harisa GI. Blood viscosity as a sensitive indicator for paclitaxel induced oxidative stress in human whole blood. Saudi Pharm J 2014; 23:48-54. [PMID: 25685043 DOI: 10.1016/j.jsps.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022] Open
Abstract
In this study, the in vitro effects of paclitaxel (PTX) and Cremophor-EL (CrEL) on blood viscosity and oxidative stress markers were investigated. Whole-blood samples were collected from healthy volunteers and co-incubated with PTX, CrEL or their combination then compared with control blood samples. After a 24 h incubation time, the whole-blood viscosity (WBV), erythrocyte sedimentation rate (ESR), levels of whole-blood malondialdehyde (MDA), protein carbonyl content (PCC) and reduced glutathione (GSH) were determined. Moreover, plasma nitrite and plasma sialic acid (SA) values were measured. The present results revealed that the incubation of blood samples with PTX, CrEL or PTX plus CrEL significantly increased the values of WBV, ESR, MDA and PCC compared to control samples. In contrast, a significant decrease in levels of GSH, SA and nitrite was observed after incubation of blood samples with tested agents compared to control. The effects of tested agents on the measured parameters were more pronounced in the case of blood samples treated with PTX plus CrEL. The present study demonstrates that PTX-induced oxidative stress is associated with an increase of WBV.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|