101
|
Khalid U, Stoev HA, Yavorov B, Ansari A. The Expansion of Artificial Intelligence in Modifying and Enhancing the Current Management of Abdominal Aortic Aneurysms: A Literature Review. Cureus 2024; 16:e66398. [PMID: 39247022 PMCID: PMC11379419 DOI: 10.7759/cureus.66398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
An abdominal aortic aneurysm (AAA) is a pathological dilation that is 3 cm or greater resulting in a bulging or balloon appearance. To meet a personalized therapeutic approach for patients, artificial intelligence (AI) can exhibit an array of applications ranging from decoding patterns from large data sets to predicting new data. The review aims to discuss how AI can assist and improve the standard of care and management plans for these patients. A comprehensive non-systematic literature review was carried out for published material on the use of AI relating to AAAs. The PubMed and Google Scholar databases were used to scout for articles relating to the title of this review. The review included 54 literature papers in this study. AI is involved on a genomic level, which assists in screening, diagnosing, and identifying individual risk factors of a patient. Personalized management plans can be created with AI predictions using patient data to reduce the risk of in-hospital mortality following a repair or due to complications. AI represents a promising group of programs aimed at improving patient management and assisting surgeons in making beneficial decisions to improve the patient's prognosis.
Collapse
Affiliation(s)
- Usman Khalid
- Medicine, Medical University of Plovdiv, Plovdiv, BGR
| | - Hristo A Stoev
- Cardiac Surgery, St. George University Hospital, Plovdiv, BGR
- Cardiovascular Surgery, Medical University of Plovdiv, Plovdiv, BGR
| | - Boyko Yavorov
- Cardiovascular Surgery, Medical University of Plovdiv, Plovdiv, BGR
| | - Areeb Ansari
- Medicine, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
102
|
Parmanto B, Aryoyudanta B, Soekinto TW, Setiawan IMA, Wang Y, Hu H, Saptono A, Choi YK. A Reliable and Accessible Caregiving Language Model (CaLM) to Support Tools for Caregivers: Development and Evaluation Study. JMIR Form Res 2024; 8:e54633. [PMID: 39083337 PMCID: PMC11325100 DOI: 10.2196/54633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND In the United States, 1 in 5 adults currently serves as a family caregiver for an individual with a serious illness or disability. Unlike professional caregivers, family caregivers often assume this role without formal preparation or training. Thus, there is an urgent need to enhance the capacity of family caregivers to provide quality care. Leveraging technology as an educational tool or an adjunct to care is a promising approach that has the potential to enhance the learning and caregiving capabilities of family caregivers. Large language models (LLMs) can potentially be used as a foundation technology for supporting caregivers. An LLM can be categorized as a foundation model (FM), which is a large-scale model trained on a broad data set that can be adapted to a range of different domain tasks. Despite their potential, FMs have the critical weakness of "hallucination," where the models generate information that can be misleading or inaccurate. Information reliability is essential when language models are deployed as front-line help tools for caregivers. OBJECTIVE This study aimed to (1) develop a reliable caregiving language model (CaLM) by using FMs and a caregiving knowledge base, (2) develop an accessible CaLM using a small FM that requires fewer computing resources, and (3) evaluate the model's performance compared with a large FM. METHODS We developed a CaLM using the retrieval augmented generation (RAG) framework combined with FM fine-tuning for improving the quality of FM answers by grounding the model on a caregiving knowledge base. The key components of the CaLM are the caregiving knowledge base, a fine-tuned FM, and a retriever module. We used 2 small FMs as candidates for the foundation of the CaLM (LLaMA [large language model Meta AI] 2 and Falcon with 7 billion parameters) and adopted a large FM (GPT-3.5 with an estimated 175 billion parameters) as a benchmark. We developed the caregiving knowledge base by gathering various types of documents from the internet. We focused on caregivers of individuals with Alzheimer disease and related dementias. We evaluated the models' performances using the benchmark metrics commonly used in evaluating language models and their reliability for providing accurate references with their answers. RESULTS The RAG framework improved the performance of all FMs used in this study across all measures. As expected, the large FM performed better than the small FMs across all metrics. Interestingly, the small fine-tuned FMs with RAG performed significantly better than GPT 3.5 across all metrics. The fine-tuned LLaMA 2 with a small FM performed better than GPT 3.5 (even with RAG) in returning references with the answers. CONCLUSIONS The study shows that a reliable and accessible CaLM can be developed using small FMs with a knowledge base specific to the caregiving domain.
Collapse
Affiliation(s)
- Bambang Parmanto
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bayu Aryoyudanta
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - I Made Agus Setiawan
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuhan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haomin Hu
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andi Saptono
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yong Kyung Choi
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
103
|
Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R, Denaro V. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers (Basel) 2024; 16:2700. [PMID: 39123427 PMCID: PMC11311270 DOI: 10.3390/cancers16152700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Metastasis commonly occur in the bone tissue. Artificial intelligence (AI) has become increasingly prevalent in the medical sector as support in decision-making, diagnosis, and treatment processes. The objective of this systematic review was to assess the reliability of AI systems in clinical, radiological, and pathological aspects of bone metastases. METHODS We included studies that evaluated the use of AI applications in patients affected by bone metastases. Two reviewers performed a digital search on 31 December 2023 on PubMed, Scopus, and Cochrane library and extracted authors, AI method, interest area, main modalities used, and main objectives from the included studies. RESULTS We included 59 studies that analyzed the contribution of computational intelligence in diagnosing or forecasting outcomes in patients with bone metastasis. Six studies were specific for spine metastasis. The study involved nuclear medicine (44.1%), clinical research (28.8%), radiology (20.4%), or molecular biology (6.8%). When a primary tumor was reported, prostate cancer was the most common, followed by lung, breast, and kidney. CONCLUSIONS Appropriately trained AI models may be very useful in merging information to achieve an overall improved diagnostic accuracy and treatment for metastasis in the bone. Nevertheless, there are still concerns with the use of AI systems in medical settings. Ethical considerations and legal issues must be addressed to facilitate the safe and regulated adoption of AI technologies. The limitations of the study comprise a stronger emphasis on early detection rather than tumor management and prognosis as well as a high heterogeneity for type of tumor, AI technology and radiological techniques, pathology, or laboratory samples involved.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Paolo Brigato
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Luisana Sisca
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Girolamo Maltese
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
104
|
Contaldo MT, Pasceri G, Vignati G, Bracchi L, Triggiani S, Carrafiello G. AI in Radiology: Navigating Medical Responsibility. Diagnostics (Basel) 2024; 14:1506. [PMID: 39061643 PMCID: PMC11276428 DOI: 10.3390/diagnostics14141506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The application of Artificial Intelligence (AI) facilitates medical activities by automating routine tasks for healthcare professionals. AI augments but does not replace human decision-making, thus complicating the process of addressing legal responsibility. This study investigates the legal challenges associated with the medical use of AI in radiology, analyzing relevant case law and literature, with a specific focus on professional liability attribution. In the case of an error, the primary responsibility remains with the physician, with possible shared liability with developers according to the framework of medical device liability. If there is disagreement with the AI's findings, the physician must not only pursue but also justify their choices according to prevailing professional standards. Regulations must balance the autonomy of AI systems with the need for responsible clinical practice. Effective use of AI-generated evaluations requires knowledge of data dynamics and metrics like sensitivity and specificity, even without a clear understanding of the underlying algorithms: the opacity (referred to as the "black box phenomenon") of certain systems raises concerns about the interpretation and actual usability of results for both physicians and patients. AI is redefining healthcare, underscoring the imperative for robust liability frameworks, meticulous updates of systems, and transparent patient communication regarding AI involvement.
Collapse
Affiliation(s)
- Maria Teresa Contaldo
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy; (G.V.); (S.T.); (G.C.)
| | - Giovanni Pasceri
- Information Society Law Center, Department “Cesare Beccaria”, University of Milan, 20122 Milan, Italy
| | - Giacomo Vignati
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy; (G.V.); (S.T.); (G.C.)
| | | | - Sonia Triggiani
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy; (G.V.); (S.T.); (G.C.)
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy; (G.V.); (S.T.); (G.C.)
- Radiology and Inverventional Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, 20122 Milan, Italy
| |
Collapse
|
105
|
Adams LC, Bressem KK, Poddubnyy D. Artificial intelligence and machine learning in axial spondyloarthritis. Curr Opin Rheumatol 2024; 36:267-273. [PMID: 38533807 DOI: 10.1097/bor.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
PURPOSE OF REVIEW To evaluate the current applications and prospects of artificial intelligence and machine learning in diagnosing and managing axial spondyloarthritis (axSpA), focusing on their role in medical imaging, predictive modelling, and patient monitoring. RECENT FINDINGS Artificial intelligence, particularly deep learning, is showing promise in diagnosing axSpA assisting with X-ray, computed tomography (CT) and MRI analyses, with some models matching or outperforming radiologists in detecting sacroiliitis and markers. Moreover, it is increasingly being used in predictive modelling of disease progression and personalized treatment, and could aid risk assessment, treatment response and clinical subtype identification. Variable study designs, sample sizes and the predominance of retrospective, single-centre studies still limit the generalizability of results. SUMMARY Artificial intelligence technologies have significant potential to advance the diagnosis and treatment of axSpA, providing more accurate, efficient and personalized healthcare solutions. However, their integration into clinical practice requires rigorous validation, ethical and legal considerations, and comprehensive training for healthcare professionals. Future advances in artificial intelligence could complement clinical expertise and improve patient care through improved diagnostic accuracy and tailored therapeutic strategies, but the challenge remains to ensure that these technologies are validated in prospective multicentre trials and ethically integrated into patient care.
Collapse
Affiliation(s)
- Lisa C Adams
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine
| | - Keno K Bressem
- Institute for Radiology and Nuclear Medicine, German Heart Centre Munich, Technical University of Munich, Munich
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin
- Epidemiology Unit, German Rheumatism Research Centre, Berlin, Germany
| |
Collapse
|
106
|
Teo ZL, Quek CWN, Wong JLY, Ting DSW. Cybersecurity in the generative artificial intelligence era. Asia Pac J Ophthalmol (Phila) 2024; 13:100091. [PMID: 39209217 DOI: 10.1016/j.apjo.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Generative Artificial Intelligence (GenAI) are algorithms capable of generating original content. The ability of GenAI to learn and generate novel outputs alike human cognition has taken the world by storm and ushered in a new era. In this review, we explore the role of GenAI in healthcare, including clinical, operational, and research applications, and delve into the cybersecurity risks of this technology. We discuss risks such as data privacy risks, data poisoning attacks, the propagation of bias, and hallucinations. In this review, we recommend risk mitigation strategies to enhance cybersecurity in GenAI technologies and further explore the use of GenAI as a tool in itself to enhance cybersecurity across the various AI algorithms. GenAI is emerging as a pivotal catalyst across various industries including the healthcare domain. Comprehending the intricacies of this technology and its potential risks will be imperative for us to fully capitalise on the benefits that GenAI can bring.
Collapse
Affiliation(s)
- Zhen Ling Teo
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore.
| | - Chrystie Wan Ning Quek
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Joy Le Yi Wong
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Daniel Shu Wei Ting
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Duke-NUS Medical School Singapore, Singapore.
| |
Collapse
|
107
|
Rupp M, Moser LB, Hess S, Angele P, Aurich M, Dyrna F, Nehrer S, Neubauer M, Pawelczyk J, Izadpanah K, Zellner J, Niemeyer P. Orthopaedic surgeons display a positive outlook towards artificial intelligence: A survey among members of the AGA Society for Arthroscopy and Joint Surgery. J Exp Orthop 2024; 11:e12080. [PMID: 38974054 PMCID: PMC11227606 DOI: 10.1002/jeo2.12080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose The purpose of this study was to evaluate the perspective of orthopaedic surgeons on the impact of artificial intelligence (AI) and to evaluate the influence of experience, workplace setting and familiarity with digital solutions on views on AI. Methods Orthopaedic surgeons of the AGA Society for Arthroscopy and Joint Surgery were invited to participate in an online, cross-sectional survey designed to gather information on professional background, subjective AI knowledge, opinion on the future impact of AI, openness towards different applications of AI, and perceived advantages and disadvantages of AI. Subgroup analyses were performed to examine the influence of experience, workplace setting and openness towards digital solutions on perspectives towards AI. Results Overall, 360 orthopaedic surgeons participated. The majority indicated average (43.6%) or rudimentary (38.1%) AI knowledge. Most (54.5%) expected AI to substantially influence orthopaedics within 5-10 years, predominantly as a complementary tool (91.1%). Preoperative planning (83.8%) was identified as the most likely clinical use case. A lack of consensus was observed regarding acceptable error levels. Time savings in preoperative planning (62.5%) and improved documentation (81%) were identified as notable advantages while declining skills of the next generation (64.5%) were rated as the most substantial drawback. There were significant differences in subjective AI knowledge depending on participants' experience (p = 0.021) and familiarity with digital solutions (p < 0.001), acceptable error levels depending on workplace setting (p = 0.004), and prediction of AI impact depending on familiarity with digital solutions (p < 0.001). Conclusion The majority of orthopaedic surgeons in this survey anticipated a notable positive impact of AI on their field, primarily as an assistive technology. A lack of consensus on acceptable error levels of AI and concerns about declining skills among future surgeons were observed. Level of Evidence Level IV, cross-sectional study.
Collapse
Affiliation(s)
- Marco‐Christopher Rupp
- Sektion Sportorthopädie, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
- Steadman Philippon Research InstituteVailColoradoUSA
| | - Lukas B. Moser
- Klinische Abteilung für Orthopädie und TraumatologieUniversitätsklinikum KremsKrems an der DonauAustria
- Zentrum für Regenerative MedizinUniversität für Weiterbildung KremsKrems an der DonauAustria
- SporthopaedicumRegensburgGermany
| | - Silvan Hess
- Universitätsklinik für Orthopädische Chirurgie und Traumatologie, InselspitalBernSwitzerland
| | - Peter Angele
- SporthopaedicumRegensburgGermany
- Klinik für Unfall‐ und WiederherstellungschirurgieUniversitätsklinikum RegensburgRegensburgGermany
| | | | | | - Stefan Nehrer
- Klinische Abteilung für Orthopädie und TraumatologieUniversitätsklinikum KremsKrems an der DonauAustria
- Zentrum für Regenerative MedizinUniversität für Weiterbildung KremsKrems an der DonauAustria
- Fakultät für Gesundheit und MedizinUniversität für Weiterbildung KremsKrems an der DonauAustria
| | - Markus Neubauer
- Klinische Abteilung für Orthopädie und TraumatologieUniversitätsklinikum KremsKrems an der DonauAustria
- Zentrum für Regenerative MedizinUniversität für Weiterbildung KremsKrems an der DonauAustria
| | - Johannes Pawelczyk
- Sektion Sportorthopädie, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
| | - Kaywan Izadpanah
- Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Freiburg, Medizinische FakultätAlbert‐Ludwigs‐Universität FreiburgFreiburgGermany
| | | | - Philipp Niemeyer
- OCM – Orthopädische Chirurgie MünchenMunichGermany
- Albert‐Ludwigs‐UniversityFreiburgGermany
| | | |
Collapse
|
108
|
Scicolone R, Vacca S, Pisu F, Benson JC, Nardi V, Lanzino G, Suri JS, Saba L. Radiomics and artificial intelligence: General notions and applications in the carotid vulnerable plaque. Eur J Radiol 2024; 176:111497. [PMID: 38749095 DOI: 10.1016/j.ejrad.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 06/17/2024]
Abstract
Carotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary tools for the quantitative analysis of medical imaging data. This integrated approach holds promise not only in refining medical imaging data analysis but also in optimizing the utilization of radiologists' expertise. By automating time consuming tasks, AI allows radiologists to focus on more pertinent responsibilities. Simultaneously, the capacity of AI in radiomics to extract nuanced patterns from raw data enhances the exploration of carotid atherosclerosis, advancing efforts in terms of (1) early detection and diagnosis, (2) risk stratification and predictive modeling, (3) improving workflow efficiency, and (4) contributing to advancements in research. This review provides an overview of general concepts related to radiomics and AI, along with their application in the field of carotid vulnerable plaque. It also offers insights into various research studies conducted on this topic across different imaging techniques.
Collapse
Affiliation(s)
- Roberta Scicolone
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - Sebastiano Vacca
- University of Cagliari, School of Medicine and Surgery, Cagliari, Italy
| | - Francesco Pisu
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - John C Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Valentina Nardi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy.
| |
Collapse
|
109
|
Sharma H, Ruikar M. Artificial intelligence at the pen's edge: Exploring the ethical quagmires in using artificial intelligence models like ChatGPT for assisted writing in biomedical research. Perspect Clin Res 2024; 15:108-115. [PMID: 39140014 PMCID: PMC11318783 DOI: 10.4103/picr.picr_196_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2024] Open
Abstract
Chat generative pretrained transformer (ChatGPT) is a conversational language model powered by artificial intelligence (AI). It is a sophisticated language model that employs deep learning methods to generate human-like text outputs to inputs in the natural language. This narrative review aims to shed light on ethical concerns about using AI models like ChatGPT in writing assistance in the health care and medical domains. Currently, all the AI models like ChatGPT are in the infancy stage; there is a risk of inaccuracy of the generated content, lack of contextual understanding, dynamic knowledge gaps, limited discernment, lack of responsibility and accountability, issues of privacy, data security, transparency, and bias, lack of nuance, and originality. Other issues such as authorship, unintentional plagiarism, falsified and fabricated content, and the threat of being red-flagged as AI-generated content highlight the need for regulatory compliance, transparency, and disclosure. If the legitimate issues are proactively considered and addressed, the potential applications of AI models as writing assistance could be rewarding.
Collapse
Affiliation(s)
- Hunny Sharma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Manisha Ruikar
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
110
|
Ose B, Sattar Z, Gupta A, Toquica C, Harvey C, Noheria A. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Curr Cardiol Rep 2024; 26:561-580. [PMID: 38753291 DOI: 10.1007/s11886-024-02062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI) is transforming electrocardiography (ECG) interpretation. AI diagnostics can reach beyond human capabilities, facilitate automated access to nuanced ECG interpretation, and expand the scope of cardiovascular screening in the population. AI can be applied to the standard 12-lead resting ECG and single-lead ECGs in external monitors, implantable devices, and direct-to-consumer smart devices. We summarize the current state of the literature on AI-ECG. RECENT FINDINGS Rhythm classification was the first application of AI-ECG. Subsequently, AI-ECG models have been developed for screening structural heart disease including hypertrophic cardiomyopathy, cardiac amyloidosis, aortic stenosis, pulmonary hypertension, and left ventricular systolic dysfunction. Further, AI models can predict future events like development of systolic heart failure and atrial fibrillation. AI-ECG exhibits potential in acute cardiac events and non-cardiac applications, including acute pulmonary embolism, electrolyte abnormalities, monitoring drugs therapy, sleep apnea, and predicting all-cause mortality. Many AI models in the domain of cardiac monitors and smart watches have received Food and Drug Administration (FDA) clearance for rhythm classification, while others for identification of cardiac amyloidosis, pulmonary hypertension and left ventricular dysfunction have received breakthrough device designation. As AI-ECG models continue to be developed, in addition to regulatory oversight and monetization challenges, thoughtful clinical implementation to streamline workflows, avoiding information overload and overwhelming of healthcare systems with false positive results is necessary. Research to demonstrate and validate improvement in healthcare efficiency and improved patient outcomes would be required before widespread adoption of any AI-ECG model.
Collapse
Affiliation(s)
- Benjamin Ose
- The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Zeeshan Sattar
- Division of General and Hospital Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Amulya Gupta
- Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Program for AI & Research in Cardiovascular Medicine (PARC), The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Chris Harvey
- Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Program for AI & Research in Cardiovascular Medicine (PARC), The University of Kansas Medical Center, Kansas City, KS, USA
| | - Amit Noheria
- Department of Cardiovascular Medicine, The University of Kansas Medical Center, Kansas City, KS, USA.
- Program for AI & Research in Cardiovascular Medicine (PARC), The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
111
|
Lee JC, Hamill CS, Shnayder Y, Buczek E, Kakarala K, Bur AM. Exploring the Role of Artificial Intelligence Chatbots in Preoperative Counseling for Head and Neck Cancer Surgery. Laryngoscope 2024; 134:2757-2761. [PMID: 38126511 DOI: 10.1002/lary.31243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To evaluate the potential use of artificial intelligence (AI) chatbots, such as ChatGPT, in preoperative counseling for patients undergoing head and neck cancer surgery. STUDY DESIGN Cross-Sectional Survey Study. SETTING Single institution tertiary care center. METHODS ChatGPT was used to generate presurgical educational information including indications, risks, and recovery time for five common head and neck surgeries. Chatbot-generated information was compared with information gathered from a simple browser search (first publicly available website excluding scholarly articles). The accuracy of the information, readability, thoroughness, and number of errors were compared by five experienced head and neck surgeons in a blinded fashion. Each surgeon then chose a preference between the two information sources for each surgery. RESULTS With the exception of total word count, ChatGPT-generated pre-surgical information has similar readability, content of knowledge, accuracy, thoroughness, and numbers of medical errors when compared to publicly available websites. Additionally, ChatGPT was preferred 48% of the time by experienced head and neck surgeons. CONCLUSION Head and neck surgeons rated ChatGPT-generated and readily available online educational materials similarly. Further refinement in AI technology may soon open more avenues for patient counseling. Future investigations into the medical safety of AI counseling and exploring patients' perspectives would be of strong interest. LEVEL OF EVIDENCE N/A. Laryngoscope, 134:2757-2761, 2024.
Collapse
Affiliation(s)
- Jason C Lee
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Chelsea S Hamill
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Yelizaveta Shnayder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Erin Buczek
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Kiran Kakarala
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Andrés M Bur
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| |
Collapse
|
112
|
Harishbhai Tilala M, Kumar Chenchala P, Choppadandi A, Kaur J, Naguri S, Saoji R, Devaguptapu B. Ethical Considerations in the Use of Artificial Intelligence and Machine Learning in Health Care: A Comprehensive Review. Cureus 2024; 16:e62443. [PMID: 39011215 PMCID: PMC11249277 DOI: 10.7759/cureus.62443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) technologies are revolutionizing health care by offering unprecedented opportunities to enhance patient care, optimize clinical workflows, and advance medical research. However, the integration of AI and ML into healthcare systems raises significant ethical considerations that must be carefully addressed to ensure responsible and equitable deployment. This comprehensive review explored the multifaceted ethical considerations surrounding the use of AI and ML in health care, including privacy and data security, algorithmic bias, transparency, clinical validation, and professional responsibility. By critically examining these ethical dimensions, stakeholders can navigate the ethical complexities of AI and ML integration in health care, while safeguarding patient welfare and upholding ethical principles. By embracing ethical best practices and fostering collaboration across interdisciplinary teams, the healthcare community can harness the full potential of AI and ML technologies to usher in a new era of personalized data-driven health care that prioritizes patient well-being and equity.
Collapse
Affiliation(s)
| | | | | | - Jagbir Kaur
- Program Management, Independent Researcher, West Orange, USA
| | | | - Rahul Saoji
- Data Analytics, Independent Researcher, Dallas, USA
| | | |
Collapse
|
113
|
Sulaieva O, Dudin O, Koshyk O, Panko M, Kobyliak N. Digital pathology implementation in cancer diagnostics: towards informed decision-making. Front Digit Health 2024; 6:1358305. [PMID: 38873358 PMCID: PMC11169727 DOI: 10.3389/fdgth.2024.1358305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Digital pathology (DP) has become a part of the cancer healthcare system, creating additional value for cancer patients. DP implementation in clinical practice provides plenty of benefits but also harbors hidden ethical challenges affecting physician-patient relationships. This paper addresses the ethical obligation to transform the physician-patient relationship for informed and responsible decision-making when using artificial intelligence (AI)-based tools for cancer diagnostics. DP application allows to improve the performance of the Human-AI Team shifting focus from AI challenges towards the Augmented Human Intelligence (AHI) benefits. AHI enhances analytical sensitivity and empowers pathologists to deliver accurate diagnoses and assess predictive biomarkers for further personalized treatment of cancer patients. At the same time, patients' right to know about using AI tools, their accuracy, strengths and limitations, measures for privacy protection, acceptance of privacy concerns and legal protection defines the duty of physicians to provide the relevant information about AHI-based solutions to patients and the community for building transparency, understanding and trust, respecting patients' autonomy and empowering informed decision-making in oncology.
Collapse
Affiliation(s)
- Oksana Sulaieva
- Medical LaboratoryCSD, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | | | | | - Nazarii Kobyliak
- Medical LaboratoryCSD, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
114
|
Arjanto P, Senduk FFW, Nahdiyah U, Utami MS. AI and ethics in mental health: exploring the controversy over the use of ChatGPT. J Public Health (Oxf) 2024; 46:e340-e341. [PMID: 38031294 DOI: 10.1093/pubmed/fdad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Paul Arjanto
- Faculty of Teacher Training and Education, University of Pattimura, Ambon, Indonesia
| | - Feibry F W Senduk
- Faculty of Economic and Business, State University of Manado, Tondano, Indonesia
| | - Umi Nahdiyah
- Faculty of Education, State University of Malang, Malang, Indonesia
| | - Mukti S Utami
- Faculty of Education, State University of Malang, Malang, Indonesia
| |
Collapse
|
115
|
Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms 2024; 12:1051. [PMID: 38930432 PMCID: PMC11205376 DOI: 10.3390/microorganisms12061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Traditional microbial diagnostic methods face many obstacles such as sample handling, culture difficulties, misidentification, and delays in determining susceptibility. The advent of artificial intelligence (AI) has markedly transformed microbial diagnostics with rapid and precise analyses. Nonetheless, ethical considerations accompany AI adoption, necessitating measures to uphold patient privacy, mitigate biases, and ensure data integrity. This review examines conventional diagnostic hurdles, stressing the significance of standardized procedures in sample processing. It underscores AI's significant impact, particularly through machine learning (ML), in microbial diagnostics. Recent progressions in AI, particularly ML methodologies, are explored, showcasing their influence on microbial categorization, comprehension of microorganism interactions, and augmentation of microscopy capabilities. This review furnishes a comprehensive evaluation of AI's utility in microbial diagnostics, addressing both advantages and challenges. A few case studies including SARS-CoV-2, malaria, and mycobacteria serve to illustrate AI's potential for swift and precise diagnosis. Utilization of convolutional neural networks (CNNs) in digital pathology, automated bacterial classification, and colony counting further underscores AI's versatility. Additionally, AI improves antimicrobial susceptibility assessment and contributes to disease surveillance, outbreak forecasting, and real-time monitoring. Despite a few limitations, integration of AI in diagnostic microbiology presents robust solutions, user-friendly algorithms, and comprehensive training, promising paradigm-shifting advancements in healthcare.
Collapse
Affiliation(s)
- Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA;
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, Dearborn, MI 48126, USA;
| | - Rnda I. Ashgar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Arshad Jawed
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Mohammed Ahmed Hassani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Sajad Ahmad Dar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| |
Collapse
|
116
|
Alhuwaydi AM. Exploring the Role of Artificial Intelligence in Mental Healthcare: Current Trends and Future Directions - A Narrative Review for a Comprehensive Insight. Risk Manag Healthc Policy 2024; 17:1339-1348. [PMID: 38799612 PMCID: PMC11127648 DOI: 10.2147/rmhp.s461562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Mental health is an essential component of the health and well-being of a person and community, and it is critical for the individual, society, and socio-economic development of any country. Mental healthcare is currently in the health sector transformation era, with emerging technologies such as artificial intelligence (AI) reshaping the screening, diagnosis, and treatment modalities of psychiatric illnesses. The present narrative review is aimed at discussing the current landscape and the role of AI in mental healthcare, including screening, diagnosis, and treatment. Furthermore, this review attempted to highlight the key challenges, limitations, and prospects of AI in providing mental healthcare based on existing works of literature. The literature search for this narrative review was obtained from PubMed, Saudi Digital Library (SDL), Google Scholar, Web of Science, and IEEE Xplore, and we included only English-language articles published in the last five years. Keywords used in combination with Boolean operators ("AND" and "OR") were the following: "Artificial intelligence", "Machine learning", Deep learning", "Early diagnosis", "Treatment", "interventions", "ethical consideration", and "mental Healthcare". Our literature review revealed that, equipped with predictive analytics capabilities, AI can improve treatment planning by predicting an individual's response to various interventions. Predictive analytics, which uses historical data to formulate preventative interventions, aligns with the move toward individualized and preventive mental healthcare. In the screening and diagnostic domains, a subset of AI, such as machine learning and deep learning, has been proven to analyze various mental health data sets and predict the patterns associated with various mental health problems. However, limited studies have evaluated the collaboration between healthcare professionals and AI in delivering mental healthcare, as these sensitive problems require empathy, human connections, and holistic, personalized, and multidisciplinary approaches. Ethical issues, cybersecurity, a lack of data analytics diversity, cultural sensitivity, and language barriers remain concerns for implementing this futuristic approach in mental healthcare. Considering these sensitive problems require empathy, human connections, and holistic, personalized, and multidisciplinary approaches, it is imperative to explore these aspects. Therefore, future comparative trials with larger sample sizes and data sets are warranted to evaluate different AI models used in mental healthcare across regions to fill the existing knowledge gaps.
Collapse
Affiliation(s)
- Ahmed M Alhuwaydi
- Department of Internal Medicine, Division of Psychiatry, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
117
|
Hasan HE, Jaber D, Khabour OF, Alzoubi KH. Ethical considerations and concerns in the implementation of AI in pharmacy practice: a cross-sectional study. BMC Med Ethics 2024; 25:55. [PMID: 38750441 PMCID: PMC11096093 DOI: 10.1186/s12910-024-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Integrating artificial intelligence (AI) into healthcare has raised significant ethical concerns. In pharmacy practice, AI offers promising advances but also poses ethical challenges. METHODS A cross-sectional study was conducted in countries from the Middle East and North Africa (MENA) region on 501 pharmacy professionals. A 12-item online questionnaire assessed ethical concerns related to the adoption of AI in pharmacy practice. Demographic factors associated with ethical concerns were analyzed via SPSS v.27 software using appropriate statistical tests. RESULTS Participants expressed concerns about patient data privacy (58.9%), cybersecurity threats (58.9%), potential job displacement (62.9%), and lack of legal regulation (67.0%). Tech-savviness and basic AI understanding were correlated with higher concern scores (p < 0.001). Ethical implications include the need for informed consent, beneficence, justice, and transparency in the use of AI. CONCLUSION The findings emphasize the importance of ethical guidelines, education, and patient autonomy in adopting AI. Collaboration, data privacy, and equitable access are crucial to the responsible use of AI in pharmacy practice.
Collapse
Affiliation(s)
- Hisham E Hasan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan.
| | - Deema Jaber
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
118
|
Farah L, Borget I, Martelli N, Vallee A. Suitability of the Current Health Technology Assessment of Innovative Artificial Intelligence-Based Medical Devices: Scoping Literature Review. J Med Internet Res 2024; 26:e51514. [PMID: 38739911 PMCID: PMC11130781 DOI: 10.2196/51514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI)-based medical devices have garnered attention due to their ability to revolutionize medicine. Their health technology assessment framework is lacking. OBJECTIVE This study aims to analyze the suitability of each health technology assessment (HTA) domain for the assessment of AI-based medical devices. METHODS We conducted a scoping literature review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. We searched databases (PubMed, Embase, and Cochrane Library), gray literature, and HTA agency websites. RESULTS A total of 10.1% (78/775) of the references were included. Data quality and integration are vital aspects to consider when describing and assessing the technical characteristics of AI-based medical devices during an HTA process. When it comes to implementing specialized HTA for AI-based medical devices, several practical challenges and potential barriers could be highlighted and should be taken into account (AI technological evolution timeline, data requirements, complexity and transparency, clinical validation and safety requirements, regulatory and ethical considerations, and economic evaluation). CONCLUSIONS The adaptation of the HTA process through a methodological framework for AI-based medical devices enhances the comparability of results across different evaluations and jurisdictions. By defining the necessary expertise, the framework supports the development of a skilled workforce capable of conducting robust and reliable HTAs of AI-based medical devices. A comprehensive adapted HTA framework for AI-based medical devices can provide valuable insights into the effectiveness, cost-effectiveness, and societal impact of AI-based medical devices, guiding their responsible implementation and maximizing their benefits for patients and health care systems.
Collapse
Affiliation(s)
- Line Farah
- Innovation Center for Medical Devices Department, Foch Hospital, Suresnes, France
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé Department, University Paris-Saclay, Orsay, France
| | - Isabelle Borget
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé Department, University Paris-Saclay, Orsay, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, Villejuif, France
- Oncostat U1018, Inserm, Équipe Labellisée Ligue Contre le Cancer, University Paris-Saclay, Villejuif, France
| | - Nicolas Martelli
- Groupe de Recherche et d'accueil en Droit et Economie de la Santé Department, University Paris-Saclay, Orsay, France
- Pharmacy Department, Georges Pompidou European Hospital, Paris, France
| | - Alexandre Vallee
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
119
|
Barbieri MA, Battini V, Sessa M. Artificial intelligence for the optimal management of community-acquired pneumonia. Curr Opin Pulm Med 2024; 30:252-257. [PMID: 38305352 DOI: 10.1097/mcp.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
PURPOSE OF REVIEW This timely review explores the integration of artificial intelligence (AI) into community-acquired pneumonia (CAP) management, emphasizing its relevance in predicting the risk of hospitalization. With CAP remaining a global public health concern, the review highlights the need for efficient and reliable AI tools to optimize resource allocation and improve patient outcomes. RECENT FINDINGS Challenges in CAP management delve into the application of AI in predicting CAP-related hospitalization risks, and complications, and mortality. The integration of AI-based risk scores in managing CAP has the potential to enhance the accuracy of predicting patients at higher risk, facilitating timely intervention and resource allocation. Moreover, AI algorithms reduce variability associated with subjective clinical judgment, promoting consistency in decision-making, and provide real-time risk assessments, aiding in the dynamic management of patients with CAP. SUMMARY The development and implementation of AI-tools for hospitalization in CAP represent a transformative approach to improving patient outcomes. The integration of AI into healthcare has the potential to revolutionize the way we identify and manage individuals at risk of severe outcomes, ultimately leading to more efficient resource utilization and better overall patient care.
Collapse
Affiliation(s)
- Maria Antonietta Barbieri
- Department of Clinical and Experimental Medicine, University of Messina, Messina
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vera Battini
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST, Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
120
|
Thorat V, Rao P, Joshi N, Talreja P, Shetty AR. Role of Artificial Intelligence (AI) in Patient Education and Communication in Dentistry. Cureus 2024; 16:e59799. [PMID: 38846249 PMCID: PMC11155216 DOI: 10.7759/cureus.59799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Effective patient education and communication are integral components of quality dental care, contributing to informed decision-making, treatment compliance, and positive clinical outcomes. However, traditional methods face challenges such as language barriers, anxiety, and information retention issues. Artificial intelligence (AI) presents innovative solutions to enhance patient engagement and communication in dentistry. This review explores the transformative role of AI in redefining patient education and communication strategies, focusing on applications, benefits, challenges, and future directions. A literature search identified articles from 2018 to 2024, encompassing empirical evidence and conceptual frameworks related to AI in dental patient engagement and communication. Key findings reveal AI's potential to offer personalized educational materials, virtual consultations, language translation tools, and virtual reality simulations, improving patient understanding and experience. Despite advancements, concerns about overreliance, accuracy, implementation costs, patient acceptance, privacy, and regulatory compliance persist. Future implications suggest AI's ability to track patient progress, analyze feedback, streamline administrative processes, and provide ongoing support, enhancing oral health outcomes. However, ethical, regulatory, and equity considerations require attention for responsible AI deployment and widespread adoption. Overall, AI holds promise for revolutionizing dental patient education, communication, and care delivery, emphasizing the need for comprehensive strategies to address emerging challenges and maximize benefits.
Collapse
Affiliation(s)
- Vinayak Thorat
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Prajakta Rao
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Nilesh Joshi
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Prakash Talreja
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Anupa R Shetty
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
121
|
Farabi Maleki S, Yousefi M, Afshar S, Pedrammehr S, Lim CP, Jafarizadeh A, Asadi H. Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls. Semin Ophthalmol 2024; 39:271-288. [PMID: 38088176 DOI: 10.1080/08820538.2023.2293030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/23/2023] [Indexed: 03/28/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease characterized by inflammatory processes, demyelination, neurodegeneration, and axonal damage within the central nervous system (CNS). Retinal imaging, particularly Optical coherence tomography (OCT), has emerged as a crucial tool for investigating MS-related retinal injury. The integration of artificial intelligence(AI) has shown promise in enhancing OCT analysis for MS. Researchers are actively utilizing AI algorithms to accurately detect and classify MS-related abnormalities, leading to improved efficiency in diagnosis, monitoring, and personalized treatment planning. The prognostic value of AI in predicting MS disease progression has garnered substantial attention. Machine learning (ML) and deep learning (DL) algorithms can analyze longitudinal OCT data to forecast the course of the disease, providing critical information for personalized treatment planning and improved patient outcomes. Early detection of high-risk patients allows for targeted interventions to mitigate disability progression effectively. As such, AI-driven approaches yielded remarkable abilities in classifying distinct MS subtypes based on retinal features, aiding in disease characterization and guiding tailored therapeutic strategies. Additionally, these algorithms have enhanced the accuracy and efficiency of OCT image segmentation, streamlined diagnostic processes, and reduced human error. This study reviews the current research studies on the integration of AI,including ML and DL algorithms, with OCT in the context of MS. It examines the advancements, challenges, potential prospects, and ethical concerns of AI-powered techniques in enhancing MS diagnosis, monitoring disease progression, revolutionizing patient care, the development of patient screening tools, and supported clinical decision-making based on OCT images.
Collapse
Affiliation(s)
| | - Milad Yousefi
- Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran
| | - Sayeh Afshar
- Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Chee Peng Lim
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Burwood, Australia
| | - Ali Jafarizadeh
- Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houshyar Asadi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Burwood, Australia
| |
Collapse
|
122
|
Alhatem A, Wong T, Clark Lambert W. Revolutionizing diagnostic pathology: The emergence and impact of artificial intelligence-what doesn't kill you makes you stronger? Clin Dermatol 2024; 42:268-274. [PMID: 38181890 DOI: 10.1016/j.clindermatol.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
This study explored the integration and impact of artificial intelligence (AI) in diagnostic pathology, particularly dermatopathology, assessing its challenges and potential solutions for global health care enhancement. A comprehensive literature search in PubMed and Google Scholar, conducted on March 30, 2023, and using terms related to AI, pathology, and machine learning, yielded 44 relevant publications. These were analyzed under themes including the evolution of deep learning in pathology, AI's role in replacing pathologists, development challenges of diagnostic algorithms, clinical implementation hurdles, strategies for practical application in dermatopathology, and future prospects of AI in this field. The findings highlight AI's transformative potential in pathology, underscore the need for ongoing research, collaboration, and regulatory dialogue, and emphasize the importance of addressing the ethical and practical challenges in AI implementation for improved global health care outcomes.
Collapse
Affiliation(s)
- Albert Alhatem
- Department of Pathology, Immunology and Laboratory Medicine and Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Trish Wong
- Department of Pathology, Immunology and Laboratory Medicine and Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - W Clark Lambert
- Department of Pathology, Immunology and Laboratory Medicine and Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
123
|
Hamilton A. Artificial Intelligence and Healthcare Simulation: The Shifting Landscape of Medical Education. Cureus 2024; 16:e59747. [PMID: 38840993 PMCID: PMC11152357 DOI: 10.7759/cureus.59747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 06/07/2024] Open
Abstract
The impact of artificial intelligence (AI) will be felt not only in the arena of patient care and deliverable therapies but will also be uniquely disruptive in medical education and healthcare simulation (HCS), in particular. As HCS is intertwined with computer technology, it offers opportunities for rapid scalability with AI and, therefore, will be the most practical place to test new AI applications. This will ensure the acquisition of AI literacy for graduates from the country's various healthcare professional schools. Artificial intelligence has proven to be a useful adjunct in developing interprofessional education and team and leadership skills assessments. Outcome-driven medical simulation has been extensively used to train students in image-centric disciplines such as radiology, ultrasound, echocardiography, and pathology. Allowing students and trainees in healthcare to first apply diagnostic decision support systems (DDSS) under simulated conditions leads to improved diagnostic accuracy, enhanced communication with patients, safer triage decisions, and improved outcomes from rapid response teams. However, the issue of bias, hallucinations, and the uncertainty of emergent properties may undermine the faith of healthcare professionals as they see AI systems deployed in the clinical setting and participating in diagnostic judgments. Also, the demands of ensuring AI literacy in our healthcare professional curricula will place burdens on simulation assets and faculty to adapt to a rapidly changing technological landscape. Nevertheless, the introduction of AI will place increased emphasis on virtual reality platforms, thereby improving the availability of self-directed learning and making it available 24/7, along with uniquely personalized evaluations and customized coaching. Yet, caution must be exercised concerning AI, especially as society's earlier, delayed, and muted responses to the inherent dangers of social media raise serious questions about whether the American government and its citizenry can anticipate the security and privacy guardrails that need to be in place to protect our healthcare practitioners, medical students, and patients.
Collapse
Affiliation(s)
- Allan Hamilton
- Artificial Intelligence Division, Arizona Simulation Technology and Education Center (ASTEC) University of Arizona, Tucson, USA
| |
Collapse
|
124
|
Carini C, Seyhan AA. Tribulations and future opportunities for artificial intelligence in precision medicine. J Transl Med 2024; 22:411. [PMID: 38702711 PMCID: PMC11069149 DOI: 10.1186/s12967-024-05067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
Upon a diagnosis, the clinical team faces two main questions: what treatment, and at what dose? Clinical trials' results provide the basis for guidance and support for official protocols that clinicians use to base their decisions. However, individuals do not consistently demonstrate the reported response from relevant clinical trials. The decision complexity increases with combination treatments where drugs administered together can interact with each other, which is often the case. Additionally, the individual's response to the treatment varies with the changes in their condition. In practice, the drug and the dose selection depend significantly on the medical protocol and the medical team's experience. As such, the results are inherently varied and often suboptimal. Big data and Artificial Intelligence (AI) approaches have emerged as excellent decision-making tools, but multiple challenges limit their application. AI is a rapidly evolving and dynamic field with the potential to revolutionize various aspects of human life. AI has become increasingly crucial in drug discovery and development. AI enhances decision-making across different disciplines, such as medicinal chemistry, molecular and cell biology, pharmacology, pathology, and clinical practice. In addition to these, AI contributes to patient population selection and stratification. The need for AI in healthcare is evident as it aids in enhancing data accuracy and ensuring the quality care necessary for effective patient treatment. AI is pivotal in improving success rates in clinical practice. The increasing significance of AI in drug discovery, development, and clinical trials is underscored by many scientific publications. Despite the numerous advantages of AI, such as enhancing and advancing Precision Medicine (PM) and remote patient monitoring, unlocking its full potential in healthcare requires addressing fundamental concerns. These concerns include data quality, the lack of well-annotated large datasets, data privacy and safety issues, biases in AI algorithms, legal and ethical challenges, and obstacles related to cost and implementation. Nevertheless, integrating AI in clinical medicine will improve diagnostic accuracy and treatment outcomes, contribute to more efficient healthcare delivery, reduce costs, and facilitate better patient experiences, making healthcare more sustainable. This article reviews AI applications in drug development and clinical practice, making healthcare more sustainable, and highlights concerns and limitations in applying AI.
Collapse
Affiliation(s)
- Claudio Carini
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, New Hunt's House, King's College London, Guy's Campus, London, UK.
- Biomarkers Consortium, Foundation of the National Institute of Health, Bethesda, MD, USA.
| | - Attila A Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, USA.
- Legorreta Cancer Center at Brown University, Providence, RI, USA.
| |
Collapse
|
125
|
Singh V, Rani S. Machine Learning in Medical Imaging. ADVANCES IN MEDICAL TECHNOLOGIES AND CLINICAL PRACTICE 2024:34-50. [DOI: 10.4018/979-8-3693-5261-8.ch003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This chapter explores the ethical issues surrounding medical imaging and related applications of machine learning and also covers the regulatory frameworks that control the application of machine learning in medical imaging. It examines the important questions of patient data privacy and the requirement for informed consent for data utilization. Apart from the foregoing, algorithmic bias and transparency issues, highlighting the significance of fairness in medical imagery analyses are also presented. In addition, laws about medical devices are also offered. The global context of medical imaging, looking at how various countries handle the regulatory and ethical ramifications of machine learning in the medical field is also studied. Two case studies highlighting the difficulties encountered by healthcare providers have been presented. The academic contents presented in this chapter are of considerable use to academics, researchers, legislators, physicians, radiologists, and attorneys.
Collapse
|
126
|
Ranjbar A, Mork EW, Ravn J, Brøgger H, Myrseth P, Østrem HP, Hallock H. Managing Risk and Quality of AI in Healthcare: Are Hospitals Ready for Implementation? Risk Manag Healthc Policy 2024; 17:877-882. [PMID: 38617593 PMCID: PMC11016246 DOI: 10.2147/rmhp.s452337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Artificial intelligence (AI) provides a unique opportunity to help meet the demands of the future healthcare system. However, hospitals may not be well equipped to handle safe and effective development and/or procurement of AI systems. Furthermore, upcoming regulations such as the EU AI Act may enforce the need to establish new management systems, quality assurance and control mechanisms, novel to healthcare organizations. This paper discusses challenges in AI implementation, particularly potential gaps in current management systems (MS), by reviewing the harmonized standard for AI MS, ISO 42001, as part of a gap analysis of a tertiary acute hospital with ongoing AI activities. Examination of the industry agnostic ISO 42001 reveals a technical debt within healthcare, aligning with previous research on digitalization and AI implementation. To successfully implement AI with quality assurance in mind, emphasis should be put on the foundation and structure of the healthcare organizations, including both workforce and data infrastructure.
Collapse
Affiliation(s)
- Arian Ranjbar
- Medical Technology and E-Health, Akershus University Hospital, Lørenskog, Norway
| | | | - Jesper Ravn
- Medical Technology and E-Health, Akershus University Hospital, Lørenskog, Norway
| | - Helga Brøgger
- Group Research and Development, DNV AS, Høvik, Norway
| | - Per Myrseth
- Group Research and Development, DNV AS, Høvik, Norway
| | | | - Harry Hallock
- Group Research and Development, DNV AS, Høvik, Norway
| |
Collapse
|
127
|
Verhoeven R, Hulscher JBF. Editorial: Artificial intelligence and machine learning in pediatric surgery. Front Pediatr 2024; 12:1404600. [PMID: 38659697 PMCID: PMC11042026 DOI: 10.3389/fped.2024.1404600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Rosa Verhoeven
- Department of Surgery, Division of Pediatric Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B. F. Hulscher
- Department of Surgery, Division of Pediatric Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
128
|
Wimbarti S, Kairupan BHR, Tallei TE. Critical review of self-diagnosis of mental health conditions using artificial intelligence. Int J Ment Health Nurs 2024; 33:344-358. [PMID: 38345132 DOI: 10.1111/inm.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
The advent of artificial intelligence (AI) has revolutionised various aspects of our lives, including mental health nursing. AI-driven tools and applications have provided a convenient and accessible means for individuals to assess their mental well-being within the confines of their homes. Nonetheless, the widespread trend of self-diagnosing mental health conditions through AI poses considerable risks. This review article examines the perils associated with relying on AI for self-diagnosis in mental health, highlighting the constraints and possible adverse outcomes that can arise from such practices. It delves into the ethical, psychological, and social implications, underscoring the vital role of mental health professionals, including psychologists, psychiatrists, and nursing specialists, in providing professional assistance and guidance. This article aims to highlight the importance of seeking professional assistance and guidance in addressing mental health concerns, especially in the era of AI-driven self-diagnosis.
Collapse
Affiliation(s)
- Supra Wimbarti
- Faculty of Psychology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - B H Ralph Kairupan
- Department of Psychiatry, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| |
Collapse
|
129
|
Agu PC, Obulose CN. Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications. Drug Dev Res 2024; 85:e22159. [PMID: 38375772 DOI: 10.1002/ddr.22159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
The purpose of this study was to discuss how artificial intelligence (AI) methods have affected the field of drug development. It looks at how AI models and data resources are reshaping the drug development process by offering more affordable and expedient options to conventional approaches. The paper opens with an overview of well-known information sources for drug development. The discussion then moves on to molecular representation techniques that make it possible to convert data into representations that computers can understand. The paper also gives a general overview of the algorithms used in the creation of drug discovery models based on AI. In particular, the paper looks at how AI algorithms might be used to forecast drug toxicity, drug bioactivity, and drug physicochemical properties. De novo drug design, binding affinity prediction, and other AI-based models for drug-target interaction were covered in deeper detail. Modern applications of AI in nanomedicine design and pharmacological synergism/antagonism prediction were also covered. The potential advantages of AI in drug development are highlighted as the evaluation comes to a close. It underlines how AI may greatly speed up and improve the efficiency of drug discovery, resulting in the creation of new and better medicines. To fully realize the promise of AI in drug discovery, the review acknowledges the difficulties that come with its uses in this field and advocates for more study and development.
Collapse
Affiliation(s)
- Peter Chinedu Agu
- Department of Biochemistry, College of Science, Evangel University, Akaeze, Ebonyi State, Nigeria
| | - Chidiebere Nwiboko Obulose
- Department of Computer Sciences, Our Savior Institute of Science, Agriculture, and Technology (OSISATECH Polytechnic), Enugu, Nigeria
| |
Collapse
|
130
|
Desai V. The Future of Artificial Intelligence in Sports Medicine and Return to Play. Semin Musculoskelet Radiol 2024; 28:203-212. [PMID: 38484772 DOI: 10.1055/s-0043-1778019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Artificial intelligence (AI) has shown tremendous growth over the last decade, with the more recent development of clinical applications in health care. The ability of AI to synthesize large amounts of complex data automatically allows health care providers to access previously unavailable metrics and thus enhance and personalize patient care. These innovations include AI-assisted diagnostic tools, prediction models for each treatment pathway, and various tools for workflow optimization. The extension of AI into sports medicine is still early, but numerous AI-driven algorithms, devices, and research initiatives have delved into predicting and preventing athlete injury, aiding in injury assessment, optimizing recovery plans, monitoring rehabilitation progress, and predicting return to play.
Collapse
Affiliation(s)
- Vishal Desai
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
131
|
Ciet P, Eade C, Ho ML, Laborie LB, Mahomed N, Naidoo J, Pace E, Segal B, Toso S, Tschauner S, Vamyanmane DK, Wagner MW, Shelmerdine SC. The unintended consequences of artificial intelligence in paediatric radiology. Pediatr Radiol 2024; 54:585-593. [PMID: 37665368 DOI: 10.1007/s00247-023-05746-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, there has been a dramatic rise in the interest relating to the application of artificial intelligence (AI) in radiology. Originally only 'narrow' AI tasks were possible; however, with increasing availability of data, teamed with ease of access to powerful computer processing capabilities, we are becoming more able to generate complex and nuanced prediction models and elaborate solutions for healthcare. Nevertheless, these AI models are not without their failings, and sometimes the intended use for these solutions may not lead to predictable impacts for patients, society or those working within the healthcare profession. In this article, we provide an overview of the latest opinions regarding AI ethics, bias, limitations, challenges and considerations that we should all contemplate in this exciting and expanding field, with a special attention to how this applies to the unique aspects of a paediatric population. By embracing AI technology and fostering a multidisciplinary approach, it is hoped that we can harness the power AI brings whilst minimising harm and ensuring a beneficial impact on radiology practice.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia's Children's Hospital, Rotterdam, The Netherlands
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Mai-Lan Ho
- University of Missouri, Columbia, MO, USA
| | - Lene Bjerke Laborie
- Department of Radiology, Section for Paediatrics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nasreen Mahomed
- Department of Radiology, University of Witwatersrand, Johannesburg, South Africa
| | - Jaishree Naidoo
- Paediatric Diagnostic Imaging, Dr J Naidoo Inc., Johannesburg, South Africa
- Envisionit Deep AI Ltd, Coveham House, Downside Bridge Road, Cobham, UK
| | - Erika Pace
- Department of Diagnostic Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bradley Segal
- Department of Radiology, University of Witwatersrand, Johannesburg, South Africa
| | - Seema Toso
- Pediatric Radiology, Children's Hospital, University Hospitals of Geneva, Geneva, Switzerland
| | - Sebastian Tschauner
- Division of Paediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Dhananjaya K Vamyanmane
- Department of Pediatric Radiology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Matthias W Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Susan C Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1H 3JH, UK.
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, Bloomsbury, London, UK.
- Department of Clinical Radiology, St George's Hospital, London, UK.
| |
Collapse
|
132
|
Naseri S, Shukla S, Hiwale KM, Jagtap MM, Gadkari P, Gupta K, Deshmukh M, Sagar S. From Pixels to Prognosis: A Narrative Review on Artificial Intelligence's Pioneering Role in Colorectal Carcinoma Histopathology. Cureus 2024; 16:e59171. [PMID: 38807833 PMCID: PMC11129955 DOI: 10.7759/cureus.59171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024] Open
Abstract
Colorectal carcinoma, a prevalent and deadly malignancy, necessitates precise histopathological assessment for effective diagnosis and prognosis. Artificial intelligence (AI) emerges as a transformative force in this realm, offering innovative solutions to enhance traditional histopathological methods. This narrative review explores AI's pioneering role in colorectal carcinoma histopathology, encompassing its evolution, techniques, and advancements. AI algorithms, notably machine learning and deep learning, have revolutionized image analysis, facilitating accurate diagnosis and prognosis prediction. Furthermore, AI-driven histopathological analysis unveils potential biomarkers and therapeutic targets, heralding personalized treatment approaches. Despite its promise, challenges persist, including data quality, interpretability, and integration. Collaborative efforts among researchers, clinicians, and AI developers are imperative to surmount these hurdles and realize AI's full potential in colorectal carcinoma care. This review underscores AI's transformative impact and implications for future oncology research, clinical practice, and interdisciplinary collaboration.
Collapse
Affiliation(s)
- Suhit Naseri
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Samarth Shukla
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - K M Hiwale
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Miheer M Jagtap
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pravin Gadkari
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Kartik Gupta
- Radiation Oncology, Delhi State Cancer Institute, Delhi, IND
| | - Mamta Deshmukh
- Pathology, Indian Institute of Medical Sciences and Research, Jalna, IND
| | - Shakti Sagar
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
133
|
Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024; 8:80. [PMID: 38553633 PMCID: PMC10980741 DOI: 10.1038/s41698-024-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kartik Reddy
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Abhishek Midya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krunal Balvantbhai Pandav
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- The Cell and Molecular Biology Program, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
134
|
Giannitto C, Carnicelli G, Lusi S, Ammirabile A, Casiraghi E, De Virgilio A, Esposito AA, Farina D, Ferreli F, Franzese C, Frigerio GM, Lo Casto A, Malvezzi L, Lorini L, Othman AE, Preda L, Scorsetti M, Bossi P, Mercante G, Spriano G, Balzarini L, Francone M. The Use of Artificial Intelligence in Head and Neck Cancers: A Multidisciplinary Survey. J Pers Med 2024; 14:341. [PMID: 38672968 PMCID: PMC11050769 DOI: 10.3390/jpm14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Artificial intelligence (AI) approaches have been introduced in various disciplines but remain rather unused in head and neck (H&N) cancers. This survey aimed to infer the current applications of and attitudes toward AI in the multidisciplinary care of H&N cancers. From November 2020 to June 2022, a web-based questionnaire examining the relationship between AI usage and professionals' demographics and attitudes was delivered to different professionals involved in H&N cancers through social media and mailing lists. A total of 139 professionals completed the questionnaire. Only 49.7% of the respondents reported having experience with AI. The most frequent AI users were radiologists (66.2%). Significant predictors of AI use were primary specialty (V = 0.455; p < 0.001), academic qualification and age. AI's potential was seen in the improvement of diagnostic accuracy (72%), surgical planning (64.7%), treatment selection (57.6%), risk assessment (50.4%) and the prediction of complications (45.3%). Among participants, 42.7% had significant concerns over AI use, with the most frequent being the 'loss of control' (27.6%) and 'diagnostic errors' (57.0%). This survey reveals limited engagement with AI in multidisciplinary H&N cancer care, highlighting the need for broader implementation and further studies to explore its acceptance and benefits.
Collapse
Affiliation(s)
- Caterina Giannitto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giorgia Carnicelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Stefano Lusi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Elena Casiraghi
- Department of Computer Science “Giovanni degli Antoni”, University of Milan, Via Celoria 18, 20133 Milan, Italy;
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94710, USA
| | - Armando De Virgilio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | | | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Fabio Ferreli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Radiotherapy and Radiosurgery IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Gian Marco Frigerio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Antonio Lo Casto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University Hospital of Palermo, 90127 Palermo, Italy;
| | - Luca Malvezzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Luigi Lorini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Medical Oncology and Hematology Unit IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Ahmed E. Othman
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Lorenzo Preda
- Radiology Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Radiotherapy and Radiosurgery IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Mercante
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Spriano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Luca Balzarini
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
135
|
Pavia G, Scarpa F, Ciccozzi A, Romano C, Branda F, Quirino A, Marascio N, Matera G, Sanna D, Ciccozzi M. Changing and Evolution of Influenza Virus: Is It a Trivial Flu? Chemotherapy 2024; 69:185-193. [PMID: 38508151 DOI: 10.1159/000538382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Influenza viruses are etiological agents which cause contagious respiratory, seasonal epidemics and, for influenza A subtypes, pandemics. The clinical picture of influenza has undergone continuous change over the years, due to intrinsic viral evolution as well as "reassortment" of its genomic segments. The history of influenza highlights its ability to adapt and to rapidly evolve, without specific circumstances. This reflects the complexity of this pathology and poses the fundamental question about its assumption as a "common illness" and its impact on public health. SUMMARY The global influenza epidemics and pandemics claimed millions of deaths, leaving an indelible mark on public health and showing the need for a better comprehension of the influenza virus. The clear understanding of genetic variations during the influenza seasonal epidemics is a crucial point for developing effective strategies for prevention, treatment, and vaccine design. The recent advance in next-generation sequencing approaches, model systems to virus culture, and bioinformatics pipeline played a key role in the rapid characterization of circulating influenza strains. In particular, the increase in computational power allowed the performance of complex tasks in healthcare settings through machine learning algorithms, which analyze different variables, such as medical and laboratory outputs, to optimize medical research and improve public health systems. The early detection of emerging and reemerging pathogens is a matter of importance to prevent future pandemics. KEY MESSAGES The perception of influenza as a "trivial flu" or a more serious public health concern is a subject of ongoing debate, reflecting the multifaceted nature of this infectious disease. The variability in the severity of influenza sheds light on the unpredictability of the viral characteristics, coupled with the challenges in accurately predicting circulating strains. This adds complexity to the public health burden of influenza and highlights the need for targeted interventions.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
136
|
Lin GSS, Tan WW, Hashim H. Students' perceptions towards the ethical considerations of using artificial intelligence algorithms in clinical decision-making. Br Dent J 2024:10.1038/s41415-024-7184-3. [PMID: 38491204 DOI: 10.1038/s41415-024-7184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 03/18/2024]
Abstract
Aim The present study aimed to explore the perceptions of dental students regarding the ethical considerations associated with the use of artificial intelligence (AI) algorithms in clinical decision-making.Methods All the undergraduate clinical-year dental students were invited to take part in the study. A validated online questionnaire which consisted of 21 closed-ended questions (five-point Likert scales) was distributed to the students to evaluate their perceptions on the topic. Mean perception scores of the students from different years were analysed using a one-way ANOVA test, while independent t-tests were used to compare the scores between sexes.Results In total, 165 students participated in the present study. The mean age of the respondents was 23.3 (± 1.38) years and the majority were female, Chinese students. Respondents showed positive perceptions throughout all three domains. Uniform and comparable perceptions were seen across various academic years and sexes, with female respondents expressing stronger agreement regarding patient consent and privacy prioritisation.Conclusion Undergraduate clinical dental students generally showed positive perceptions regarding the ethical considerations associated with the integration of AI algorithms in clinical decision-making. It is essential to address these ethical considerations to ensure that AI benefits patient outcomes while upholding fundamental ethical principles and patient-centred care.
Collapse
Affiliation(s)
- Galvin Sim Siang Lin
- Department of Restorative Dentistry, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Pahang, Malaysia.
| | - Wen Wu Tan
- Department of Dental Public Health, Faculty of Dentistry, AIMST University, 08100, Kedah, Malaysia
| | - Hasnah Hashim
- Department of Dental Public Health, Faculty of Dentistry, AIMST University, 08100, Kedah, Malaysia
| |
Collapse
|
137
|
Pavithra N, Afza N. Harnessing the power of artificial intelligence and robotics impact on attaining competitive advantage for sustainable development in hospitals with conclusions for future research approaches. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc15. [PMID: 38655121 PMCID: PMC11035984 DOI: 10.3205/dgkh000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Artificial intelligence (AI) and robotics have emerged as game-changing technologies with the potential to revolutionize the healthcare industry. In the context of hospitals, their integration holds the promise of not only improving patient care but also driving competitive advantage and fostering sustainable development. This review paper aims to explore and evaluate the impact of AI and robotics applications on attaining competitive advantage and promoting sustainable development in hospitals, examines the current landscape of AI and robotics adoption in healthcare settings and delve into their specific applications within hospitals, including AI-assisted diagnosis, robotic surgery, patient monitoring, and data analytics. A key finding is the insufficient use of KI to date in terms of promoting sustainable development in hospitals. Furthermore, attempts to analyze the potential benefits and challenges associated with these technologies in terms of enhancing patient outcomes, operational efficiency, cost savings, and differentiation from competitors. Drawing upon a comprehensive review of the existing literature and case studies, this paper provides valuable insights into the transformative potential of AI and robotics in hospitals.
Collapse
Affiliation(s)
- Narasingappa Pavithra
- Department of Studies in Research and Business Administration, Tumkur University, Tumkur, Karnataka, India
| | - Noor Afza
- Department of Studies in Research and Business Administration, Tumkur University, Tumkur, Karnataka, India
| |
Collapse
|
138
|
Alhammad A, Yusof MM, Jambari DI. Towards an evaluation framework for medical device-integrated electronic medical record. Expert Rev Med Devices 2024; 21:217-229. [PMID: 38318674 DOI: 10.1080/17434440.2024.2315024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Medical device (MD)-integrated (I) electronic medical record (EMR) (MDI-EMR) poses cyber threats that undermine patient safety, and thus, they require effective control mechanisms. We reviewed the related literature, including existing EMR and MD risk assessment approaches, to identify MDI-EMR comprehensive evaluation dimensions and measures. AREAS COVERED We searched multiple databases, including PubMed, Web of Knowledge, Scopus, ACM, Embase, IEEE and Ingenta. We explored various evaluation aspects of MD and EMR to gain a better understanding of their complex integration. We reviewed numerous risk management and assessment frameworks related to MD and EMR security aspects and mitigation controls and then identified their common evaluation aspects. Our review indicated that previous evaluation frameworks assessed MD and EMR independently. To address this gap, we proposed an evaluation framework based on the sociotechnical dimensions of health information systems and risk assessment approaches for MDs to evaluate MDI-EMR integratively. EXPERT OPINION The emergence of MDI-EMR cyber threats requires appropriate evaluation tools to ensure the safe development and application of MDI-EMR. Consequently, our proposed framework will continue to evolve through subsequent validations and refinements. This process aims to establish its applicability in informing stakeholders of the safety level and assessing its effectiveness in mitigating risks for future improvements.
Collapse
Affiliation(s)
- Aeshah Alhammad
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Maryati Mohd Yusof
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Dian Indrayani Jambari
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
139
|
Kaufmann B, Busby D, Das CK, Tillu N, Menon M, Tewari AK, Gorin MA. Validation of a Zero-shot Learning Natural Language Processing Tool to Facilitate Data Abstraction for Urologic Research. Eur Urol Focus 2024; 10:279-287. [PMID: 38278710 DOI: 10.1016/j.euf.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Urologic research often requires data abstraction from unstructured text contained within the electronic health record. A number of natural language processing (NLP) tools have been developed to aid with this time-consuming task; however, the generalizability of these tools is typically limited by the need for task-specific training. OBJECTIVE To describe the development and validation of a zero-shot learning NLP tool to facilitate data abstraction from unstructured text for use in downstream urologic research. DESIGN, SETTING, AND PARTICIPANTS An NLP tool based on the GPT-3.5 model from OpenAI was developed and compared with three physicians for time to task completion and accuracy for abstracting 14 unique variables from a set of 199 deidentified radical prostatectomy pathology reports. The reports were processed in vectorized and scanned formats to establish the impact of optical character recognition on data abstraction. INTERVENTION A zero-shot learning NLP tool for data abstraction. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The tool was compared with the human abstractors in terms of superiority for data abstraction speed and noninferiority for accuracy. RESULTS AND LIMITATIONS The human abstractors required a median (interquartile range) of 93 s (72-122 s) per report for data abstraction, whereas the software required a median of 12 s (10-15 s) for the vectorized reports and 15 s (13-17 s) for the scanned reports (p < 0.001 for all paired comparisons). The accuracies of the three human abstractors were 94.7% (95% confidence interval [CI], 93.8-95.5%), 97.8% (95% CI, 97.2-98.3%), and 96.4% (95% CI, 95.6-97%) for the combined set of 2786 data points. The tool had accuracy of 94.2% (95% CI, 93.3-94.9%) for the vectorized reports and was noninferior to the human abstractors at a margin of -10% (α = 0.025). The tool had slightly lower accuracy of 88.7% (95% CI 87.5-89.9%) for the scanned reports, making it noninferior to two of three human abstractors. CONCLUSIONS The developed zero-shot learning NLP tool offers urologic researchers a highly generalizable and accurate method for data abstraction from unstructured text. An open access version of the tool is available for immediate use by the urologic community. PATIENT SUMMARY In this report, we describe the design and validation of an artificial intelligence tool for abstracting discrete data from unstructured notes contained within the electronic medical record. This freely available tool, which is based on the GPT-3.5 technology from OpenAI, is intended to facilitate research and scientific discovery by the urologic community.
Collapse
Affiliation(s)
- Basil Kaufmann
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Dallin Busby
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandan Krushna Das
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neeraja Tillu
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mani Menon
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh K Tewari
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
140
|
Messinis S, Temenos N, Protonotarios NE, Rallis I, Kalogeras D, Doulamis N. Enhancing Internet of Medical Things security with artificial intelligence: A comprehensive review. Comput Biol Med 2024; 170:108036. [PMID: 38295478 DOI: 10.1016/j.compbiomed.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Over the past five years, interest in the literature regarding the security of the Internet of Medical Things (IoMT) has increased. Due to the enhanced interconnectedness of IoMT devices, their susceptibility to cyber-attacks has proportionally escalated. Motivated by the promising potential of AI-related technologies to improve certain cybersecurity measures, we present a comprehensive review of this emerging field. In this review, we attempt to bridge the corresponding literature gap regarding modern cybersecurity technologies that deploy AI techniques to improve their performance and compensate for security and privacy vulnerabilities. In this direction, we have systematically gathered and classified the extensive research on this topic. Our findings highlight the fact that the integration of machine learning (ML) and deep learning (DL) techniques improves both the performance of cybersecurity measures and their speed, reliability, and effectiveness. This may be proven to be useful for improving the security and privacy of IoMT devices. Furthermore, by considering the numerous advantages of AI technologies as opposed to their core cybersecurity counterparts, including blockchain, anomaly detection, homomorphic encryption, differential privacy, federated learning, and so on, we provide a structured overview of the current scientific trends. We conclude with considerations for future research, emphasizing the promising potential of AI-driven cybersecurity in the IoMT landscape, especially in patient data protection and in data-driven healthcare.
Collapse
Affiliation(s)
- Sotirios Messinis
- Institute of Communication and Computer Systems (ICCS), National Technical University of Athens, Athens, 15780, Greece.
| | - Nikos Temenos
- School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, Athens, 15780, Greece.
| | | | - Ioannis Rallis
- School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, Athens, 15780, Greece.
| | - Dimitrios Kalogeras
- Institute of Communication and Computer Systems (ICCS), National Technical University of Athens, Athens, 15780, Greece.
| | - Nikolaos Doulamis
- School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, Athens, 15780, Greece.
| |
Collapse
|
141
|
Demirbaş KC, Yıldız M, Saygılı S, Canpolat N, Kasapçopur Ö. Artificial Intelligence in Pediatrics: Learning to Walk Together. Turk Arch Pediatr 2024; 59:121-130. [PMID: 38454219 PMCID: PMC11059951 DOI: 10.5152/turkarchpediatr.2024.24002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
In this era of rapidly advancing technology, artificial intelligence (AI) has emerged as a transformative force, even being called the Fourth Industrial Revolution, along with gene editing and robotics. While it has undoubtedly become an increasingly important part of our daily lives, it must be recognized that it is not an additional tool, but rather a complex concept that poses a variety of challenges. AI, with considerable potential, has found its place in both medical care and clinical research. Within the vast field of pediatrics, it stands out as a particularly promising advancement. As pediatricians, we are indeed witnessing the impactful integration of AI-based applications into our daily clinical practice and research efforts. These tools are being used for simple to more complex tasks such as diagnosing clinically challenging conditions, predicting disease outcomes, creating treatment plans, educating both patients and healthcare professionals, and generating accurate medical records or scientific papers. In conclusion, the multifaceted applications of AI in pediatrics will increase efficiency and improve the quality of healthcare and research. However, there are certain risks and threats accompanying this advancement including the biases that may contribute to health disparities and, inaccuracies. Therefore, it is crucial to recognize and address the technical, ethical, and legal challenges as well as explore the benefits in both clinical and research fields.
Collapse
Affiliation(s)
- Kaan Can Demirbaş
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Mehmet Yıldız
- Department of Pediatric Rheumatology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Seha Saygılı
- Department of Pediatric Nephrology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Nur Canpolat
- Department of Pediatric Nephrology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Özgür Kasapçopur
- Department of Pediatric Rheumatology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
142
|
Al-Moghrabi D, Abu Arqub S, Maroulakos MP, Pandis N, Fleming PS. Can ChatGPT identify predatory biomedical and dental journals? A cross-sectional content analysis. J Dent 2024; 142:104840. [PMID: 38219888 DOI: 10.1016/j.jdent.2024.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
OBJECTIVES To assess whether ChatGPT can help to identify predatory biomedical and dental journals, analyze the content of its responses and compare the frequency of positive and negative indicators provided by ChatGPT concerning predatory and legitimate journals. METHODS Four-hundred predatory and legitimate biomedical and dental journals were selected from four sources: Beall's list, unsolicited emails, the Web of Science (WOS) journal list and the Directory of Open Access Journals (DOAJ). ChatGPT was asked to determine journal legitimacy. Journals were classified into legitimate or predatory. Pearson's Chi-squared test and logistic regression were conducted. Two machine learning algorithms determined the most influential criteria on the correct classification of journals. RESULTS The data were categorized under 10 criteria with the most frequently coded criteria being the transparency of processes and policies. ChatGPT correctly classified predatory and legitimate journals in 92.5 % and 71 % of the sample, respectively. The accuracy of ChatGPT responses was 0.82. ChatGPT also demonstrated a high level of sensitivity (0.93). Additionally, the model exhibited a specificity of 0.71, accurately identifying true negatives. A highly significant association between ChatGPT verdicts and the classification based on known sources was observed (P <0.001). ChatGPT was 30.2 times more likely to correctly classify a predatory journal (95 % confidence interval: 16.9-57.43, p-value: <0.001). CONCLUSIONS ChatGPT can accurately distinguish predatory and legitimate journals with a high level of accuracy. While some false positive (29 %) and false negative (7.5 %) results were observed, it may be reasonable to harness ChatGPT to assist with the identification of predatory journals. CLINICAL SIGNIFICANCE STATEMENT ChatGPT may effectively distinguish between predatory and legitimate journals, with accuracy rates of 92.5 % and 71 %, respectively. The potential utility of large-scale language models in exposing predatory publications is worthy of further consideration.
Collapse
Affiliation(s)
- Dalya Al-Moghrabi
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box: 84428 Airport Road, Riyadh 11671, Saudi Arabia.
| | - Sarah Abu Arqub
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Michael P Maroulakos
- Division of Public and Child Dental Health, Dublin Dental School and Hospital, Dublin, Ireland
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, Medical Faculty, Dental School, University of Bern, Bern, Switzerland
| | - Padhraig S Fleming
- Division of Public and Child Dental Health, Dublin Dental School and Hospital, Dublin, Ireland
| |
Collapse
|
143
|
Korkmaz S. Artificial Intelligence in Healthcare: A Revolutionary Ally or an Ethical Dilemma? Balkan Med J 2024; 41:87-88. [PMID: 38269851 PMCID: PMC10913124 DOI: 10.4274/balkanmedj.galenos.2024.2024-250124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Affiliation(s)
- Selçuk Korkmaz
- Department of Biostatistics and Medical Informatics, Trakya University Faculty of Medicine, Edirne, Türkiye
| |
Collapse
|
144
|
Ng JY, Cramer H, Lee MS, Moher D. Traditional, complementary, and integrative medicine and artificial intelligence: Novel opportunities in healthcare. Integr Med Res 2024; 13:101024. [PMID: 38384497 PMCID: PMC10879672 DOI: 10.1016/j.imr.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The convergence of traditional, complementary, and integrative medicine (TCIM) with artificial intelligence (AI) is a promising frontier in healthcare. TCIM is a patient-centric approach that combines conventional medicine with complementary therapies, emphasizing holistic well-being. AI can revolutionize healthcare through data-driven decision-making and personalized treatment plans. This article explores how AI technologies can complement and enhance TCIM, aligning with the shared objectives of researchers from both fields in improving patient outcomes, enhancing care quality, and promoting holistic wellness. This integration of TCIM and AI introduces exciting opportunities but also noteworthy challenges. AI may augment TCIM by assisting in early disease detection, providing personalized treatment plans, predicting health trends, and enhancing patient engagement. Challenges at the intersection of AI and TCIM include data privacy and security, regulatory complexities, maintaining the human touch in patient-provider relationships, and mitigating bias in AI algorithms. Patients' trust, informed consent, and legal accountability are all essential considerations. Future directions in AI-enhanced TCIM include advanced personalized medicine, understanding the efficacy of herbal remedies, and studying patient-provider interactions. Research on bias mitigation, patient acceptance, and trust in AI-driven TCIM healthcare is crucial. In this article, we outlined that the merging of TCIM and AI holds great promise in enhancing healthcare delivery, personalizing treatment plans, preventive care, and patient engagement. Addressing challenges and fostering collaboration between AI experts, TCIM practitioners, and policymakers, however, is vital to harnessing the full potential of this integration.
Collapse
Affiliation(s)
- Jeremy Y. Ng
- Centre for Journalology, Ottawa Hospital Research Institute, Ottawa, Canada
- Institute of General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany
- Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Holger Cramer
- Institute of General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany
- Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - David Moher
- Centre for Journalology, Ottawa Hospital Research Institute, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
145
|
Kelkar AH, Hantel A, Koranteng E, Cutler CS, Hammer MJ, Abel GA. Digital Health to Patient-Facing Artificial Intelligence: Ethical Implications and Threats to Dignity for Patients With Cancer. JCO Oncol Pract 2024; 20:314-317. [PMID: 37922435 DOI: 10.1200/op.23.00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023] Open
Abstract
Ethical considerations for patient-facing AI for oncology: dignity, autonomy, safety, equity, inclusivity.
Collapse
Affiliation(s)
- Amar H Kelkar
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Andrew Hantel
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA
- Center for Bioethics, Harvard Medical School, Boston, MA
| | | | - Corey S Cutler
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Marilyn J Hammer
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA
- Department of Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA
| | - Gregory A Abel
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA
- Center for Bioethics, Harvard Medical School, Boston, MA
| |
Collapse
|
146
|
Adeoye J, Su YX. Leveraging artificial intelligence for perioperative cancer risk assessment of oral potentially malignant disorders. Int J Surg 2024; 110:1677-1686. [PMID: 38051932 PMCID: PMC10942172 DOI: 10.1097/js9.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Oral potentially malignant disorders (OPMDs) are mucosal conditions with an inherent disposition to develop oral squamous cell carcinoma. Surgical management is the most preferred strategy to prevent malignant transformation in OPMDs, and surgical approaches to treatment include conventional scalpel excision, laser surgery, cryotherapy, and photodynamic therapy. However, in reality, since all patients with OPMDs will not develop oral squamous cell carcinoma in their lifetime, there is a need to stratify patients according to their risk of malignant transformation to streamline surgical intervention for patients with the highest risks. Artificial intelligence (AI) has the potential to integrate disparate factors influencing malignant transformation for robust, precise, and personalized cancer risk stratification of OPMD patients than current methods to determine the need for surgical resection, excision, or re-excision. Therefore, this article overviews existing AI models and tools, presents a clinical implementation pathway, and discusses necessary refinements to aid the clinical application of AI-based platforms for cancer risk stratification of OPMDs in surgical practice.
Collapse
Affiliation(s)
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
147
|
Walter Y. Managing the race to the moon: Global policy and governance in Artificial Intelligence regulation—A contemporary overview and an analysis of socioeconomic consequences. DISCOVER ARTIFICIAL INTELLIGENCE 2024; 4:14. [DOI: 10.1007/s44163-024-00109-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractThis paper delves into the complexities of global AI regulation and governance, emphasizing the socio-economic repercussions of rapid AI development. It scrutinizes the challenges in creating effective governance structures amidst the AI race, considering diverse global perspectives and policies. The discourse moves beyond specific corporate examples, addressing broader implications and sector-wide impacts of AI on employment, truth discernment, and democratic stability. The analysis focuses on contrasting regulatory approaches across key regions—the United States, European Union, Asia, Africa, and the Americas and thus highlighting the variations and commonalities in strategies and implementations. This comparative study reveals the intricacies and hurdles in formulating a cohesive global policy for AI regulation. Central to the paper is the examination of the dynamic between rapid AI innovation and the slower pace of regulatory and ethical standard-setting. It critically evaluates the advantages and drawbacks of shifting regulatory responsibilities between government bodies and the private sector. In response to these challenges, the discussion proposes an innovative and integrated regulatory model. The model advocates for a collaborative network that blends governmental authority with industry expertise, aiming to establish adaptive, responsive regulations (called “dynamic laws”) that can evolve with technological advancements. The novel approach aims to bridge the gap between rapid AI advancements in the industry and the essential democratic processes of law-making.
Collapse
|
148
|
Gala D, Behl H, Shah M, Makaryus AN. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature. Healthcare (Basel) 2024; 12:481. [PMID: 38391856 PMCID: PMC10887513 DOI: 10.3390/healthcare12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular diseases exert a significant burden on the healthcare system worldwide. This narrative literature review discusses the role of artificial intelligence (AI) in the field of cardiology. AI has the potential to assist healthcare professionals in several ways, such as diagnosing pathologies, guiding treatments, and monitoring patients, which can lead to improved patient outcomes and a more efficient healthcare system. Moreover, clinical decision support systems in cardiology have improved significantly over the past decade. The addition of AI to these clinical decision support systems can improve patient outcomes by processing large amounts of data, identifying subtle associations, and providing a timely, evidence-based recommendation to healthcare professionals. Lastly, the application of AI allows for personalized care by utilizing predictive models and generating patient-specific treatment plans. However, there are several challenges associated with the use of AI in healthcare. The application of AI in healthcare comes with significant cost and ethical considerations. Despite these challenges, AI will be an integral part of healthcare delivery in the near future, leading to personalized patient care, improved physician efficiency, and anticipated better outcomes.
Collapse
Affiliation(s)
- Dhir Gala
- Department of Clinical Science, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten, The Netherlands
| | - Haditya Behl
- Department of Clinical Science, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten, The Netherlands
| | - Mili Shah
- Department of Clinical Science, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten, The Netherlands
| | - Amgad N Makaryus
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, 500 Hofstra Blvd., Hempstead, NY 11549, USA
- Department of Cardiology, Nassau University Medical Center, Hempstead, NY 11554, USA
| |
Collapse
|
149
|
Brandão M, Mendes F, Martins M, Cardoso P, Macedo G, Mascarenhas T, Mascarenhas Saraiva M. Revolutionizing Women's Health: A Comprehensive Review of Artificial Intelligence Advancements in Gynecology. J Clin Med 2024; 13:1061. [PMID: 38398374 PMCID: PMC10889757 DOI: 10.3390/jcm13041061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Artificial intelligence has yielded remarkably promising results in several medical fields, namely those with a strong imaging component. Gynecology relies heavily on imaging since it offers useful visual data on the female reproductive system, leading to a deeper understanding of pathophysiological concepts. The applicability of artificial intelligence technologies has not been as noticeable in gynecologic imaging as in other medical fields so far. However, due to growing interest in this area, some studies have been performed with exciting results. From urogynecology to oncology, artificial intelligence algorithms, particularly machine learning and deep learning, have shown huge potential to revolutionize the overall healthcare experience for women's reproductive health. In this review, we aim to establish the current status of AI in gynecology, the upcoming developments in this area, and discuss the challenges facing its clinical implementation, namely the technological and ethical concerns for technology development, implementation, and accountability.
Collapse
Affiliation(s)
- Marta Brandão
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
| | - Francisco Mendes
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Miguel Martins
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Teresa Mascarenhas
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Obstetrics and Gynecology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas Saraiva
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| |
Collapse
|
150
|
Racine N, Chow C, Hamwi L, Bucsea O, Cheng C, Du H, Fabrizi L, Jasim S, Johannsson L, Jones L, Laudiano-Dray MP, Meek J, Mistry N, Shah V, Stedman I, Wang X, Riddell RP. Health Care Professionals' and Parents' Perspectives on the Use of AI for Pain Monitoring in the Neonatal Intensive Care Unit: Multisite Qualitative Study. JMIR AI 2024; 3:e51535. [PMID: 38875686 PMCID: PMC11041412 DOI: 10.2196/51535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 06/16/2024]
Abstract
BACKGROUND The use of artificial intelligence (AI) for pain assessment has the potential to address historical challenges in infant pain assessment. There is a dearth of information on the perceived benefits and barriers to the implementation of AI for neonatal pain monitoring in the neonatal intensive care unit (NICU) from the perspective of health care professionals (HCPs) and parents. This qualitative analysis provides novel data obtained from 2 large tertiary care hospitals in Canada and the United Kingdom. OBJECTIVE The aim of the study is to explore the perspectives of HCPs and parents regarding the use of AI for pain assessment in the NICU. METHODS In total, 20 HCPs and 20 parents of preterm infants were recruited and consented to participate from February 2020 to October 2022 in interviews asking about AI use for pain assessment in the NICU, potential benefits of the technology, and potential barriers to use. RESULTS The 40 participants included 20 HCPs (17 women and 3 men) with an average of 19.4 (SD 10.69) years of experience in the NICU and 20 parents (mean age 34.4, SD 5.42 years) of preterm infants who were on average 43 (SD 30.34) days old. Six themes from the perspective of HCPs were identified: regular use of technology in the NICU, concerns with regard to AI integration, the potential to improve patient care, requirements for implementation, AI as a tool for pain assessment, and ethical considerations. Seven parent themes included the potential for improved care, increased parental distress, support for parents regarding AI, the impact on parent engagement, the importance of human care, requirements for integration, and the desire for choice in its use. A consistent theme was the importance of AI as a tool to inform clinical decision-making and not replace it. CONCLUSIONS HCPs and parents expressed generally positive sentiments about the potential use of AI for pain assessment in the NICU, with HCPs highlighting important ethical considerations. This study identifies critical methodological and ethical perspectives from key stakeholders that should be noted by any team considering the creation and implementation of AI for pain monitoring in the NICU.
Collapse
Affiliation(s)
- Nicole Racine
- School of Psychology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Cheryl Chow
- Department of Psychology, York University, Toronto, ON, Canada
| | - Lojain Hamwi
- Department of Psychology, York University, Toronto, ON, Canada
| | - Oana Bucsea
- Department of Psychology, York University, Toronto, ON, Canada
| | - Carol Cheng
- Department of Nursing, Mount Sinai Hospital, Toronto, ON, Canada
| | - Hang Du
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Sara Jasim
- Department of Psychology, York University, Toronto, ON, Canada
| | | | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Judith Meek
- Neonatal Care Unit, University College London Hospitals, London, United Kingdom
| | - Neelum Mistry
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Vibhuti Shah
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ian Stedman
- School of Public Policy and Administration, York University, Toronto, ON, Canada
| | - Xiaogang Wang
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | | |
Collapse
|