101
|
Pérez-Martín L, Busoms S, Tolrà R, Poschenrieder C. Transcriptomics Reveals Fast Changes in Salicylate and Jasmonate Signaling Pathways in Shoots of Carbonate-Tolerant Arabidopsis thaliana under Bicarbonate Exposure. Int J Mol Sci 2021; 22:1226. [PMID: 33513755 PMCID: PMC7865540 DOI: 10.3390/ijms22031226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
High bicarbonate concentrations of calcareous soils with high pH can affect crop performance due to different constraints. Among these, Fe deficiency has mostly been studied. The ability to mobilize sparingly soluble Fe is a key factor for tolerance. Here, a comparative transcriptomic analysis was performed with two naturally selected Arabidopsis thaliana demes, the carbonate-tolerant A1(c+) and the sensitive T6(c-). Analyses of plants exposed to either pH stress alone (pH 5.9 vs. pH 8.3) or to alkalinity caused by 10 mM NaHCO3 (pH 8.3) confirmed better growth and nutrient homeostasis of A1(c+) under alkaline conditions. RNA-sequencing (RNA-seq) revealed that bicarbonate quickly (3 h) induced Fe deficiency-related genes in T6(c-) leaves. Contrastingly, in A1(c+), initial changes concerned receptor-like proteins (RLP), jasmonate (JA) and salicylate (SA) pathways, methionine-derived glucosinolates (GS), sulfur starvation, starch degradation, and cell cycle. Our results suggest that leaves of carbonate-tolerant plants do not sense iron deficiency as fast as sensitive ones. This is in line with a more efficient Fe translocation to aerial parts. In A1(c+) leaves, the activation of other genes related to stress perception, signal transduction, GS, sulfur acquisition, and cell cycle precedes the induction of iron homeostasis mechanisms yielding an efficient response to bicarbonate stress.
Collapse
Affiliation(s)
| | | | | | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, C/de la Vall Moronta s/n, E-08193 Bellaterra, Spain; (L.P.-M.); (S.B.); (R.T.)
| |
Collapse
|
102
|
Poretti M, Sotiropoulos AG, Graf J, Jung E, Bourras S, Krattinger SG, Wicker T. Comparative Transcriptome Analysis of Wheat Lines in the Field Reveals Multiple Essential Biochemical Pathways Suppressed by Obligate Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:720462. [PMID: 34659291 PMCID: PMC8513673 DOI: 10.3389/fpls.2021.720462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 05/03/2023]
Abstract
Mildew and rust are the most devastating cereal pathogens, and in wheat they can cause up to 50% yield loss every year. Wheat lines containing resistance genes are used to effectively control fungal diseases, but the molecular mechanisms underlying the interaction between wheat and its fungal pathogens are poorly understood. Here, we used RNA sequencing (RNA-Seq) to compare the transcriptomic landscape of susceptible and resistant wheat lines to identify genes and pathways that are targeted by obligate biotrophic fungal pathogens. The five lines differed in the expression of thousands of genes under infection as well as control conditions. Generally, mixed infection with powdery mildew and leaf rust resulted in downregulation of numerous genes in susceptible lines. Interestingly, transcriptomic comparison between the nearly isogenic lines Thatcher and Thatcher-Lr34 identified 753 genes that are uniquely downregulated in the susceptible line upon infection. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, revealed the suppression of six major biochemical pathways, namely nuclear transport, alternative splicing, DNA damage response, ubiquitin-mediated proteolysis, phosphoinositol signaling, and photosynthesis. We conclude that powdery mildew and leaf rust evade the wheat defense system by suppression of programmed cell death (PCD) and responses to cellular damage. Considering the broad range of the induced changes, we propose that the pathogen targets "master regulators" at critical steps in the respective pathways. Identification of these wheat genes targeted by the pathogen could inspire new directions for future wheat breeding.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Salim Bourras
- Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simon G. Krattinger
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- *Correspondence: Thomas Wicker,
| |
Collapse
|
103
|
Macovei A, Rubio-Somoza I, Paiva JAP, Araújo S, Donà M. Editorial: MicroRNA Signatures in Plant Genome Stability and Genotoxic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:683302. [PMID: 33968124 PMCID: PMC8100575 DOI: 10.3389/fpls.2021.683302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 05/21/2023]
Affiliation(s)
- Anca Macovei
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Anca Macovei
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution Laboratory (MoRE), Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Jorge Almiro Pinto Paiva
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Susana Araújo
- Association BLC3, Technology and Innovation Campus, Centre BIO–R&D Unit, Lagares da Beira, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
104
|
Non-Thermal Plasma-A New Green Priming Agent for Plants? Int J Mol Sci 2020; 21:ijms21249466. [PMID: 33322775 PMCID: PMC7763604 DOI: 10.3390/ijms21249466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Since the earliest agricultural attempts, humankind has been trying to improve crop quality and yields, as well as protect them from adverse conditions. Strategies to meet these goals include breeding, the use of fertilisers, and the genetic manipulation of crops, but also an interesting phenomenon called priming or adaptive response. Priming is based on an application of mild stress to prime a plant for another, mostly stronger stress. There are many priming techniques, such as osmopriming, halopriming, or using physical agents. Non-thermal plasma (NTP) represents a physical agent that contains a mixture of charged, neutral, and radical (mostly reactive oxygen and nitrogen species) particles, and can cause oxidative stress or even the death of cells or organisms upon interaction. However, under certain conditions, NTP can have the opposite effect, which has been previously documented for many plant species. Seed surface sterilization and growth enhancement are the most-reported positive effects of NTP on plants. Moreover, some studies suggest the role of NTP as a promising priming agent. This review deals with the effects of NTP treatment on plants from interaction with seed and cell surface, influence on cellular molecular processes, up to the adaptive response caused by NTP.
Collapse
|
105
|
Mutti G, Raveane A, Pagano A, Bertolini F, Semino O, Balestrazzi A, Macovei A. Plant TDP1 (Tyrosyl-DNA Phosphodiesterase 1): A Phylogenetic Perspective and Gene Expression Data Mining. Genes (Basel) 2020; 11:E1465. [PMID: 33297410 PMCID: PMC7762302 DOI: 10.3390/genes11121465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/28/2023] Open
Abstract
The TDP1 (tyrosyl-DNA phosphodiesterase 1) enzyme removes the non-specific covalent intermediates between topoisomerase I and DNA, thus playing a crucial role in preventing DNA damage. While mammals possess only one TDP1 gene, in plants two genes (TDP1α and TDP1β) are present constituting a small gene subfamily. These display a different domain structure and appear to perform non-overlapping functions in the maintenance of genome integrity. Namely, the HIRAN domain identified in TDP1β is involved in the interaction with DNA during the recognition of stalled replication forks. The availability of transcriptomic databases in a growing variety of experimental systems provides new opportunities to fill the current gaps of knowledge concerning the evolutionary origin and the specialized roles of TDP1 genes in plants. Whereas a phylogenetic approach has been used to track the evolution of plant TDP1 protein, transcriptomic data from a selection of representative lycophyte, eudicots, and monocots have been implemented to explore the transcriptomic dynamics in different tissues and a variety of biotic and abiotic stress conditions. While the phylogenetic analysis indicates that TDP1α is of non-plant origin and TDP1β is plant-specific originating in ancient vascular plants, the gene expression data mining comparative analysis pinpoints for tissue- and stress-specific responses.
Collapse
Affiliation(s)
- Giacomo Mutti
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Alessandro Raveane
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy;
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy;
| | - Ornella Semino
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| |
Collapse
|
106
|
Jaskowiak J, Kwasniewska J, Szurman-Zubrzycka M, Rojek-Jelonek M, Larsen PB, Szarejko I. Al-Tolerant Barley Mutant hvatr.g Shows the ATR-Regulated DNA Damage Response to Maleic Acid Hydrazide. Int J Mol Sci 2020; 21:ijms21228500. [PMID: 33198069 PMCID: PMC7697149 DOI: 10.3390/ijms21228500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022] Open
Abstract
ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. “Sebastian”, showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in “Sebastian”. The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.
Collapse
Affiliation(s)
- Joanna Jaskowiak
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
- Correspondence: ; Tel.: +48-32-200-9468
| | - Miriam Szurman-Zubrzycka
- Plant Genetics and Functional Genomics Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (M.S.-Z.); (I.S.)
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
| | - Paul B. Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Iwona Szarejko
- Plant Genetics and Functional Genomics Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (M.S.-Z.); (I.S.)
| |
Collapse
|
107
|
Ludovici GM, Oliveira de Souza S, Chierici A, Cascone MG, d'Errico F, Malizia A. Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106375. [PMID: 32791372 DOI: 10.1016/j.jenvrad.2020.106375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work is to highlight the effects of ionizing radiation on the genetic material in higher plants by assessing both adaptive processes as well as the evolution of plant species. The effects that the ionizing radiation has on greenery following a nuclear accident, was examined by taking the Chernobyl Nuclear Power Plant disaster as a case study. The genetic and evolutionary effects that ionizing radiation had on plants after the Chernobyl accident were highlighted. The response of biota to Chernobyl irradiation was a complex interaction among radiation dose, dose rate, temporal and spatial variation, varying radiation sensitivities of the different plants' species, and indirect effects from other events. Ionizing radiation causes water radiolysis, generating highly reactive oxygen species (ROS). ROS induce the rapid activation of detoxifying enzymes. DeoxyriboNucleic Acid (DNA) is the object of an attack by both, the hydroxyl ions and the radiation itself, thus triggering a mechanism both direct and indirect. The effects on DNA are harmful to the organism and the long-term development of the species. Dose-dependent aberrations in chromosomes are often observed after irradiation. Although multiple DNA repair mechanisms exist, double-strand breaks (DSBs or DNA-DSBs) are often subject to errors. Plants DSBs repair mechanisms mainly involve homologous and non-homologous dependent systems, the latter especially causing a loss of genetic information. Repeated ionizing radiation (acute or chronic) ensures that plants adapt, demonstrating radioresistance. An adaptive response has been suggested for this phenomenon. As a result, ionizing radiation influences the genetic structure, especially during chronic irradiation, reducing genetic variability. This reduction may be associated with the fact that particular plant species are more subject to chronic stress, confirming the adaptive theory. Therefore, the genomic effects of ionizing radiation demonstrate their likely involvement in the evolution of plant species.
Collapse
Affiliation(s)
| | | | - Andrea Chierici
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy; Department of Civil and Industrial Engineering, University of Pisa, Italy
| | | | - Francesco d'Errico
- Department of Civil and Industrial Engineering, University of Pisa, Italy
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| |
Collapse
|
108
|
Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 2020; 39:e105802. [PMID: 32865261 PMCID: PMC7527812 DOI: 10.15252/embj.2020105802] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.
Collapse
|
109
|
Graham N, Patil GB, Bubeck DM, Dobert RC, Glenn KC, Gutsche AT, Kumar S, Lindbo JA, Maas L, May GD, Vega-Sanchez ME, Stupar RM, Morrell PL. Plant Genome Editing and the Relevance of Off-Target Changes. PLANT PHYSIOLOGY 2020; 183:1453-1471. [PMID: 32457089 PMCID: PMC7401131 DOI: 10.1104/pp.19.01194] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/07/2020] [Indexed: 05/12/2023]
Abstract
Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.
Collapse
Affiliation(s)
- Nathaniel Graham
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, Minnesota 55108
- Pairwise, Durham, North Carolina 27709
| | - Gunvant B Patil
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | | | | | | | | | | | | | - Luis Maas
- Enza Zaden Research USA, San Juan Bautista, California 95045
| | | | | | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
110
|
Gratias A, Geffroy V. Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines. Genes (Basel) 2020; 11:genes11070832. [PMID: 32708324 PMCID: PMC7397157 DOI: 10.3390/genes11070832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected Arabidopsis Fluorescent Tagged Lines (FTL) with the virulent bacteria Pseudomonas syringae. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in Arabidopsis may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.
Collapse
Affiliation(s)
- Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Correspondence: ; Tel.: +33-1-69-15-33-65
| |
Collapse
|
111
|
Gentric N, Masoud K, Journot RP, Cognat V, Chabouté ME, Noir S, Genschik P. The F-Box-Like Protein FBL17 Is a Regulator of DNA-Damage Response and Colocalizes with RETINOBLASTOMA RELATED1 at DNA Lesion Sites. PLANT PHYSIOLOGY 2020; 183:1295-1305. [PMID: 32414898 PMCID: PMC7333706 DOI: 10.1104/pp.20.00188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 05/06/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the F-box protein F-BOX-LIKE17 (FBL17) was previously identified as an important cell-cycle regulatory protein. FBL17 is required for cell division during pollen development and for normal cell-cycle progression and endoreplication during the diploid sporophyte phase. FBL17 was reported to control the stability of the CYCLIN-DEPENDENT KINASE inhibitor KIP-RELATED PROTEIN (KRP), which may underlie the drastic reduction in cell division activity in both shoot and root apical meristems observed in fbl17 loss-of-function mutants. However, whether FBL17 has other substrates and functions besides degrading KRPs remains poorly understood. Here we show that mutation of FBL17 leads not only to misregulation of cell cycle genes, but also to a strong upregulation of genes involved in DNA damage and repair processes. This phenotype is associated with a higher frequency of DNA lesions in fbl17 and increased cell death in the root meristem, even in the absence of genotoxic stress. Notably, the constitutive activation of DNA damage response genes is largely SOG1-independent in fbl17 In addition, through analyses of root elongation, accumulation of cell death, and occurrence of γH2AX foci, we found that fbl17 mutants are hypersensitive to DNA double-strand break-induced genotoxic stress. Notably, we observed that the FBL17 protein is recruited at nuclear foci upon double-strand break induction and colocalizes with γH2AX, but only in the presence of RETINOBLASTOMA RELATED1. Altogether, our results highlight a role for FBL17 in DNA damage response, likely by ubiquitylating proteins involved in DNA-damage signaling or repair.
Collapse
Affiliation(s)
- Naomie Gentric
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Kinda Masoud
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Robin P Journot
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre Nationale de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
112
|
Ciacka K, Tymiński M, Gniazdowska A, Krasuska U. Carbonylation of proteins-an element of plant ageing. PLANTA 2020; 252:12. [PMID: 32613330 PMCID: PMC7329788 DOI: 10.1007/s00425-020-03414-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/23/2020] [Indexed: 05/25/2023]
Abstract
Carbonylation-ROS-dependent posttranslational modification of proteins-may be regarded as one of the important events in the process of ageing or senescence in plants. Ageing is the progressive process starting from seed development (plants) and birth (animals). The life-span of living organisms depends on many factors and stresses, which influence reactive oxygen species (ROS) level. The imbalance of their production and scavenging causes pathophysiological conditions that accelerate ageing. ROS modify nucleic acids, lipids, sugars and proteins. The level of carbonylated proteins can serve as an indicator of an oxidative cellular status. Several pathways of protein carbonylation, e.g. the conjugation with reactive carbonyl species, and/or a direct metal-catalysed oxidative attack on amino acids residues are known. Dysfunctional carbonylated proteins are more prone to degradation or form aggregates when the proteolytic machinery is inhibited, as observed in ageing. Protein carbonylation may contribute to formation of organelle-specific signal and to the control of protein quality. Carbonylated proteins are formed during the whole plant life; nevertheless, accelerated ageing stimulates the accumulation of carbonyl derivatives. In the medicine-related literature, concerned ageing and ROS-mediated protein modifications, this topic is extensively analysed, in comparison to the plant science. In plant science, ageing and senescence are considered to describe slightly different processes (physiological events). However, senescence (Latin: senēscere) means "to grow old". This review describes the correlation of protein carbonylation level to ageing or/and senescence in plants. Comparing data from the area of plant and animal research, it is assumed that some basic mechanism of time-dependent alterations in the cellular biochemical processes are common and the protein carbonylation is one of the important causes of ageing.
Collapse
Affiliation(s)
- K. Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Tymiński
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A. Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - U. Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
113
|
de Luxán-Hernández C, Lohmann J, Hellmeyer W, Seanpong S, Wöltje K, Magyar Z, Pettkó-Szandtner A, Pélissier T, De Jaeger G, Hoth S, Mathieu O, Weingartner M. PP7L is essential for MAIL1-mediated transposable element silencing and primary root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:703-717. [PMID: 31849124 DOI: 10.1111/tpj.14655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 05/16/2023]
Abstract
The two paralogous Arabidopsis genes MAINTENANCE OF MERISTEMS (MAIN) and MAINTENANCE OF MERISTEMS LIKE1 (MAIL1) encode a conserved retrotransposon-related plant mobile domain and are known to be required for silencing of transposable elements (TE) and for primary root development. Loss of function of either MAIN or MAIL1 leads to release of heterochromatic TEs, reduced condensation of pericentromeric heterochromatin, cell death of meristem cells and growth arrest of the primary root soon after germination. Here, we show that they act in one protein complex that also contains the inactive isoform of PROTEIN PHOSPHATASE 7 (PP7), which is named PROTEIN PHOSPHATASE 7-LIKE (PP7L). PP7L was previously shown to be important for chloroplast biogenesis and efficient chloroplast protein synthesis. We show that loss of PP7L function leads to the same root growth phenotype as loss of MAIL1 or MAIN. In addition, pp7l mutants show similar silencing defects. Double mutant analyses confirmed that the three proteins act in the same molecular pathway. The primary root growth arrest, which is associated with cell death of stem cells and their daughter cells, is a consequence of genome instability. Our data demonstrate so far unrecognized functions of an inactive phosphatase isoform in a protein complex that is essential for silencing of heterochromatic elements and for maintenance of genome stability in dividing cells.
Collapse
Affiliation(s)
- Cloe de Luxán-Hernández
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Julia Lohmann
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Wiebke Hellmeyer
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Senoch Seanpong
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Kerstin Wöltje
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
| | - Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
- Laboratory of Proteomics Research, Biological Research Centre, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Thierry Pélissier
- GReD - CNRS UMR6293 - Inserm U1103, Université Clermont Auvergne, UFR de Médecine, Clermont-Ferrand Cedex, France
| | - Geert De Jaeger
- VIB Center for Plant Systems Biology, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Gent, Belgium
| | - Stefan Hoth
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Olivier Mathieu
- GReD - CNRS UMR6293 - Inserm U1103, Université Clermont Auvergne, UFR de Médecine, Clermont-Ferrand Cedex, France
| | - Magdalena Weingartner
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| |
Collapse
|
114
|
Rommel Fuentes R, Hesselink T, Nieuwenhuis R, Bakker L, Schijlen E, van Dooijeweert W, Diaz Trivino S, de Haan JR, Sanchez Perez G, Zhang X, Fransz P, de Jong H, van Dijk ADJ, de Ridder D, Peters SA. Meiotic recombination profiling of interspecific hybrid F1 tomato pollen by linked read sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:480-492. [PMID: 31820490 DOI: 10.1111/tpj.14640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Genome wide screening of pooled pollen samples from a single interspecific F1 hybrid obtained from a cross between tomato, Solanum lycopersicum and its wild relative, Solanum pimpinellifolium using linked read sequencing of the haploid nuclei, allowed profiling of the crossover (CO) and gene conversion (GC) landscape. We observed a striking overlap between cold regions of CO in the male gametes and our previously established F6 recombinant inbred lines (RILs) population. COs were overrepresented in non-coding regions in the gene promoter and 5'UTR regions of genes. Poly-A/T and AT rich motifs were found enriched in 1 kb promoter regions flanking the CO sites. Non-crossover associated allelic and ectopic GCs were detected in most chromosomes, confirming that besides CO, GC represents also a source for genetic diversity and genome plasticity in tomato. Furthermore, we identified processed break junctions pointing at the involvement of both homology directed and non-homology directed repair pathways, suggesting a recombination machinery in tomato that is more complex than currently anticipated.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Linda Bakker
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jorn R de Haan
- Genetwister Technologies B.V., Nieuwe Kanaal 7b, 6709 PA, Wageningen, The Netherlands
| | - Gabino Sanchez Perez
- Genetwister Technologies B.V., Nieuwe Kanaal 7b, 6709 PA, Wageningen, The Netherlands
| | - Xinyue Zhang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
115
|
Mahapatra K, Roy S. An insight into the mechanism of DNA damage response in plants- role of SUPPRESSOR OF GAMMA RESPONSE 1: An overview. Mutat Res 2020; 819-820:111689. [PMID: 32004947 DOI: 10.1016/j.mrfmmm.2020.111689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 02/03/2023]
Abstract
Because of their sessile lifestyle, plants are inescapably exposed to various kinds of environmental stresses throughout their lifetime. Therefore, to regulate their growth and development, plants constantly monitor the environmental signals and respond appropriately. However, these environmental stress factors, along with some endogenous metabolites, generated in response to environmental stress factors often induce various forms of DNA damage in plants and thus promote genome instability. To maintain the genomic integrity, plants have developed an extensive, sophisticated and coordinated cellular signaling mechanism known as DNA damage response or DDR. DDR evokes a signaling process which initiates with the sensing of DNA damage and followed by the subsequent activation of downstream pathways in many directions to repair and eliminate the harmful effects of DNA damages. SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), one of the newly identified components of DDR in plant genome, appears to play central role in this signaling network. SOG1 is a member of NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family of transcription factors and involved in a diverse array of function in plants, encompassing transcriptional response to DNA damage, cell cycle checkpoint functions, ATAXIA-TELANGIECTASIA-MUTATED (ATM) or ATAXIA TELANGIECTASIA AND RAD3-RELATED (ATR) mediated activation of DNA damage response and repair, functioning in programmed cell death and regulation of induction of endoreduplication. Although most of the functional studies on SOG1 have been reported in Arabidopsis, some recent reports have indicated diverse functions of SOG1 in various other plant species, including Glycine max, Medicago truncatula, Sorghum bicolour, Oryza sativa and Zea mays, respectively. The remarkable functional diversity shown by SOG1 protein indicates its multitasking capacity. In this review, we integrate information mainly related to functional aspects of SOG1 in the context of DDR in plants. Considering the important role of SOG1 in DDR and its functional diversity, in-depth functional study of this crucial regulatory protein can provide further potential information on genome stability maintenance mechanism in plants in the context of changing environmental condition.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India.
| |
Collapse
|
116
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
117
|
Nimeth BA, Riegler S, Kalyna M. Alternative Splicing and DNA Damage Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:91. [PMID: 32140165 PMCID: PMC7042379 DOI: 10.3389/fpls.2020.00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/21/2020] [Indexed: 05/06/2023]
Abstract
Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.
Collapse
|
118
|
Camborde L, Raynaud C, Dumas B, Gaulin E. DNA-Damaging Effectors: New Players in the Effector Arena. TRENDS IN PLANT SCIENCE 2019; 24:1094-1101. [PMID: 31699522 DOI: 10.1016/j.tplants.2019.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In animal cells, nuclear DNA is the target of genotoxins produced by bacterial pathogens that cause genomic mutations eventually leading to apoptosis, senescence, and carcinogenic development. In response to the insult, the DNA damage response (DDR) is activated to ensure lesion repair. Accumulation of DNA breaks is also detected in plants during microbial infection. In this opinion article we propose that phytopathogens can produce DNA-damaging effectors. The recent identification of a functional genotoxin in devastating eukaryotic plant pathogens, such as oomycetes, supports the concept that DNA-damaging effectors may contribute to pathogenicity. Additionally, this raises the question of how plants can perceive these damages and whether this perception can be connected to the plant immune system.
Collapse
Affiliation(s)
- Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
119
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
120
|
Fang Z, Pan Z. Essential Role of Ubiquitin-Fold Modifier 1 Conjugation in DNA Damage Response. DNA Cell Biol 2019; 38:1030-1039. [PMID: 31368785 DOI: 10.1089/dna.2019.4861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both endogenous and exogenous factors can cause DNA damage that compromises genomic integrity and cell viability. A proper DNA damage response (DDR) plays a role in maintaining genome stability and preventing tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion, whose response is dominated by the ataxia-telangiectasia mutated (ATM) protein kinase. After being activated by the sensor Mre11-Rad50-Nbs1 (MRN) complex or acetyltransferase Tip60, ATM rapidly phosphorylates downstream targets to launch DDR signaling when DNA is damaged. However, the exact mechanism of DDR is complex and ambiguous. Ufmylation, one type of ubiquitin-like modification, proceeds mainly through a three-step enzymatic reaction to help ubiquitin-fold modifier 1 (Ufm1), attach to substrates with ubiquitin-like modifier-activating enzyme 5 (Uba5), Ufm1-conjugating enzyme 1 (Ufc1) and Ufm1-specific ligase 1 (Ufl1). Although ubiquitination is essential to the DSBs response, the potential function of ufmylation in DDR is largely unknown. Herein, we review the relationship between ufmylation and DDR to elucidate the function and mechanism of ufmylation in DDR, which would reveal the pathogenesis of some diseases and provide new guidance to create a therapeutic method.
Collapse
Affiliation(s)
- Zhi Fang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
121
|
Response of the Green Alga Chlamydomonas reinhardtii to the DNA Damaging Agent Zeocin. Cells 2019; 8:cells8070735. [PMID: 31319624 PMCID: PMC6678277 DOI: 10.3390/cells8070735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
DNA damage is a ubiquitous threat endangering DNA integrity in all living organisms. Responses to DNA damage include, among others, induction of DNA repair and blocking of cell cycle progression in order to prevent transmission of damaged DNA to daughter cells. Here, we tested the effect of the antibiotic zeocin, inducing double stranded DNA breaks, on the cell cycle of synchronized cultures of the green alga Chlamydomonas reinhardtii. After zeocin application, DNA replication partially occurred but nuclear and cellular divisions were completely blocked. Application of zeocin combined with caffeine, known to alleviate DNA checkpoints, decreased cell viability significantly. This was probably caused by a partial overcoming of the cell cycle progression block in such cells, leading to aberrant cell divisions. The cell cycle block was accompanied by high steady state levels of mitotic cyclin-dependent kinase activity. The data indicate that DNA damage response in C. reinhardtii is connected to the cell cycle block, accompanied by increased and stabilized mitotic cyclin-dependent kinase activity.
Collapse
|