101
|
Hassan EM, Willmore WG, McKay BC, DeRosa MC. In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells. Sci Rep 2017; 7:14487. [PMID: 29101327 PMCID: PMC5670216 DOI: 10.1038/s41598-017-13751-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/29/2017] [Indexed: 01/06/2023] Open
Abstract
Mammaglobin B (MGB2) and mammaglobin A (MGB1) are proteins expressed in metastatic breast cancers. The early detection of circulating tumor cells (CTCs) in breast cancer patients is crucial to decrease mortality rate. Herein, novel aptamers were successfully selected and characterized against MGB2 and MGB1 proteins using a hybrid SELEX approach. The potential use of the selected aptamers in breast CTC detection was studied using spiked breast cancer cells in whole blood lysate. The results obtained from this study showed that the selected aptamers (MAMB1 and MAMA2) bind to their target breast cancer cell lines with high affinity (low nanomolar Kd values) and specificity. They also bind to their free recombinant target proteins and show minimal non-specific binding to normal and other cancer cell lines. Additionally, they were able to distinguish a low number of breast cancer cells spiked in whole blood lysate containing normal blood cells. The results obtained in this study indicate the great potential for the use of aptamers to detect MGB1 and MGB2 protein biomarkers, expressed on the surface of breast CTCs.
Collapse
Affiliation(s)
- Eman M Hassan
- Institut national de la recherche scientifique - Energie, Materiaux Telecommunication 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X1S2, Canada
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - William G Willmore
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Bruce C McKay
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Maria C DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
102
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
103
|
Nagaraja SS, Krishnamoorthy V, Raviraj R, Paramasivam A, Nagarajan D. Effect of Trichostatin A on radiation induced epithelial-mesenchymal transition in A549 cells. Biochem Biophys Res Commun 2017; 493:1534-1541. [PMID: 28993195 DOI: 10.1016/j.bbrc.2017.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
Radiotherapy is used to treat tumors of different origins and nature, but often lead to development of radioresistance and metastasis of cells. Interestingly, radiation induces epithelial-mesenchymal transition (EMT), a process by which epithelial cells undergo mesenchymal phenotype and stimulates tumor progression capability. Our study investigated the effect of Trichostatin A (TSA), a natural derivate isolated from Streptomyces, upon radiation-induced lung EMT and we tried to understand the role of signaling molecules in irradiated lung cancer cells (A549). The cells were categorized into four groups: untreated control, radiation alone (R; 8Gy, X-ray), radiation combined with TSA (R + T) and TSA (100nM). Radiation-induced lung EMT were evidenced by decreased expression of epithelial marker like E-cadherin, Zona occluden1 (ZO-1) and increased expression of N-cadherin and Vimentin. The Snail protein, a master regulator of EMT, was observed to be elevated after radiation treatment. In addition, TGF-β1 signaling (smad2, 3, and 4) proteins were activated upon irradiation. Western blot data were supported by the altered m-RNA expression of E-cadherin, TGF-β and Snail genes and this effect were reversed by TSA treatment. In addition to this, as supportive evidence, we performed docking studies between snail protein and TSA using Auto docking software and results suggested that less binding energy was needed for the putative binding of TSA on C-terminal domain of Snail protein. Based on our report, we suggest that TSA can effectively inhibit radiation-induced EMT (i) by altering epithelial and mesenchymal markers (ii) by modulating signaling molecules of TGFβ1 pathway (iii) by inhibiting cancer cell migratory potential in A549 cells (iv)by effectively binding to Snail which is an enhancer of EMT.
Collapse
Affiliation(s)
| | - Vishnuvarthan Krishnamoorthy
- Radiation Biology Lab, Anusandhan Kendra-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Raghavi Raviraj
- Radiation Biology Lab, Anusandhan Kendra-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Alagudinesh Paramasivam
- Radiation Biology Lab, Anusandhan Kendra-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Devipriya Nagarajan
- Radiation Biology Lab, Anusandhan Kendra-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
104
|
Park MJ, Lee DE, Shim MK, Jang EH, Lee JK, Jeong SY, Kim JH. Piperlongumine inhibits TGF-β-induced epithelial-to-mesenchymal transition by modulating the expression of E-cadherin, Snail1, and Twist1. Eur J Pharmacol 2017; 812:243-249. [PMID: 28734931 DOI: 10.1016/j.ejphar.2017.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023]
Abstract
Cancer is a life-threatening disease, and the occurrence of metastasis, which increases the lethality of primary tumors, is increasing. The epithelial-to-mesenchymal transition (EMT) is a biological process by which epithelial cells lose cell-cell adhesion properties and acquire mesenchymal properties, including motility and invasiveness. EMT is considered an early stage of metastasis; therefore, inhibiting EMT may be an effective anticancer therapy. In the present study, the antimetastatic effect of piperlongumine (PL) was assessed in human cancer cells. PL is a single component isolated from long pepper (Piper longum) and it has been studied for its antibacterial, antiangiogenic, and antidiabetic activities. Migration assays (wound healing assay) and transwell invasion assays showed that PL inhibited the migration and invasion of cancer cells. Western blotting and immunofluorescence imaging showed that TGF-β upregulated the transcription factors Snail1 and Twist1 and downregulated E-cadherin, a marker of epithelial cells, inducing EMT. PL might inhibit TGF-β-induced EMT by downregulating Snail1 and Twist1 and upregulating E-cadherin in cancer cells. In summary, PL might inhibit TGF-β-induced EMT, suggesting that it is a promising anticancer agent.
Collapse
Affiliation(s)
- Min-Ju Park
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Da-Eun Lee
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Man Kyu Shim
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun Hyang Jang
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seo Young Jeong
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
105
|
Gallardo-Pérez JC, Adán-Ladrón de Guevara A, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
106
|
Deregulated expression of microRNA-200b/c and SUZ12, a Polycomb repressive complex 2 subunit, in chemoresistant colorectal cancer cells. Genes Cancer 2017; 8:673-681. [PMID: 28966728 PMCID: PMC5620012 DOI: 10.18632/genesandcancer.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In colorectal cancer, chemotherapy and/or radiotherapy can lead to the formation of resistant cells that become metastatic through Epithelial-Mesenchymal Transition (EMT). Invasive and metastatic characteristics of carcinoma cells in primary tumors are mediated by EMT. During EMT, the primary tumor cells lose cell-cell adhesion, have increased intercellular separation, and gain an elongated shape with pseudopodia. There is also dysregulation of Polycomb group proteins (such as BMI1, SUZ12, and EZH2), and changes in the expression of microRNA-200 (miR-200) family. In this study, we developed a chemoresistant colorectal cancer cell line (DLD-1-OxR) by exposing DLD-1 colorectal cancer cells to increasing concentrations of oxaliplatin (a chemotherapy drug used for colorectal cancer), and tested for EMT characteristics. We found that DLD-1-OxR exhibited EMT characteristics by morphologic, biochemical and molecular markers. SUZ12, a Polycomb repressive complex 2 subunit, was upregulated in DLD-1-OxR. The miRNA-200 family members that target SUZ12 were downregulated. Drug resistance is an impediment to chemotherapy and understanding the molecular mechanisms of chemoresistance can lead to its reversal and improvement of chemotherapy outcomes.
Collapse
|
107
|
Yu L, Hua X, Yang Y, Li K, Zhang Q, Yu L. An updated meta-analysis of the prognostic value of decreased E-cadherin expression in ovarian cancer. Oncotarget 2017; 8:81176-81185. [PMID: 29113377 PMCID: PMC5655272 DOI: 10.18632/oncotarget.20885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Decreased epithelial cadherin (E-cadherin) expression is hypothesized to be related to poor prognosis of ovarian cancer, but the predictive value is still inconsistent. We conducted an updated meta-analysis with a total of 16 studies enrolling 1720 patients to estimate the prognostic value of decreased E-cadherin expression in ovarian cancer. Reduced expression of E-cadherin was significantly associated to poor overall survival (HR = 1.74, 95% CI: 1.40–2.17) and progression-free survival (HR = 1.45, 95% CI: 1.12–1.86) with a large heterogeneity for overall survival. In addition, we found that decreased expression of E-cadherin was significantly correlated with International Federation of Gynecology and Obstetrics grade (HR = 3.74, 95% CI: 2.24–6.23), E-cadherin membranous (HR = 1.47, 95% CI: 1.01–2.14), pathologic grade (HR = 1.41, 95% CI: 1.01–1.97), residual tumor size (HR = 2.72, 95% CI: 1.99–3.72), and surgery (HR = 3.21, 95% CI: 1.19–8.67). Our finding suggests that decreased E-cadherin expression may be a predictor of poor ovarian cancer prognosis.
Collapse
Affiliation(s)
- LiLi Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoli Hua
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ke Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| |
Collapse
|
108
|
Hong D, Park MJ, Jang EH, Jung B, Kim NJ, Kim JH. Hispolon as an inhibitor of TGF-β-induced epithelial-mesenchymal transition in human epithelial cancer cells by co-regulation of TGF-β-Snail/Twist axis. Oncol Lett 2017; 14:4866-4872. [PMID: 29085494 DOI: 10.3892/ol.2017.6789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
Hispolon (HPL), isolated from Phellinus linteus, has been used to treat various types of pathology, including inflammation, gastroenteric disorders, lymphatic diseases and numerous cancer subtypes. HPL has previously been reported to demonstrate a significant therapeutic efficacy against various types of cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder and gastric cancer cells. However, its potential role in the epithelial-mesenchymal transition (EMT) has not been demonstrated. The present study investigated the effects of HPL on the EMT. Transforming growth factor β (TGF-β) induced enhanced cell migration and invasion, EMT-associated phenotypic changes. In the present study, HPL recovered the reduction of E-cadherin expression level in TGF-β treated cancer cells, which was regulated by the expression of Snail and Twist. HPL downregulated Snail and Twist, an effect that was enhanced by TGF-β. These findings provide novel evidence that HPL suppresses cancer cell migration and invasion by inhibiting EMT. Therefore, HPL may be a potent anticancer agent, inhibiting metastasis.
Collapse
Affiliation(s)
- Darong Hong
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Ju Park
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun Hyang Jang
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Bom Jung
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
109
|
Li Z, Yin S, Zhang L, Liu W, Chen B. Prognostic value of reduced E-cadherin expression in breast cancer: a meta-analysis. Oncotarget 2017; 8:16445-16455. [PMID: 28147315 PMCID: PMC5369975 DOI: 10.18632/oncotarget.14860] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/16/2017] [Indexed: 01/12/2023] Open
Abstract
The prognostic value of E-cadherin expression in patients with breast cancer has been studied for years, yet results remain controversial. We thus performed a comprehensive evaluation of the association between E-cadherin expression and prognosis through a meta-analysis. The databases PubMed, Embase and Cochrane Library were searched. A total of 7,353 patients from 33 studies were subject to final analysis. The results showed there was a significant association between reduced expression of E-cadherin and overall survival (OS) (HR 1.79, 95% CI 1.41–2.27) and disease-free survival (DFS) (HR 1.62, 95% CI 1.31–1.99) in breast cancer. Downregulated expression of E-cadherin significantly correlated with tumor histological grade (OR 1.44, 95% CI 1.06–1.96), TNM stage (OR 2.44, 95% CI 1.75–3.41), tumor size (OR 1.38, 95% CI 1.18–1.60), lymph node status (OR 1.55, 95% CI 1.15–2.10), and progesterone receptor status (OR 1.44, 95% CI 1.10–1.88).This meta-analysis suggested that reduced E-cadherin expression might be a predictor of a poorer prognosis and could be a potentially new gene therapy target for breast cancer patients.
Collapse
Affiliation(s)
- Zhan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Songcheng Yin
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Weiguang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
110
|
Wang J, Liu Z, Zhang D, Liu R, Lin Q, Liu J, Yang Z, Ma Q, Sun D, Zhou X, Jiang G. FL118, a novel survivin inhibitor, wins the battle against drug-resistant and metastatic lung cancers through inhibition of cancer stem cell-like properties. Am J Transl Res 2017; 9:3676-3686. [PMID: 28861158 PMCID: PMC5575181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Failure of cancer treatment caused by drug resistance and metastasis is mainly due to existence of cancer stem cells (CSCs). Therefore, targeting CSCs to overcome cancers is a challenging issue in clinic. In this report, in view of the important role of survivin in tumor growth and CSCs maintaining, we aimed to confirm that FL118, as a novel survivin inhibitor, may effectively inhibit lung cancer stem cells. We showed that lung cancer stem cells have the obviously higher expression of survivin than their parental cells. After treated with FL118, the survivin level in CSCs was suppressed. Consistently, lung cancer stem cells displayed significantly growth inhibition over time. Here, we compared the antitumor efficacy between FL118 and cisplatin. The data revealed that CSCs are more sensitive to FL118 than cisplatin. To further demonstrate the inhibitory effect of FL118 on CSCs, we found that FL118 down-regulated the expression of CSCs markers (ABCG2, ALDH1A1, Oct4) and drug resistant proteins (P-gp, ERCC1), suggesting that FL118 may change CSCs phenotype and improve drug-sensitivity of tumor cells. Moreover, FL118 effectively decreased the invasive ability of CSCs. These findings expand the uniqueness of FL118 as an attractive therapeutic option for cancers with drug-resistant or metastatic potential.
Collapse
Affiliation(s)
- Jin Wang
- School of Basic Medicine, Qingdao UniversityQingdao 266021, China
| | - Zhantao Liu
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Dandan Zhang
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Ranran Liu
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Qian Lin
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Zhihong Yang
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Qingxia Ma
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| | - Dantong Sun
- School of Basic Medicine, Qingdao UniversityQingdao 266021, China
| | - Xin Zhou
- School of Basic Medicine, Qingdao UniversityQingdao 266021, China
| | - Guohui Jiang
- School of Pharmacy, Qingdao UniversityQingdao 266021, China
| |
Collapse
|
111
|
Sha S, Zhai Y, Lin C, Wang H, Chang Q, Song S, Ren M, Liu G. A combination of valproic acid sodium salt, CHIR99021, E-616452, tranylcypromine, and 3-Deazaneplanocin A causes stem cell-like characteristics in cancer cells. Oncotarget 2017; 8:53302-53312. [PMID: 28881812 PMCID: PMC5581111 DOI: 10.18632/oncotarget.18396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Many studies are based on the hypothesis that recurrence and drug resistance in lung carcinoma are due to a subpopulation of cancer stem-like cells (CSLCs) in solid tumors. Therefore it is crucial to screen for and recognize lung CSLCs. In this study, we stimulated non-small cell lung cancer (NSCLC) A549 cells to display stem cell-like characteristics using a combination of five small molecule compounds. The putative A549 stem cells activated an important CSLC marker, CD133 protein, as well multiple CSLC-related genes including ATP-binding cassette transporter G2 (ABCG2), C-X-C chemokine receptor type 4 (CXCR4), NESTIN, and BMI1. The A549 stem-like cells displayed resistance to the chemotherapeutic drugs etoposide and cisplatin, epithelial-to-mesenchymal transition properties, and increased protein expression levels of NOTCH1 and Hes Family bHLH Transcription Factor 1 (HES1). When A549 cells were pretreated with a NOTCH signaling pathway inhibitor before compound induction, expression of the NOTCH1 target gene HES1 was reduced. This demonstrated that the NOTCH signaling pathway in the putative A549 stem-like cells had been activated. Together, the results of our study showed that a combination of five small molecule agents could transform A549 cells into putative stem-like cells, and that these compounds could also elevate CD133 and ABCG2 protein expression levels in H460 cells. This study provides a convenient method for obtaining lung CSLCs, which may be an effective strategy for developing lung carcinoma treatments.
Collapse
Affiliation(s)
- Shuang Sha
- Tongji University School of Life Sciences and Technology, Shanghai, China.,Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanfen Zhai
- Department of Immunity, Tongji University School of Medicine, Shanghai, China
| | - Chengzhao Lin
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Heyong Wang
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Chang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shuang Song
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingqiang Ren
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gentao Liu
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Center for Cancer Immunotherapy, Shanghai Biomed-Union Biotechnology Co. Ltd, Shanghai International Medical Zone, Shanghai, China
| |
Collapse
|
112
|
Reduced E-cadherin expression is correlated with poor prognosis in patients with bladder cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:62489-62499. [PMID: 28977963 PMCID: PMC5617523 DOI: 10.18632/oncotarget.19934] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
The prognostic significance of E-cadherin expression in bladder cancer (BC) has been elevated for years, but published results remain controversial and inconsistent. We thus performed a systematic review and meta-analysis to determine the association between E-cadherin expression and BC prognosis. We systematically searched PubMed, Embase, Cochrane Library, and Web of Science databases to identify eligible studies published until March 2017. On the basis of our inclusion and exclusion criteria, a total of 2,089 patients from 19 studies were eligible for final analysis. Our results showed that reduced E-cadherin expression in BC was associated with poor overall survival (hazard ratio [HR] = 2.73, 95% CI: 1.74–4.27, p < 0.001), poor progression-free survival (HR = 6.39, 95% CI: 3.48–11.73, p < 0.001), and poor recurrence-free survival (HR = 2.48, 95% CI: 1.68–3.64, p < 0.001). Moreover, reduced E-cadherin expression was significantly correlated with pathological T stage (T2-4 vs. Ta-1: risk ratio [RR] = 2.14, 95% CI: 1.70–2.71), metastasis (yes vs. no: RR = 1.68, 95% CI: 1.17–2.40), grade (3 vs. 1/2: RR = 1.58, 95% CI: 1.29–1.93), and carcinoma in situ (yes vs. no: RR = 1.68, 95% CI: 1.09–2.58). This meta-analysis suggested that reduced E-cadherin expression was associated with poor prognosis and advanced clinicopathological characteristics and can serve as a useful biomarker for the clinical management of BC.
Collapse
|
113
|
Pimienta M, Edderkaoui M, Wang R, Pandol S. The Potential for Circulating Tumor Cells in Pancreatic Cancer Management. Front Physiol 2017. [PMID: 28626429 PMCID: PMC5454071 DOI: 10.3389/fphys.2017.00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one the most lethal malignancies. Only a small proportion of patients with this disease benefit from surgery. Chemotherapy provides only a transient benefit. Though much effort has gone into finding new ways for early diagnosis and treatment, average patient survival has only been improved in the order of months. Circulating tumor cells (CTCs) are shed from primary tumors, including pre-malignant phases. These cells possess information about the genomic characteristics of their tumor source in situ, and their detection and characterization holds potential in early cancer diagnosis, prognosis, and treatment. Liquid Biopsies present an alternative to tumor biopsy that are hard to sample. Below we summarize current methods of CTC detection, the current literature on CTCs in pancreatic cancer, and future perspectives.
Collapse
Affiliation(s)
- Michael Pimienta
- University of California, San Diego School of MedicineLa Jolla, CA, United States.,Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| | - Mouad Edderkaoui
- Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| | - Ruoxiang Wang
- Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| | - Stephen Pandol
- Cedars-Sinai Medical Center, Basic and Translational Pancreas ResearchLos Angeles, CA, United States
| |
Collapse
|
114
|
Wahab SR, Islam F, Gopalan V, Lam AKY. The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clin Colorectal Cancer 2017; 16:93-102. [DOI: 10.1016/j.clcc.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|
115
|
Amey CL, Karnoub AE. Targeting Cancer Stem Cells-A Renewed Therapeutic Paradigm. ONCOLOGY & HEMATOLOGY REVIEW 2017; 13:45-55. [PMID: 33959299 PMCID: PMC8098671 DOI: 10.17925/ohr.2017.13.01.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer treatments and is the major cause of death in cancer patients. Better understanding of how cancer cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening metastases would therefore be paramount to the development of effective therapeutic approaches for clinical management of malignant disease. Mounting reports over the past two decades have provided evidence for the existence of a minor population of highly malignant cells within liquid and solid tumors, which are capable of self-renewing and of regenerating secondary growths with the heterogeneity of the primary tumors from which they derive. These cells, called tumor-initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with their microenvironment, their phenotypic and functional characteristics, as well as their molecular dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of CSC biology is critical to the development of important CSC-based anti-neoplastic approaches that have the potential to radically improve cancer management. Here, we summarize some of the most pertinent elements regarding CSC development and properties, and highlight some of the clinical modalities in current development as anti-CSC therapeutics.
Collapse
Affiliation(s)
| | - Antoine E Karnoub
- Department of Pathology, Beth Israel Deaconess Cancer Center and Harvard Medical School, Boston, Massachusetts, US; Harvard Stem Cell Institute, Cambridge, Massachusetts, US; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, US
| |
Collapse
|
116
|
Chiu JH, Wen CS, Wang JY, Hsu CY, Tsai YF, Hung SC, Tseng LM, Shyr YM. Role of estrogen receptors and Src signaling in mechanisms of bone metastasis by estrogen receptor positive breast cancers. J Transl Med 2017; 15:97. [PMID: 28472954 PMCID: PMC5418839 DOI: 10.1186/s12967-017-1192-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Evidence shows that Luminal A breast cancer is likely to undergo bone metastasis, but the mechanisms involved remain unknown. This study's aim was to demonstrate a correlation between estrogen receptor (ER) positivity and bone metastasis as the clinically preferred site of metastasis, as well as investigating the role of ERα-Src signaling in MCF-7 cells using Snail over-expression as an in vivo bone metastasis model. METHODS Clinically, the records of breast cancer with distant metastasis were retrospectively reviewed to correlate breast cancer subtypes and preferential metastatic sites. An in vivo bone metastasis model was created by injection of MCF-7 cells with/without Snail over-expression into the tibia of nude mice. The human MCF-7 cells that over-expressed (o/e) Snail were examined and the expression of epithelial-mesenchymal transitions (EMT) markers, ER-Src signaling proteins and p190 RhoGAP analyzed by Western blotting and real-time PCR. The role of ERα was elucidated using ESR1 silence by transfecting shRNA (∆ESR1) into MCF-7 o/e Snail cells in vitro and in vivo. RESULTS The clinical results showed that ER ≥1% breast cancers showed a positive correlation with bone metastasis, which was found to be the preferred site of metastasis. An in vivo bone metastasis was successfully established using injection of MCF-7 o/e Snail cells into the tibia of nude mice, but no such metastasis was found using control MCF-7 cells. The proteins expressed in MCF-7 o/e Snail cells showed an EMT pattern, while those of the MCF-7 o/e Snail metastatic tissue showed a mesenchymal-epithelial pattern. There was an increase in cytosolic Src, p190 RhoGAP and nuclear ERα proteins, but not in Snail, in MCF-7 o/e Snail tissue compared to the same cell line in vitro. ESR1 knock down decreased Src and p190 RhoGAP expression in vitro and also decreased the incidence of bone metastasis in vivo. CONCLUSION We conclude that ER-Src signaling plays an important role in ER (+) breast cancer, which shows a high potential for bone metastasis.
Collapse
Affiliation(s)
- Jen-Hwey Chiu
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Division of General Surgery, Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC.,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Che-Sheng Wen
- Department of Orthopedics, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Jir-You Wang
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yi-Fang Tsai
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Chieh Hung
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC. .,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
| | - Yi-Ming Shyr
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
117
|
Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. J Transl Med 2017; 97:567-576. [PMID: 28240746 DOI: 10.1038/labinvest.2017.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urothelium and is classified into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Stemness markers such as SOX2 and NANOG are frequently overexpressed in various aggressive cancers, including MIBC; epithelial-mesenchymal transition (EMT) has been proposed as a potential trigger of stemness in cancers. To determine whether cancer stemness is acquired via EMT in bladder cancer, we studied the effect of EMT on the expression of SOX2 and NANOG in bladder cancer cell lines. We also analyzed their expression in clinical tissue samples. Our results revealed that a potent EMT inducer (transforming growth factor β1) reduced the expression of the epithelial marker E-cadherin and increased expression of both SOX2 and NANOG in epithelial-type bladder cancer cells. As for clinical bladder cancer samples, in NMIBC, E-cadherin expression was slightly diminished, and the expression of both SOX2 and NANOG was negligible. In contrast, in MIBC, E-cadherin expression was highly and heterogeneously diminished, while the expression of both SOX2 and NANOG was increased. We also noticed that either E-cadherin or SOX2 (or NANOG) was expressed (ie, in a manner exclusive of each other). In addition, the concentration of E-cadherin showed a significant negative correlation with tumor grade and stage, while expression of SOX2 and NANOG positively correlated with those clinicopathological parameters. These findings suggest that EMT promotes stemness of bladder cancer cells, contributing to tumor aggressiveness. This EMT-cancer stemness axis may also play an important role in the pathogenesis of NMIBC and MIBC.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.17.
Collapse
|
118
|
Roberts CM, Shahin SA, Loeza J, Dellinger TH, Williams JC, Glackin CA. Disruption of TWIST1-RELA binding by mutation and competitive inhibition to validate the TWIST1 WR domain as a therapeutic target. BMC Cancer 2017; 17:184. [PMID: 28283022 PMCID: PMC5345230 DOI: 10.1186/s12885-017-3169-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/04/2017] [Indexed: 11/15/2022] Open
Abstract
Background Most cancer deaths result from tumor cells that have metastasized beyond their tissue of origin, or have developed drug resistance. Across many cancer types, patients with advanced stage disease would benefit from a novel therapy preventing or reversing these changes. To this end, we have investigated the unique WR domain of the transcription factor TWIST1, which has been shown to play a role in driving metastasis and drug resistance. Methods In this study, we identified evolutionarily well-conserved residues within the TWIST1 WR domain and used alanine substitution to determine their role in WR domain-mediated protein binding. Co-immunoprecipitation was used to assay binding affinity between TWIST1 and the NFκB subunit p65 (RELA). Biological activity of this complex was assayed using a dual luciferase assay system in which firefly luciferase was driven by the interleukin-8 (IL-8) promoter, which is upregulated by the TWIST1-RELA complex. Finally, in order to inhibit the TWIST1-RELA interaction, we created a fusion protein comprising GFP and the WR domain. Cell fractionation and proteasome inhibition experiments were utilized to elucidate the mechanism of action of the GFP-WR fusion. Results We found that the central residues of the WR domain (W190, R191, E193) were important for TWIST1 binding to RELA, and for increased activation of the IL-8 promoter. We also found that the C-terminal 245 residues of RELA are important for TWIST1 binding and IL-8 promoter activation. Finally, we found the GFP-WR fusion protein antagonized TWIST1-RELA binding and downstream signaling. Co-expression of GFP-WR with TWIST1 and RELA led to proteasomal degradation of TWIST1, which could be inhibited by MG132 treatment. Conclusions These data provide evidence that mutation or inhibition of the WR domain reduces TWIST1 activity, and may represent a potential therapeutic modality. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cai M Roberts
- City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA.,Present address: Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | | - Joana Loeza
- California State University, 5151 State University Drive, Los Angeles, CA, 90032, USA.,Present address: University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | | | | | | |
Collapse
|
119
|
Vinnakota K, Zhang Y, Selvanesan BC, Topi G, Salim T, Sand-Dejmek J, Jönsson G, Sjölander A. M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J Cell Physiol 2017; 232:3468-3480. [PMID: 28098359 DOI: 10.1002/jcp.25808] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The inflammatory milieu plays an important role in colon cancer development and progression. Previously, we have shown that tumor-associated macrophages (TAMs), an important component of the tumor microenvironment, are enriched in tumors compared with normal tissue and confer a poorer prognosis. In the present study, we found that matrix metallopeptidase-9 (MMP-9), which degrades extracellular matrix proteins, was increased in biopsies from colon cancer patients and in mouse xenografts with SW480 cell-derived tumors. SW480 colon cancer cells exposed to M2-like macrophage-conditioned medium (M2-medium) exhibited increased MMP-9 mRNA, protein expression and gelatinase activity. A similar effect was obtained by the addition of tumor necrosis factor-α (TNFα) and leukotriene D4 (LTD4 ). MMP-9 expression and activity were reduced by a TNFα blocking antibody adalimumab and a cysteinyl leukotriene receptor 1 (CysLTR1, the receptor for LTD4 ) antagonist montelukast. M2-medium also induced changes in the epithelial-mesenchymal transition (EMT) markers E-cadherin, β-catenin, vimentin, and snail in SW480 cells. We also found that both M2-medium and TNFα and LTD4 induced stabilization/nuclear translocation of β-catenin. Furthermore, we also observed an elongated phenotype that may indicate increased invasiveness, as confirmed in a collagen I invasion assay. M2-medium increased the invasive ability, and a similar effect was also obtained by the addition of TNFα and LTD4 . The specific MMP inhibitor I or adalimumab and montelukast reduced the number of invasive cells. In conclusion, our findings show that M2-medium enriched in TNFα and LTD4 promote colon cancer cell invasion via MMP-9 expression and activation and the induction of EMT.
Collapse
Affiliation(s)
- Katyayni Vinnakota
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Yuan Zhang
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Benson Chellakkan Selvanesan
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Geriolda Topi
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tavga Salim
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Janna Sand-Dejmek
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Gunilla Jönsson
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
120
|
Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor. Cell Biochem Biophys 2017; 73:775-81. [PMID: 27259324 DOI: 10.1007/s12013-015-0693-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.
Collapse
|
121
|
Harner-Foreman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, Pockley AG, Rees RC, Boocock DJ. A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 2017; 7:40633. [PMID: 28094783 PMCID: PMC5240554 DOI: 10.1038/srep40633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer.
Collapse
Affiliation(s)
- Naomi Harner-Foreman
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stéphanie A. Laversin
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Morgan G. Mathieu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stephen Reeder
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Robert C. Rees
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
122
|
Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1787-1796. [PMID: 27912881 DOI: 10.1016/j.phymed.2016.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Increased epithelial-mesenchymal transition (EMT) and cell migration and invasion abilities of cancer cells play important roles in the metastatic process of cancer. Resveratrol is a stilbenoid, a type of natural polyphenol found in the skin of grapes, berries, and peanuts. A number of experiments have examined resveratrol's ability to target diverse pathways associated with carcinogenesis and cancer progression. PURPOSE This article aims to present updated overview of the knowledge that resveratrol and its metabolites or analogs have the potential to inhibit metastasis of cancer via affecting many signaling pathways related with EMT, cancer migration, and invasion in diverse organs of the body. CHAPTERS This article starts with a short introduction describing diverse beneficial effects of resveratrol including cancer prevention and the aim of the present study. To address the effects of resveratrol on cancer metastasis, mechanisms of EMT, migration, invasion, and their relevance with cancer metastasis, anti-metastatic effects of resveratrol through EMT-related signaling pathways and inhibitory effects of resveratrol on migration and invasion are highlighted. In addition, anti-metastatic potential of resveratrol metabolites and analogs is addressed. CONCLUSION Resveratrol was demonstrated to turn back the EMT process induced by diverse signaling pathways in several cellular and animal cancer models. In addition, resveratrol can exert chemopreventive efficacies on migration and invasion of cancer cells by inhibiting the related pathways and target molecules. Although these findings display the anti-metastatic potential of resveratrol, more patient-oriented clinical studies demonstrating the marked efficacies of resveratrol in humans are still needed.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
123
|
Xie X, Kaoud TS, Edupuganti R, Zhang T, Kogawa T, Zhao Y, Chauhan GB, Giannoukos DN, Qi Y, Tripathy D, Wang J, Gray NS, Dalby KN, Bartholomeusz C, Ueno NT. c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene 2016; 36:2599-2608. [PMID: 27941886 DOI: 10.1038/onc.2016.417] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
c-Jun N-terminal kinase (JNK) plays a vital role in malignant transformation of different cancers, and JNK is highly activated in basal-like triple-negative breast cancer (TNBC). However, the roles of JNK in regulating cancer stem-like cell (CSC) phenotype and tumorigenesis in TNBC are not well defined. JNK is known to mediate many cellular events via activating c-Jun. Here, we found that JNK regulated c-Jun activation in TNBC cells and that JNK activation correlated with c-Jun activation in TNBC tumors. Furthermore, the expression level of c-Jun was significantly higher in TNBC tumors than in non-TNBC tumors, and high c-Jun mRNA level was associated with shorter disease-free survival of patients with TNBC. Thus, we hypothesized that the JNK/c-Jun signaling pathway contributes to TNBC tumorigenesis. We found that knockdown of JNK1 or JNK2 or treatment with JNK-IN-8, an adenosine triphosphate-competitive irreversible pan-JNK inhibitor, significantly reduced cell proliferation, the ALDH1+ and CD44+/CD24- CSC subpopulations, and mammosphere formation, indicating that JNK promotes CSC self-renewal and maintenance in TNBC. We further demonstrated that both JNK1 and JNK2 regulated Notch1 transcription via activation of c-Jun and that the JNK/c-Jun signaling pathway promoted CSC phenotype through Notch1 signaling in TNBC. In a TNBC xenograft mouse model, JNK-IN-8 significantly suppressed tumor growth in a dose-dependent manner by inhibiting acquisition of the CSC phenotype. Taken together, our data demonstrate that JNK regulates TNBC tumorigenesis by promoting CSC phenotype through Notch1 signaling via activation of c-Jun and indicate that JNK/c-Jun/Notch1 signaling is a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- X Xie
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T S Kaoud
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - R Edupuganti
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - T Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - T Kogawa
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Y Zhao
- Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G B Chauhan
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D N Giannoukos
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Qi
- Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Tripathy
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Wang
- Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - N S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - K N Dalby
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - C Bartholomeusz
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - N T Ueno
- Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
124
|
Zhao L, Zou D, Wei X, Wang L, Zhang Y, Liu S, Si Y, Zhao H, Wang F, Yu J, Ma Y, Sun G. MiRNA-221-3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1. Tumour Biol 2016; 37:16053–16063. [PMID: 27726102 DOI: 10.1007/s13277-016-5445-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is a highly lethal disease due to its rapid dissemination and resistance to conventional chemotherapy. MicroRNAs (miRNAs) are emerging as novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. MiRNA-221 has been reported to be associated with chemoresistance in various types of cancer. But the detailed molecular mechanism about miR-221-3p regulating 5-fluorouracil (5-FU) resistance in human pancreatic cancer remains to be clarified. In this study, we investigated the association between miR-221-3p expression and 5-FU sensitivity. Studies on pancreatic cancer cell lines suggested an increased 5-FU resistance with miR-221-3p over-expression. In addition, the results indicated that miR-221-3p down-regulated RB1 expression by directly binding to its 3'-UTR and therefore caused increased several aspects of pancreatic cancer pathogenesis, including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Collectively, our findings revealed the important role of miR-221-3p in promoting 5-FU resistance of pancreatic cancer cells and provided a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Lijun Zhao
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, People's Republic of China
| | - Xueju Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Lanlan Wang
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China
| | - Yuanyuan Zhang
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China.
| | - Guotao Sun
- Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, 475000, People's Republic of China.
| |
Collapse
|
125
|
A Multiscale Approach to the Migration of Cancer Stem Cells: Mathematical Modelling and Simulations. Bull Math Biol 2016; 79:209-235. [DOI: 10.1007/s11538-016-0233-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
|
126
|
Choi Y, Ko YS, Park J, Choi Y, Kim Y, Pyo JS, Jang BG, Hwang DH, Kim WH, Lee BL. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer. World J Gastroenterol 2016; 22:9141-9153. [PMID: 27895401 PMCID: PMC5107595 DOI: 10.3748/wjg.v22.i41.9141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells.
METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments.
RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.
CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.
Collapse
|
127
|
Gomez-Casal R, Epperly MW, Wang H, Proia DA, Greenberger JS, Levina V. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition. Oncotarget 2016; 6:44306-22. [PMID: 26517240 PMCID: PMC4792558 DOI: 10.18632/oncotarget.6248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/14/2015] [Indexed: 12/23/2022] Open
Abstract
Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin. HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells. Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy.
Collapse
Affiliation(s)
- Roberto Gomez-Casal
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W Epperly
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Wang
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Joel S Greenberger
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vera Levina
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Current address: Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
128
|
Lee S, Jang J, Jeon H, Lee J, Yoo SM, Park J, Lee MS. Latent Kaposi's sarcoma-associated herpesvirus infection in bladder cancer cells promotes drug resistance by reducing reactive oxygen species. J Microbiol 2016; 54:782-788. [PMID: 27796928 DOI: 10.1007/s12275-016-6388-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the major etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have indicated that KSHV can be detected at high frequency in patient-derived bladder cancer tissue and might be associated with the pathogenesis of bladder cancer. Bladder cancer is the second most common cancer of the genitourinary tract, and it has a high rate of recurrence. Because drug resistance is closely related to chemotherapy failure and cancer recurrence, we investigated whether KSHV infection is associated with drug resistance of bladder cancer cells. Some KSHV-infected bladder cancer cell lines showed resistance to an anti-cancer drug, cisplatin, possibly as a result of down-regulation of reactive oxygen species. Additionally, drug resistance acquired from KSHV infection could partly be overcome by HDAC1 inhibitors. Taken together, the data suggest the possible role of KSHV in chemo-resistant bladder cancer, and indicate the therapeutic potential of HDAC1 inhibitors in drug-resistant bladder cancers associated with KSHV infection.
Collapse
Affiliation(s)
- Suhyuk Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Jaehyuk Jang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Jinsung Park
- Department of Urology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
129
|
Hassan EM, Willmore WG, DeRosa MC. Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Ther 2016; 26:335-347. [PMID: 27736306 DOI: 10.1089/nat.2016.0632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and freely circulate in the blood, retaining the ability to initiate metastasis and form a secondary tumor in distant organs in the body. CTCs reflect the molecular profile of the primary tumor, therefore studying CTCs can allow for an understanding of the mechanism of metastasis, and an opportunity to monitor the prognosis of cancer. Unfortunately, the detection of CTCs is a considerable challenge due to their low abundance in the bloodstream and the lack of consistent markers present to recognize these cells. The aim of this review is to summarize some of the aptamer-based affinity methods for the detection of CTCs. The basic biological concept of how metastasis occurs and the role of CTCs in this process are presented. Some methods of CTC detection employing antibodies or peptides are mentioned here for comparison. The review of present literature suggests that aptamers are emerging as competitive technology in the detection of CTCs, especially due to their unique properties, but there still remain several challenges to be met, including the need to improve the throughput and sensitivity of such methods.
Collapse
Affiliation(s)
- Eman M Hassan
- 1 Institut National de la Recherche Scientifique-Energie, Materiaux Telecommunication , Quebec, Canada .,2 Department of Chemistry, Carleton University , Ottawa, Canada
| | | | - Maria C DeRosa
- 2 Department of Chemistry, Carleton University , Ottawa, Canada .,3 Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
130
|
Abstract
Stems cells of the colon crypt are the origin of colon mature cells. Colorectal cancer cells are also suggested to originate from crypt stem cells undergoing a series of epigenetic and genetic alterations. Aberrant methylation plays important roles in early carcinogenesis and lead to altered gene expression and regulation, resulting in accumulation of damages to cell function and ultimately, malignant transformation. Aberrances in hypermethylation and hypomethylation act in different mechanism through the regulation of various genes during CSC carcinogenesis, and both of them play crucial roles in stem cell differentiation towards cancer cells. A large majority of epigenetic and genetic abnormalities that work coordinately in colorectal carcinogenesis are related to cell growth and division, indicating that the intrinsic abnormalities of CRC lie in dysregulation of basic cellular processes. Detection of abnormal methylation can be used in cancer screening and early detection, while reversal of aberrant methylation using drugs may have potential in cancer therapy. This review will provide an overview on the roles of aberrant methylation and a summary of genes that are affected during CRC carcinogenesis.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, The Chinese PLA 309th Hospital, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, People's Republic of China.
- BioChain (Beijing) Science and Technology, Inc, Beijing, 100176, People's Republic of China.
| | - Yuemin Li
- Department of Radiotherapy, The Chinese PLA 309th Hospital, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, People's Republic of China.
| |
Collapse
|
131
|
Fan WH, Du FJ, Liu XJ, Chen N. Knockdown of FRAT1 inhibits hypoxia-induced epithelial-to-mesenchymal transition via suppression of the Wnt/β-catenin pathway in hepatocellular carcinoma cells. Oncol Rep 2016; 36:2999-3004. [PMID: 27666874 DOI: 10.3892/or.2016.5130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-induced epithelial-to-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) was investigated. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) is a positive regulator of the Wnt/β-catenin signaling pathway and is overexpressed in many human tumors. However, the expression and role of FRAT1 in HCC has not been elucidated. In this study, we investigated the effect of FRAT1 on EMT process in HCC cells induced by hypoxia. Our results showed that FRAT1 is highly expressed in HCC tissues and cell lines. Hypoxia significantly induced FRAT1 expression in HCC cells. FRAT1 knockdown inhibited hypoxia-induced cell migration/invasion, downregulation of epithelial markers and upregulation of mesenchymal markers. Moreover, FRAT1 knockdown suppressed the expression levels of β-catenin, cyclin D1 and c-myc in HCC cells under the same hypoxic condition. Our results revealed that FRAT1 is a hypoxia factor that is critical for the induction of EMT in HCC cells. These data suggest a potential role for targeting FRAT1 in the prevention of hypoxia-induced HCC cancer progression and metastasis mediated by EMT.
Collapse
Affiliation(s)
- Wan-Hu Fan
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fen-Jing Du
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao-Jing Liu
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Na Chen
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
132
|
Zhang XH, Qian Y, Li Z, Zhang NN, Xie YJ. Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncol Rep 2016; 36:2967-2975. [DOI: 10.3892/or.2016.5098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/02/2016] [Indexed: 11/06/2022] Open
|
133
|
Zhu X, Wu Y, Miao X, Li C, Yin H, Yang S, Lu X, Liu Y, Chen Y, Shen R, Chen X, He S. High expression of TRIM44 is associated with enhanced cell proliferation, migration, invasion, and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol 2016; 37:14615-14628. [PMID: 27619678 DOI: 10.1007/s13277-016-5316-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of TRIM44 has been reported to be involved in tumorigenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. In the present study, we investigated the clinicopathological and biological significance of TRIM44 in HCC. We found that TRIM44 mRNA and protein expression was upregulated in HCC compared with matched normal tissues. Intriguingly, we also found that TRIM44 expression was significantly correlated with tumor size (P < 0.001), vascular invasion (P < 0.001), intrahepatic metastasis (P < 0.001), distant metastasis (P < 0.001), and Ki-67 expression (P < 0.001). Kaplan-Meier analysis showed that high TRIM44 staining was significantly correlated with shorter overall survival (P < 0.001). TRIM44 was an independent predictor of overall survival in patients with HCC. Furthermore, we found that ectopic expression of TRIM44 could promote cell proliferation via accelerating the G1/S-phase transition in HCC. Moreover, overexpression of TRIM44 could enhance the invasive and migratory capacity of HCC cells. Meanwhile, we found that high expression of TRIM44 could enhance resistance of HCC cells to doxorubicin via accelerating NF-κB activation. In conclusion, our results suggest that TRIM44 may be a novel prognostic indicator and potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Haibing Yin
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Shuyun Yang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Yushan Liu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Yali Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Rong Shen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Xudong Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China.
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China.
| |
Collapse
|
134
|
Gigantol Inhibits Epithelial to Mesenchymal Process in Human Lung Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4561674. [PMID: 27651818 PMCID: PMC5019934 DOI: 10.1155/2016/4561674] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/11/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Lung cancer remains a leading public health problem as evidenced by its increasing death rate. The main cause of death in lung cancer patients is cancer metastasis. The metastatic behavior of lung cancer cells becomes enhanced when cancer cells undergo epithelial to mesenchymal transition (EMT). Gigantol, a bibenzyl compound extracted from the Thai orchid, Dendrobium draconis, has been shown to have promising therapeutic potential against cancer cells, which leads to the hypothesis that gigantol may be able to inhibit the fundamental EMT process in cancer cells. This study has demonstrated for the first time that gigantol possesses the ability to suppress EMT in non-small cell lung cancer H460 cells. Western blot analysis has revealed that gigantol attenuates the activity of ATP-dependent tyrosine kinase (AKT), thereby inhibiting the expression of the major EMT transcription factor, Slug, by both decreasing its transcription and increasing its degradation. The inhibitory effects of gigantol on EMT result in a decrease in the level of migration in H460 lung cancer cells. The results of this study emphasize the potential of gigantol for further development against lung cancer metastasis.
Collapse
|
135
|
Wangpu X, Yang X, Zhao J, Lu J, Guan S, Lu J, Kovacevic Z, Liu W, Mi L, Jin R, Sun J, Yue F, Ma J, Lu A, Richardson DR, Wang L, Zheng M. The metastasis suppressor, NDRG1, inhibits "stemness" of colorectal cancer via down-regulation of nuclear β-catenin and CD44. Oncotarget 2016; 6:33893-911. [PMID: 26418878 PMCID: PMC4741810 DOI: 10.18632/oncotarget.5294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target.
Collapse
Affiliation(s)
- Xiongzhi Wangpu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Jiaoyang Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Shaopei Guan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Mi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runsen Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lishun Wang
- The Division of Translational Medicine, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
136
|
Wu J, Cui H, Zhu Z, Wang L. MicroRNA-200b-3p suppresses epithelial-mesenchymal transition and inhibits tumor growth of glioma through down-regulation of ERK5. Biochem Biophys Res Commun 2016; 478:1158-64. [PMID: 27545608 DOI: 10.1016/j.bbrc.2016.08.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 01/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of cancer. Has-miR-200b-3p is generally recognized as one of the fundamental regulators of EMT. In this study, we found that the expression of miR-200b-3p was downregulated in glioma tissues and human glioma cells U87 and U251. Meanwhile, Up-regulating miR-200b-3p enhanced E-cadherin, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, the xenograft mouse model also unveiled the suppressive effects of miR-200b-3p on tumor growth. Additionally, The extracellular-regulated protein kinase 5 (ERK5) was confirmed as a direct target gene of miR-200b-3p. The direct suppression of ERK5 expressions by miR-200b-3p was revealed by luciferase reporter assay, quantitative RT-PCR analysis, and western blot. Moreover, we observed an inverse correlation between miR-200b-3p and ERK5 in human glioma tissues. In summary, our findings demonstrated that miR-200b-3p suppresses glioma tumor growth, invasion, and reverses EMT through downregulated its target ERK5.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Hongyan Cui
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhifeng Zhu
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Li Wang
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
137
|
Characterization of cancer stem cells from different grades of human colorectal cancer. Tumour Biol 2016; 37:14069-14081. [PMID: 27507615 DOI: 10.1007/s13277-016-5232-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common solid tumors worldwide. Recent evidence suggests that a population of cancer cells, called cancer stem cells (CSCs), is responsible for tumor heterogeneity, invasion, metastasis, therapeutic resistance, and recurrence of CRC. The isolation and characterization of CSCs using cell surface markers have been reported previously with varying results. In this study, we investigated a panel of four putative CSC markers, CD44, CD24, CD166, and EpCAM, to define CRC-CSC. Paraffin embedded tissue samples from different grades of primary, untreated CRC were analyzed for the expression of four CSC markers CD44, CD326, CD24, and CD166, using immunohistochemistry. Flow cytometric analysis of CRC-CSC from HT29 (low grade) and HCT116 (high grade) human colorectal cancer cell lines was done. Marker-based isolation of CSC and non-CSC-bulk-tumor cells from HT29 was done using FACS, and tumor sphere assay was performed. There was a statistically significant difference (p < 0.05) in the expression of CD44, CD326, and CD166 between cases and controls. A novel cutoff distribution of CD44 and CD166 was suggested to help for better immunohistochemical analysis of CRC. Higher prevalence of CSC was seen in high-grade CRC as compared to low-grade CRC. Sorted and cultured CD44 + CD166+ cells formed tumor spheres, suggesting that these cells, having properties of self renewal and anchorage independent proliferation, were in fact CSC. Hence, CD44 and CD166 may serve as good CRC-CSC markers when used together with novel cutoff immunohistochemistry (IHC) expression levels.
Collapse
|
138
|
Yeh CM, Chen PC, Hsieh HY, Jou YC, Lin CT, Tsai MH, Huang WY, Wang YT, Lin RI, Chen SS, Tung CL, Wu SF, Chang DC, Shen CH, Hsu CD, Chan MWY. Methylomics analysis identifies ZNF671 as an epigenetically repressed novel tumor suppressor and a potential non-invasive biomarker for the detection of urothelial carcinoma. Oncotarget 2016; 6:29555-72. [PMID: 26320192 PMCID: PMC4745746 DOI: 10.18632/oncotarget.4986] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanism underlying the lethal phenomenon of urothelial carcinoma (UC) tumor recurrence remains unresolved. Here, by methylation microarray, we identified promoter methylation of the zinc-finger protein gene, ZNF671 in bladder UC tumor tissue samples, a finding that was independently validated by bisulphite pyrosequencing in cell lines and tissue samples. Subsequent assays including treatment with epigenetic depressive agents and in vitro methylation showed ZNF671 methylation to result in its transcriptional repression. ZNF671 re-expression in UC cell lines, via ectopic expression, inhibited tumor growth and invasion, in possible conjunction with downregulation of cancer stem cell markers (c-KIT, NANOG, OCT4). Clinically, high ZNF671 methylation in UC tumor tissues (n=96; 63 bladder, 33 upper urinary tract) associated with tumor grade and poor locoregional disease-free survival. Quantitative MSP analysis in a training (n=97) and test (n=61) sets of voided urine samples from bladder UC patients revealed a sensitivity and specificity of 42%-48% and 89%-92.8%, respectively, for UC cancer detection. Moreover, combining DNA methylation of ZNF671 and 2 other genes (IRF8 and sFRP1) further increased the sensitivity to 96.2%, suggesting a possible three-gene UC biomarker. In summary, ZNF671, an epigenetically silenced novel tumor suppressor, represents a potential predictor for UC relapse and non-invasive biomarker that could assist in UC clinical decision-making.
Collapse
Affiliation(s)
- Chia-Ming Yeh
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Pi-Che Chen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsiao-Yen Hsieh
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chang-Te Lin
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Ming-Hsuan Tsai
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Wen-Yu Huang
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Yi-Ting Wang
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Ru-Inn Lin
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Departments of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chia Yi, Taiwan
| | - Szu-Shan Chen
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Shu-Fen Wu
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - D Ching Chang
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Cheng-Da Hsu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Michael W Y Chan
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| |
Collapse
|
139
|
Fang B, Zhang M, Fan X, Ren F. The targeted proteins in tumor cells treated with the α-lactalbumin–oleic acid complex examined by descriptive and quantitative liquid chromatography–tandem mass spectrometry. J Dairy Sci 2016; 99:5991-6004. [DOI: 10.3168/jds.2016-10971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
|
140
|
Li M, Li H, Liu X, Xu D, Wang F. MicroRNA-29b regulates TGF-β1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2. Exp Cell Res 2016; 345:115-24. [DOI: 10.1016/j.yexcr.2014.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022]
|
141
|
Kodama N, Iwao T, Kabeya T, Horikawa T, Niwa T, Kondo Y, Nakamura K, Matsunaga T. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes. Drug Metab Pharmacokinet 2016; 31:193-200. [DOI: 10.1016/j.dmpk.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/21/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
|
142
|
Caceres S, Peña L, Lacerda L, Illera MJ, de Andres PJ, Larson RA, Gao H, Debeb BG, Woodward WA, Reuben JM, Illera JC. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer. Vet Comp Oncol 2016; 15:980-995. [DOI: 10.1111/vco.12238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- S. Caceres
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| | - L. Peña
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine; Complutense University of Madrid (UCM); Madrid Spain
| | - L. Lacerda
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - M. J. Illera
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| | - P. J. de Andres
- Department of Animal Medicine, Surgery and Pathology, School of Veterinary Medicine; Complutense University of Madrid (UCM); Madrid Spain
| | - R. A. Larson
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - H. Gao
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - B. G. Debeb
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - W. A. Woodward
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - J. M. Reuben
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - J. C. Illera
- Department of Animal Physiology; Complutense University of Madrid (UCM); Madrid Spain
| |
Collapse
|
143
|
NEAGU MONICA, CARUNTU CONSTANTIN, CONSTANTIN CAROLINA, BODA DANIEL, ZURAC SABINA, SPANDIDOS DEMETRIOSA, TSATSAKIS ARISTIDISM. Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep 2016; 35:2516-28. [PMID: 26986013 PMCID: PMC4811393 DOI: 10.3892/or.2016.4683] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology.
Collapse
Affiliation(s)
- MONICA NEAGU
- 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| | - CONSTANTIN CARUNTU
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 79811, Romania
| | | | - DANIEL BODA
- Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 79811, Romania
| | - SABINA ZURAC
- Department of Pathology, 'Colentina' Clinical Hospital, Bucharest 72202, Romania
| | - DEMETRIOS A. SPANDIDOS
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71409, Greece
| | - ARISTIDIS M. TSATSAKIS
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
144
|
Rhodes LV, Martin EC, Segar HC, Miller DFB, Buechlein A, Rusch DB, Nephew KP, Burow ME, Collins-Burow BM. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget 2016; 6:16638-52. [PMID: 26062653 PMCID: PMC4599295 DOI: 10.18632/oncotarget.3184] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Elizabeth C Martin
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - H Chris Segar
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - David F B Miller
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Douglas B Rusch
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Kenneth P Nephew
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA.,Department of Pharmacology, Tulane University, New Orleans, LA, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
145
|
Duan Q, Pang C, Chang N, Zhang J, Liu W. Overexpression of PAD4 suppresses drug resistance of NSCLC cell lines to gefitinib through inhibiting Elk1-mediated epithelial-mesenchymal transition. Oncol Rep 2016; 36:551-8. [PMID: 27176594 DOI: 10.3892/or.2016.4780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
Abstract
It is reported that epithelial-to-mesenchymal transition (EMT) could induce resistance in tumor cells, and knockdown of peptidylarginine deiminase IV (PAD4) induces the activity of EMT. However, the role of PAD4 in gefitinib‑acquired resistance in non-small cell lung cancer (NSCLC) remains unclear. In this study, we aimed to investigate the role of PAD4 in the resistance of NSCLC to gefitinib. The cells resistant to gefitinib were established in accordance with the literature, and were derived from NSCLC cell lines HCC827 and H1650. Real-time quantitative PCR and western blot results showed that PAD4 was obviously downregulated in the cells resistant to gefitinib. Overexpression of PAD4 distinctly inhibited gefitinib resistance, whereas PAD4 downregulation had the opposite effect. Further data indicated that PAD4 upregulation could restrain EMT activity via controlling the expression of ETS-domain containing protein (Elk1). Conversely, inhibition of PAD4 showed the reverse function compared with PAD4 upregulation. Above all, our study showed that overexpression of PAD4 constrains the activity of EMT via suppressing Elk1 expression, and inhibits resistance of NSCLC to gefitinib.
Collapse
Affiliation(s)
- Qiong Duan
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Cui Pang
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ning Chang
- Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ju Zhang
- Institute of Gene Diagnosis, State Key Laboratory of Cancer Biology, School of Pharmacology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenchao Liu
- Department of Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
146
|
Shen H, Ma JL, Zhang Y, Deng GL, Qu YL, Wu XL, He JX, Zhang S, Zeng S. Integrin-linked kinase overexpression promotes epithelial-mesenchymal transition via nuclear factor-κB signaling in colorectal cancer cells. World J Gastroenterol 2016; 22:3969-3977. [PMID: 27099440 PMCID: PMC4823247 DOI: 10.3748/wjg.v22.i15.3969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/06/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of integrin-linked kinase (ILK) on proliferation, metastasis, and invasion of the colorectal cancer cell line SW480.
METHODS: In this study, the colorectal cancer cell line SW480 was stably transfected with ILK plasmids, and small interfering RNA (siRNA) was used to knockdown expression of nuclear factor (NF)-κB/p65. Methylthiazole tetrazolium (MTT) assay was performed to measure proliferation, and the wound healing migration assay and matrigel invasion assay were used to test the metastasis and invasion ability of SW480 cells. To explore the epithelial-mesenchymal transition (EMT) process, embryonic development, and the invasion and metastasis of tumors, the protein level of E-cadherin, vimentin, snail, and slug was detected by western blot. Immunofluorescence was also used to detect E-cadherin expression. Western blot was used to determine the level of phosphorylated-inhibitor of kappa B (IκB)a, inhibitor of gamma B (IγB)a, and nuclear factor kappa B (NF-κB) expressions and to explore the ILK signaling pathway.
RESULTS: Western blot results revealed that ILK expression significantly increased when ILK was overexpressed in SW480 cells (P < 0.05). Proliferation, metastasis, and invasion ability were improved in the vector-ILK group compared to the vector group (P < 0.05). Immunofluorescence results revealed that E-cadherin fluorescence intensity decreased after ILK was overexpressed (P < 0.05). Western blot results revealed that the protein expression of E-cadherin was reduced, while vimentin, snail, and slug were upregulated when ILK was overexpressed in SW480 cells (P < 0.05). In order to determine the role of the NF-κB signaling pathway in ILK overexpression promoted EMT occurrence, we overexpressed ILK in SW480 cells and found that levels of NF-κB/p65 and cytoplasmic phosphorylated-IκBa were increased and that cytoplasmic IкBa levels were decreased compared to the control group (P < 0.05). Furthermore, NF-κB/p65 knockout revealed that E-cadherin was increased in the overexpressed ILK group.
CONCLUSION: ILK overexpression improved the proliferation, metastasis, and invasion ability of SW480 cells, and this effect may be mediated by the NF-κB signaling pathway.
Collapse
|
147
|
Kumar R, Juillerat-Jeanneret L, Golshayan D. Notch Antagonists: Potential Modulators of Cancer and Inflammatory Diseases. J Med Chem 2016; 59:7719-37. [DOI: 10.1021/acs.jmedchem.5b01516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rajesh Kumar
- Transplantation
Center and Transplantation Immunopathology Laboratory, Department
of Medicine and ‡University Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Lucienne Juillerat-Jeanneret
- Transplantation
Center and Transplantation Immunopathology Laboratory, Department
of Medicine and ‡University Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation
Center and Transplantation Immunopathology Laboratory, Department
of Medicine and ‡University Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| |
Collapse
|
148
|
Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med 2016; 20:1761-9. [PMID: 27027258 PMCID: PMC4988285 DOI: 10.1111/jcmm.12851] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular‐like structure which can mimic the embryonic vascular network pattern to nourish the tumour tissue. As a unique perfusion way, VM is correlated with tumour progression, invasion, metastasis and lower 5‐year survival rate. Notably, epithelial‐mesenchymal transition (EMT) regulators and EMT‐related transcription factors are highly up‐regulated in VM‐forming tumour cells, which demonstrated that EMT may play a crucial role in VM formation. Therefore, the up‐regulation of EMT‐associated adhesion molecules and other factors can also make a contribution in VM‐forming process. Depending on these discoveries, VM and EMT can be utilized as therapeutic target strategies for anticancer therapy. The purpose of this article is to explore the advance research in the relationship of EMT and VM and their corresponding mechanisms in tumorigenesis effect.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | - Lili Qiao
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Ning Liang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jian Xie
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jingxin Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Guodong Deng
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Hui Luo
- Department of Oncology, Weifang Medical College, Weifang, Shandong Pro, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| |
Collapse
|
149
|
Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer 2016; 16:245. [PMID: 27012679 PMCID: PMC4806492 DOI: 10.1186/s12885-016-2265-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/10/2016] [Indexed: 12/28/2022] Open
Abstract
Background Eliminating cancer stem cells (CSCs) has been suggested for prevention of tumor recurrence and metastasis. Honokiol, an active compound of Magnolia officinalis, had been proposed to be a potential candidate drug for cancer treatment. We explored its effects on the elimination of oral CSCs both in vitro and in vivo. Methods By using the Hoechst side population (SP) technique, CSCs-like SP cells were isolated from human oral squamous cell carcinoma (OSCC) cell lines, SAS and OECM-1. Effects of honokiol on the apoptosis and signaling pathways of SP-derived spheres were examined by Annexin V/Propidium iodide staining and Western blotting, respectively. The in vivo effectiveness was examined by xenograft mouse model and immunohistochemical tissue staining. Results The SP cells possessed higher stemness marker expression (ABCG2, Ep-CAM, Oct-4 and Nestin), clonogenicity, sphere formation capacity as well as tumorigenicity when compared to the parental cells. Treatment of these SP-derived spheres with honokiol resulted in apoptosis induction via Bax/Bcl-2 and caspase-3-dependent pathway. This apoptosis induction was associated with marked suppression of JAK2/STAT3, Akt and Erk signaling pathways in honokiol-treated SAS spheres. Consistent with its effect on JAK2/STAT3 suppression, honokiol also markedly inhibited IL-6-mediated migration of SAS cells. Accordingly, honokiol dose-dependently inhibited the growth of SAS SP xenograft and markedly reduced the immunohistochemical staining of PCNA and endothelial marker CD31 in the xenograft tumor. Conclusions Honokiol suppressed the sphere formation and xenograft growth of oral CSC-like cells in association with apoptosis induction and inhibition of survival/proliferation signaling pathways as well as angiogenesis. These results suggest its potential as an integrative medicine for combating oral cancer through targeting on CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2265-6) contains supplementary material, which is available to authorized users.
Collapse
|
150
|
Imatinib Inhibits the Renewal and Tumorigenicity of CT-26 Colon Cancer Cells after Cytoreductive Treatment with Doxorubicin. Arch Immunol Ther Exp (Warsz) 2016; 65:51-67. [PMID: 26956644 DOI: 10.1007/s00005-016-0391-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
Conventional anti-cancer drugs preferentially eliminate differentiated cancer cells but those cells that are spared (i.e. cancer stem cells: CSC), initiate recurrence. We tested whether drugs that target receptor tyrosine kinases (RTKs) involved in developmental signaling cascades and activated in CSC, could be used to silence and/or to eliminate colorectal cancer cells refractory to conventional treatment with cytoreductive drugs. A sequential treatment model was thereby developed with doxorubicin (DOX) and imatinib. CT-26 mouse colon carcinoma cells were pre-treated with DOX to select DOX-refractory cells with CSC properties, which were then subsequently treated with RTK inhibitor imatinib, where their regrowth was found to be inhibited. Under both normoxic and hypoxic conditions, imatinib potently inhibited clonogenicity of DOX-refractory CT-26 cells. Treatment with DOX did not eliminate tumorigenic CT-26 cells, since CT-26 cells pre-exposed to DOX in vitro, when inoculated subcutaneously, induced tumors in 90 % of mice, as opposed to a 100 % rate in the case of chemonaive CT-26 cells. In mice inoculated with chemonaive CT-26 cells, tumor formation was not prevented by imatinib. However, imatinib prevented tumor formation in 50 % of mice inoculated with CT-26 cells pre-exposed to DOX in vitro, with the remaining 50 % mice showing delayed tumor formation. These results suggest that the sequential use of the drug imatinib, as a drug targeting cancer cells expressing stem cell features after conventional cytoreductive treatment, is a promising future strategy for preventing tumor recurrence.
Collapse
|