101
|
Hollingshead S, Liu JC. pH-Sensitive Mechanical Properties of Elastin-Based Hydrogels. Macromol Biosci 2020; 20:e1900369. [PMID: 32090483 DOI: 10.1002/mabi.201900369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Ionizable amino acids in protein-based hydrogels can confer pH-responsive behavior. Because elastin-like polypeptides (ELPs) have an established sequence and can crosslink to form hydrogels, they are an ideal system for creating pH-sensitive materials. This study examines different parameters that might affect pH-sensitive behavior and characterizes the mechanical and physical properties between pH 3 and 11 of three ELP-based crosslinked hydrogels. The first finding is that varying the amount of crosslinker affects the overall stiffness and resilience of the hydrogels but does not strongly affect water content, swelling ratio, or pH sensitivity. Second, the choice of two popular tag sequences, which vary in histidine and aspartic acid content, does not have a strong effect on pH-sensitive properties. Last, selectively blocking lysine and tyrosine residues through acetylation significantly decreases the pH-sensitive zeta potential. Acetylated hydrogels also demonstrate different behavior at low pH values with reduced swelling, reduced water content, and higher stiffness. Overall, this work demonstrates that ELP hydrogels with ionizable groups are promising materials for environmentally-responsive applications such as drug delivery, tissue engineering, and microfluidics.
Collapse
Affiliation(s)
- Sydney Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907-2032, USA
| |
Collapse
|
102
|
Sumathy B, Nair PD. Keratinocytes-hair follicle bulge stem cells-fibroblasts co-cultures on a tri-layer skin equivalent derived from gelatin/PEG methacrylate nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:869-894. [DOI: 10.1080/09205063.2020.1725861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Babitha Sumathy
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
103
|
Barbon S, Stocco E, Dalzoppo D, Todros S, Canale A, Boscolo-Berto R, Pavan P, Macchi V, Grandi C, De Caro R, Porzionato A. Halogen-Mediated Partial Oxidation of Polyvinyl Alcohol for Tissue Engineering Purposes. Int J Mol Sci 2020; 21:E801. [PMID: 31991838 PMCID: PMC7038068 DOI: 10.3390/ijms21030801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Partial oxidation of polyvinyl alcohol (PVA) with potassium permanganate turned out to be an efficient method to fabricate smart scaffolds for tissue engineering, endowed with biodegradation and protein delivery capacity. This work considered for the first time the use of halogens (bromine, chlorine and iodine) as less aggressive agents than potassium permanganate to perform controlled PVA oxidation, in order to prevent degradation of polymer molecular size upon chemical modification. Oxidized PVA solutions were chemically characterized (i.e., dinitrophenylhydrazine assay, viscosity measurements, molecular size distribution) before preparing physically cross-linked hydrogels. Scaffolds were assessed for their mechanical properties and cell/tissue biocompatibiliy through cytotoxic extract test on IMR-90 fibroblasts and subcutaneous implantation into BALB/c mice. According to chemical investigations, bromine and iodine allowed for minor alteration of polymer molecular weight. Uniaxial tensile tests demonstrated that oxidized scaffolds had decreased mechanical resistance to deformation, suggesting tunable hydrogel stiffness. Finally, oxidized hydrogels exhibited high biocompatibility both in vitro and in vivo, resulting neither to be cytotoxic nor to elicit severe immunitary host reaction in comparison with atoxic PVA. In conclusion, PVA hydrogels oxidized by halogens were successfully fabricated in the effort of adapting polymer characteristics to specific tissue engineering applications.
Collapse
Affiliation(s)
- Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy; (S.B.); (E.S.); (R.B.-B.); (V.M.); (A.P.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy; (S.B.); (E.S.); (R.B.-B.); (V.M.); (A.P.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Daniele Dalzoppo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35128 Padova, Italy; (D.D.); (C.G.)
| | - Silvia Todros
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Via Venezia 1, 35131 Padova, Italy; (S.T.); (P.P.)
| | - Antonio Canale
- Department of Statistical Sciences, University of Padova, Via C. Battisti 241, 35121 Padova, Italy;
| | - Rafael Boscolo-Berto
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy; (S.B.); (E.S.); (R.B.-B.); (V.M.); (A.P.)
| | - Piero Pavan
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Via Venezia 1, 35131 Padova, Italy; (S.T.); (P.P.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35121 Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy; (S.B.); (E.S.); (R.B.-B.); (V.M.); (A.P.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Claudio Grandi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35128 Padova, Italy; (D.D.); (C.G.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, 35030 Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy; (S.B.); (E.S.); (R.B.-B.); (V.M.); (A.P.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy; (S.B.); (E.S.); (R.B.-B.); (V.M.); (A.P.)
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
104
|
Pearce HA, Kim YS, Diaz-Gomez L, Mikos AG. Tissue Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
105
|
|
106
|
Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, Fukushima K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190274] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Kashiwazaki
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
107
|
Jiang Y, Lu X. Environment adaptive hydrogels for extreme conditions: a review. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yanan Jiang
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| | - Xiong Lu
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| |
Collapse
|
108
|
Sun J, Ma X, Chu HT, Feng B, Tuan RS, Jiang Y. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling. Front Bioeng Biotechnol 2019; 7:373. [PMID: 31850331 PMCID: PMC6895005 DOI: 10.3389/fbioe.2019.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are reprogrammed somatic cells by defined factors, and have great application potentials in tissue regeneration and disease modeling. Biomaterials have been widely used in stem cell-based studies, and are involved in human iPSCs based studies, but they were not enough emphasized and recognized. Biomaterials can mimic the extracellular matrix and microenvironment, and act as powerful tools to promote iPSCs proliferation, differentiation, maturation, and migration. Many classic and advanced biofabrication technologies, such as cell-sheet approach, electrospinning, and 3D-bioprinting, are used to provide physical cues in macro-/micro-patterning, and in combination with other biological factors to support iPSCs applications. In this review, we highlight the biomaterials and fabrication technologies used in human iPSC-based tissue engineering to model neuromyopathic diseases, particularly those with genetic mutations, such as Duchenne Muscular Dystrophy (DMD), Congenital Heart Diseases (CHD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jing Sun
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xun Ma
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ting Chu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Feng
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
109
|
Mansouri N, Al-Sarawi SF, Mazumdar J, Losic D. Advancing fabrication and properties of three-dimensional graphene-alginate scaffolds for application in neural tissue engineering. RSC Adv 2019; 9:36838-36848. [PMID: 35539075 PMCID: PMC9075535 DOI: 10.1039/c9ra07481c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022] Open
Abstract
Neural tissue engineering provides enormous potential for restoring and improving the function of diseased/damaged tissues and promising opportunities in regenerative medicine, stem cell technology, and drug discovery. The conventional 2D cell cultures have many limitations to provide informative and realistic neural interactions and network formation. Hence, there is a need to develop three-dimensional (3D) bioscaffolds to facilitate culturing cells with matched microenvironment for cell growth and interconnected pores for penetration and migration of cells. Herein, we report the synthesis and characterization of 3D composite bioscaffolds based on graphene-biopolymer with porous structure and improved performance for tissue engineering. A simple, eco-friendly synthetic method is introduced and optimized for synthesis of this hybrid fibrous scaffold by combining Graphene Oxide (GO) and Sodium Alginate (Na-ALG) which are specifically selected to match the mechanical strength of the central nervous system (CNS) tissue and provide porous structure for connective tissue engineering. Properties of the developed scaffold in terms of the structure, porosity, thermal stability, mechanical properties, and electrical conductivity are presented. These properties were optimised through key synthesis conditions including GO concentrations, reduction process and crosslinking time. In contrast to other studies, the presented structure maintains its stability in aqueous media and uses a bio-friendly reducing agent which enable the structure to enhance neuron cell interactions and act as nerve conduits for neurological diseases.
Collapse
Affiliation(s)
- Negar Mansouri
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Said F Al-Sarawi
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Jagan Mazumdar
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, University of Adelaide Adelaide Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, University of Adelaide Adelaide Australia
| |
Collapse
|
110
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
111
|
Nakagawa H, Oyama T. Molecular Basis of Water Activity in Glycerol-Water Mixtures. Front Chem 2019; 7:731. [PMID: 31737605 PMCID: PMC6839025 DOI: 10.3389/fchem.2019.00731] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Water activity (Aw) is a reliable indication of the microbial growth, enzymatic activity, preservation, and quality of foods. However, a molecular basis of Aw is still under debate in multiple related disciplines. Glycerol-water mixtures can provide a variation of Aws by controlling the ratio of glycerol and water. In this study, the molecular basis of Aw was examined by using differential scanning calorimetry (DSC), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-IR), and incoherent quasi-elastic neutron scattering (IQENS) based on moisture sorption isotherms of glycerol-water mixtures. Three regions were identified and classified based on DSC results. DSC showed that bulk-like water existed at Aw > ≈ 0.7 at 27°C. Hydrogen bonding related molecular vibrations were analyzed by ATR-IR, which indicated that the OH stretching in water molecules is significantly different for Aw > ≈ 0.7. Translational diffusive and/or rotational motions in time and space analyzed by IQENS appeared when Aw > ≈ 0.7, and are correlated with hydrogen bonding related local vibrational dynamics in the glycerol-water mixtures. More importantly, Aw values of glycerol-water mixtures can be explained by the hydrogen bonding network and molecular dynamics of water in the solution. We discuss the implications of Aw in the preservation of food at the molecular level.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Hierarchical Structure Research Group, Materials Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | | |
Collapse
|
112
|
Gandhimathi C, Quek YJ, Ezhilarasu H, Ramakrishna S, Bay BH, Srinivasan DK. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering. Int J Mol Sci 2019; 20:E5135. [PMID: 31623264 PMCID: PMC6834165 DOI: 10.3390/ijms20205135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023] Open
Abstract
Multifunctional nanofibrous scaffolds for effective bone tissue engineering (BTE) application must incorporate factors to promote neovascularization and tissue regeneration. In this study, silica-coated gold nanoparticles Au(SiO2) were tested for their ability to promote differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. Biocompatible poly-ε-caprolactone (PCL), PCL/silk fibroin (SF) and PCL/SF/Au(SiO2) loaded nanofibrous scaffolds were first fabricated by an electrospinning method. Electrospun nanofibrous scaffolds were characterized for fiber architecture, porosity, pore size distribution, fiber wettability and the relevant mechanical properties using field emission scanning electron microscopy (FESEM), porosimetry, determination of water contact angle, measurements by a surface analyzer and tabletop tensile-tester measurements. FESEM images of the scaffolds revealed beadless, porous, uniform fibers with diameters in the range of 164 ± 18.65 nm to 215 ± 32.12 nm and porosity of around 88-92% and pore size distribution around 1.45-2.35 µm. Following hMSCs were cultured on the composite scaffolds. Cell-scaffold interaction, morphology and proliferation of were analyzed by FESEM analysis, MTS (3-(4,5-dimethyl thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) and CMFDA (5-choromethyl fluorescein acetate) dye assays. Osteogenic differentiation of MSCs into osteogenic cells were determined by alkaline phosphatase (ALP) activity, mineralization by alizarin red S (ARS) staining and osteocalcin expression by immunofluorescence staining. The results revealed that the addition of SF and Au(SiO2) to PCL scaffolds enhanced the mechanical strength, interconnecting porous structure and surface roughness of the scaffolds. This, in turn, led to successful osteogenic differentiation of hMSCs with improved cell adhesion, proliferation, differentiation, mineralization and expression of pro-osteogenic cellular proteins. This provides huge support for Au(SiO2) as a suitable material in BTE.
Collapse
Affiliation(s)
- Chinnasamy Gandhimathi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| | - Ying Jie Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Dinesh Kumar Srinivasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
113
|
Swelling and rheological study of calcium phosphate filled bacterial cellulose‐based hydrogel scaffold. J Appl Polym Sci 2019. [DOI: 10.1002/app.48522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
114
|
d'Angelo M, Benedetti E, Tupone MG, Catanesi M, Castelli V, Antonosante A, Cimini A. The Role of Stiffness in Cell Reprogramming: A Potential Role for Biomaterials in Inducing Tissue Regeneration. Cells 2019; 8:E1036. [PMID: 31491966 PMCID: PMC6770247 DOI: 10.3390/cells8091036] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
Abstract
The mechanotransduction is the process by which cells sense mechanical stimuli such as elasticity, viscosity, and nanotopography of extracellular matrix and translate them into biochemical signals. The mechanotransduction regulates several aspects of the cell behavior, including migration, proliferation, and differentiation in a time-dependent manner. Several reports have indicated that cell behavior and fate are not transmitted by a single signal, but rather by an intricate network of many signals operating on different length and timescales that determine cell fate. Since cell biology and biomaterial technology are fundamentals in cell-based regenerative therapies, comprehending the interaction between cells and biomaterials may allow the design of new biomaterials for clinical therapeutic applications in tissue regeneration. In this work, we present the most relevant mechanism by which the biomechanical properties of extracellular matrix (ECM) influence cell reprogramming, with particular attention on the new technologies and materials engineering, in which are taken into account not only the biochemical and biophysical signals patterns but also the factor time.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
115
|
|
116
|
Faroni A, Workman VL, Saiani A, Reid AJ. Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells. Adv Healthc Mater 2019; 8:e1900410. [PMID: 31348622 DOI: 10.1002/adhm.201900410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Despite advances in microsurgical techniques, treatment options to restore prior function following peripheral nerve injury remain unavailable, and autologous nerve grafting remains the therapy of choice. Recent experimental work has focused on the development of artificial constructs incorporating smart biomaterials and stem cells, aspiring to match/improve the outcomes of nerve autografting. Chemically stimulated human adipose-derived stem cells (dhASC) can improve nerve regeneration outcomes; however, these properties are lost when chemical stimulation is withdrawn, and survival rate upon transplantation is low. It is hypothesized that interactions with synthetic hydrogel matrices could maintain and improve neurotrophic characteristics of dhASC. dhASC are cultured on PeptiGel-Alpha 1 and PeptiGel-Alpha 2 self-assembling peptide hydrogels, showing comparable viability to collagen I control gels. Culturing dhASC on Alpha 1 and Alpha 2 substrates allow the maintenance of neurotrophic features, such as the expression of growth factors and neuroglial markers. Both Alpha 1 and Alpha 2 substrates are suitable for the culture of peripheral sensory neurons, permitting sprouting of neuronal extensions without the need of biological extracellular matrices, and preserving neuronal function. PeptiGel substrates loaded with hdASC are proposed as promising candidates for the development of tissue engineering therapies for the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
| | - Victoria L. Workman
- School of Materials & Manchester Institute of BiotechnologyFaculty of Science and EngineeringUniversity of Manchester Manchester M13 9PL UK
| | - Alberto Saiani
- School of Materials & Manchester Institute of BiotechnologyFaculty of Science and EngineeringUniversity of Manchester Manchester M13 9PL UK
| | - Adam J. Reid
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
- Department of Plastic Surgery & BurnsWythenshawe HospitalManchester University NHS Foundation TrustManchester Academic Health Science Centre Manchester M23 9LT UK
| |
Collapse
|
117
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
118
|
Ribeiro AM, Flores-Sahagun THS. Application of stimulus-sensitive polymers in wound healing formulation. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andreza M Ribeiro
- Engineering and Material Science, University Federal of Paraná, Curitiba, Brazil
| | | |
Collapse
|
119
|
Rana D, Kumar S, Webster TJ, Ramalingam M. Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration. Curr Osteoporos Rep 2019; 17:226-234. [PMID: 31256323 DOI: 10.1007/s11914-019-00519-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The main objective of this article is to investigate the current trends in the use of induced pluripotent stem cells (iPSCs) for bone tissue repair and regeneration. RECENT FINDINGS Pluripotent stem cell-based tissue engineering has extended innovative therapeutic approaches for regenerative medicine. iPSCs have shown osteogenic differentiation capabilities and would be an innovative resource of stem cells for bone tissue regenerative applications. This review recapitulates the current knowledge and recent progress regarding utilization of iPSCs for bone therapy. A review of current findings suggests that a combination of a three-dimensional scaffolding system with iPSC technology to mimic the physiological complexity of the native stem cell niche is highly favorable for bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Sanjay Kumar
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, 632002, India
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Murugan Ramalingam
- Biomaterials and Stem Cell Engineering Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, India.
| |
Collapse
|
120
|
Costa A, Adamo S, Gossetti F, D'Amore L, Ceci F, Negro P, Bruzzone P. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application? MATERIALS 2019; 12:ma12152375. [PMID: 31349716 PMCID: PMC6695954 DOI: 10.3390/ma12152375] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Millions of abdominal wall repair procedures are performed each year for primary and incisional hernias both in the European Union and in the United States with extremely high costs. Synthetic meshes approved for augmenting abdominal wall repair provide adequate mechanical support but have significant drawbacks (seroma formation, adhesion to viscera, stiffness of abdominal wall, and infection). Biologic scaffolds (i.e., derived from naturally occurring materials) represent an alternative to synthetic surgical meshes and are less sensitive to infection. Among biologic scaffolds, extracellular matrix scaffolds promote stem/progenitor cell recruitment in models of tissue remodeling and, in the specific application of abdominal wall repair, have enough mechanical strength to support the repair. However, many concerns remain about the use of these scaffolds in the clinic due to their higher cost of production compared with synthetic meshes, despite having the same recurrence rate. The present review aims to highlight the pros and cons of using biologic scaffolds as surgical devices for abdominal wall repair and present possible improvements to widen their use in clinical practice.
Collapse
Affiliation(s)
- Alessandra Costa
- Sezione di Istologia ed Embriologia Medica, Dipartimento SAIMLAL, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Rome, Italy
| | - Sergio Adamo
- Sezione di Istologia ed Embriologia Medica, Dipartimento SAIMLAL, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Rome, Italy
| | - Francesco Gossetti
- Dipartimento Assistenziale Integrato Cardio Toraco-Vascolare, Chirurgia e Trapianti d'Organo, Azienda Ospedaliera Universitaria Policlinico Umberto I. Dipartimento Universitario Chirurgia Generale e Specialistica "Paride Stefanini", Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Linda D'Amore
- Dipartimento Assistenziale Integrato Cardio Toraco-Vascolare, Chirurgia e Trapianti d'Organo, Azienda Ospedaliera Universitaria Policlinico Umberto I. Dipartimento Universitario Chirurgia Generale e Specialistica "Paride Stefanini", Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Ceci
- Dipartimento Assistenziale Integrato Cardio Toraco-Vascolare, Chirurgia e Trapianti d'Organo, Azienda Ospedaliera Universitaria Policlinico Umberto I. Dipartimento Universitario Chirurgia Generale e Specialistica "Paride Stefanini", Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paolo Negro
- Dipartimento Assistenziale Integrato Cardio Toraco-Vascolare, Chirurgia e Trapianti d'Organo, Azienda Ospedaliera Universitaria Policlinico Umberto I. Dipartimento Universitario Chirurgia Generale e Specialistica "Paride Stefanini", Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paolo Bruzzone
- Dipartimento Assistenziale Integrato Cardio Toraco-Vascolare, Chirurgia e Trapianti d'Organo, Azienda Ospedaliera Universitaria Policlinico Umberto I. Dipartimento Universitario Chirurgia Generale e Specialistica "Paride Stefanini", Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy.
| |
Collapse
|
121
|
Gil CJ, Tomov ML, Theus AS, Cetnar A, Mahmoudi M, Serpooshan V. In Vivo Tracking of Tissue Engineered Constructs. MICROMACHINES 2019; 10:E474. [PMID: 31315207 PMCID: PMC6680880 DOI: 10.3390/mi10070474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
Abstract
To date, the fields of biomaterials science and tissue engineering have shown great promise in creating bioartificial tissues and organs for use in a variety of regenerative medicine applications. With the emergence of new technologies such as additive biomanufacturing and 3D bioprinting, increasingly complex tissue constructs are being fabricated to fulfill the desired patient-specific requirements. Fundamental to the further advancement of this field is the design and development of imaging modalities that can enable visualization of the bioengineered constructs following implantation, at adequate spatial and temporal resolution and high penetration depths. These in vivo tracking techniques should introduce minimum toxicity, disruption, and destruction to treated tissues, while generating clinically relevant signal-to-noise ratios. This article reviews the imaging techniques that are currently being adopted in both research and clinical studies to track tissue engineering scaffolds in vivo, with special attention to 3D bioprinted tissue constructs.
Collapse
Affiliation(s)
- Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
122
|
A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed Pharmacother 2019; 117:109183. [PMID: 31261029 DOI: 10.1016/j.biopha.2019.109183] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 11/30/2022] Open
Abstract
This study aimed to fabricate the potential therapeutic scaffold to efficiently and safely fastening skin wound healing. A biocompatible grafting polymer-based thermal sensitive hybrid hydrogel (Chitosan-P123, CP) containing gelatin and curcumin was designed to be suitable stiffness for tissue regeneration. A detailed in the rheological study found that the encapsulated agents induced the change in the stiffness of the hydrogel from the hard to the soft. Especial, the thermally induced phase transition of CP hydrogel was governed by the participant of gelatin rather than curcumin. For example, at 25 wt% gelatin, CP hydrogel exhibited a unique gel-sol-gel transition following the function of temperature. Moreover, in vitro investigation revealed that the hybrid hydrogel provides the capacity of especially induced curcumin release with a sustainable rate as well as the excellent biocompatibility scaffold. Altogether with in vivo study, the hybrid hydrogel highlighted the advance of the dual synergistic of curcumin and gelatin in development of smart scaffold system, which promoted the efficacy in the regeneration of the structure and the barrier's function of damaged skin such as wound or skin cancer.
Collapse
|
123
|
Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today 2019; 24:1669-1678. [PMID: 31051266 DOI: 10.1016/j.drudis.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD), can lead to permanent sight loss. Although intravitreal anti-vascular endothelial growth factor (VEGF) and steroid injections are effective for the management of early stages of wet and/or neovascular AMD (nAMD), no proven treatments currently exist for dry AMD or for the advanced geographic atrophy of the retina that follows. Tissue engineering (TE) has recently emerged as a promising alternative to repair retinal damaged and restore its functions. Here, we review recent advances in TE, with a particular emphasis on retinal regeneration. We provide an overview of retinal diseases, followed by a comprehensive review of TE techniques, cells, and polymers used in the fabrication of scaffolds for retinal cell regenerations, in particular the retinal pigment epithelium (RPE).
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Husam M Younes
- Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
124
|
Wang Y, Pan H, Chen X. The Preparation of Hollow Mesoporous Bioglass Nanoparticles With Excellent Drug Delivery Capacity for Bone Tissue Regeneration. Front Chem 2019; 7:283. [PMID: 31106197 PMCID: PMC6498186 DOI: 10.3389/fchem.2019.00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, hollow mesoporous bioglass (HMBG) nanoparticles were prepared in a hexadecyl trimethyl ammonium bromide (CTAB)-cyclonexane-ethanol-water (O/W) emulsion system. The HMBG nanoparticles possessed higher drug storage ability and stable drug release behavior which resulted from HMBG's unique mesoporous structure. The mesoporous structure could be modulated by adjusting the concentration of CTAB. The specific surface area and drug loading efficiency was as high as 749.619 m2g−1 and 55.1%. Besides, in vivo experiments demonstrated that the HMBG nanoparticles could promote the bone tissue regeneration and the drug-loading HMBG nanoparticles possessed better repair capability. The unique structure and properties might make the HMBG nanoparticles good candidates as drug carriers and repair materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Yudong Wang
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China
| |
Collapse
|
125
|
In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue Cell 2019; 57:49-56. [PMID: 30947963 DOI: 10.1016/j.tice.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
In this study, we report the development of a nanofiber polycaprolactone scaffold that can act as a stem cell carrier to induce chondrogenesis and promote cartilage repair in vivo. Infrapatellar fat pads were obtained from sheep knee and the stem cells were isolated and characterized by flow cytometry. Defects were created in sheep knee, two defects received adipose tissue derived stem cells (ASCs)-polycaprolactone construct, second group received polycaprolactone (PCL), the third group was chosen as the ASCs group and the fourth group was control group. Morphological evaluation showed that defects treated with ASCs-scaffold constructs were completely filled with cartilage-like tissue, while other groups revealed the formation of a thin layer of cartilage-like tissue in the defects. Real-Time RT-PCR showed the increase in collagen type 2 mRNA levels, aggrecan and Sox9 in ASCs/PCL groups in comparison with the other groups. Immunofluorescence and toluidine blue staining results showed the protein expression of collagen type 2 and formation of round and polygonal clusters of chondrocytes in ASCS/PCL group. According to our results nanofiber polycaprolactone promoted the chondrogenesis of infrapatellar adipose tissue derived stem cells in vivo and could offer significant promise in the biological functionality of stem cell tissue engineering in clinical practice.
Collapse
|
126
|
Sprott MR, Gallego‐Ferrer G, Dalby MJ, Salmerón‐Sánchez M, Cantini M. Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Adv Healthc Mater 2019; 8:e1801469. [PMID: 30609243 DOI: 10.1002/adhm.201801469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Poly-l-lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently bioactive. Thus, here, a novel process is presented to functionalize PLLA surfaces with poly(ethyl acrylate) (PEA) brushes to provide biological functionality through PEA's ability to induce spontaneous organization of the extracellular matrix component fibronectin (FN) into physiological-like nanofibrils. This process allows control of surface biofunctionality while maintaining PLLA bulk properties (i.e., degradation profile, mechanical strength). The new approach is based on surface-initiated atomic transfer radical polymerization, which achieves a molecularly thin coating of PEA on top of the underlying PLLA. Beside surface characterization via atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle to measure PEA grafting, the biological activity of this surface modification is investigated. PEA brushes trigger FN organization into nanofibrils, which retain their ability to enhance adhesion and differentiation of C2C12 cells. The results demonstrate the potential of this technology to engineer controlled microenvironments to tune cell fate via biologically active surface modification of an otherwise bioinert biodegradable polymer, gaining wide use in tissue engineering applications.
Collapse
Affiliation(s)
- Mark Robert Sprott
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| | - Gloria Gallego‐Ferrer
- Center for Biomaterials and Tissue EngineeringUniversitat Politècnica de València Valencia 46022 Spain
- Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN) Valencia 46022 Spain
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| | | | - Marco Cantini
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| |
Collapse
|
127
|
Rosenfeld A, Levkin PA. High‐Throughput Combinatorial Synthesis of Stimuli‐Responsive Materials. ACTA ACUST UNITED AC 2019; 3:e1800293. [DOI: 10.1002/adbi.201800293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Alisa Rosenfeld
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology 76344 Eggenstein‐Leopoldshafen Germany
| | - Pavel A. Levkin
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology 76131 Karlsruhe Germany
| |
Collapse
|
128
|
Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci 2018; 19:ijms19124117. [PMID: 30567407 PMCID: PMC6321114 DOI: 10.3390/ijms19124117] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.
Collapse
|
129
|
Stratakis E. Novel Biomaterials for Tissue Engineering 2018. Int J Mol Sci 2018; 19:ijms19123960. [PMID: 30544860 PMCID: PMC6321414 DOI: 10.3390/ijms19123960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion, Crete, GR-70013, Greece.
| |
Collapse
|
130
|
Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:941-954. [PMID: 30606606 DOI: 10.1016/j.msec.2018.11.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.
Collapse
|
131
|
Velmurugan BK, Bharathi Priya L, Poornima P, Lee LJ, Baskaran R. Biomaterial aided differentiation and maturation of induced pluripotent stem cells. J Cell Physiol 2018; 234:8443-8454. [PMID: 30565686 DOI: 10.1002/jcp.27769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Lohanathan Bharathi Priya
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Paramasivan Poornima
- Molecular and Cellular Pharmacology Laboratory, School of Science, Engineering and Technology, University of Abertay, Dundee, UK
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
132
|
Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, Sun J, Wang H, Weir MD, Reynolds MA, Zhang N, Bai Y, Xu HHK. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 2018; 6:31. [PMID: 30374416 PMCID: PMC6196224 DOI: 10.1038/s41413-018-0032-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that contain calcium phosphate minerals. Smart biomaterial-based tissue engineering and regenerative medicine methods have the exciting potential to meet this urgent need. Smart biomaterials and constructs refer to biomaterials and constructs that possess instructive/inductive or triggering/stimulating effects on cells and tissues by engineering the material's responsiveness to internal or external stimuli or have intelligently tailored properties and functions that can promote tissue repair and regeneration. The smart material-based approaches include smart scaffolds and stem cell constructs for bone tissue engineering; smart drug delivery systems to enhance bone regeneration; smart dental resins that respond to pH to protect tooth structures; smart pH-sensitive dental materials to selectively inhibit acid-producing bacteria; smart polymers to modulate biofilm species away from a pathogenic composition and shift towards a healthy composition; and smart materials to suppress biofilms and avoid drug resistance. These smart biomaterials can not only deliver and guide stem cells to improve tissue regeneration and deliver drugs and bioactive agents with spatially and temporarily controlled releases but can also modulate/suppress biofilms and combat infections in wound sites. The new generation of smart biomaterials provides exciting potential and is a promising opportunity to substantially enhance hard tissue engineering and regenerative medicine efficacy.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianling Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD USA
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Mark A. Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
133
|
Thermoresponsive Behavior of Magnetic Nanoparticle Complexed pNIPAm-co-AAc Microgels. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Characterization of responsive hydrogels and their enhancement with novel moieties have improved our understanding of functional materials. Hydrogels coupled with inorganic nanoparticles have been sought for novel types of responsive materials, but the efficient routes for the formation and the responsivity of complexed materials remain for further investigation. Here, we report that responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) hydrogel microparticles (microgels) are tunable by varying composition of co-monomer and crosslinker as well as by their complexation with magnetic nanoparticles in aqueous dispersions. Our results show that the hydrodynamic diameter and thermoresponsivity of microgels are closely related with the composition of anionic co-monomer, AAc and crosslinker, N,N′-Methylenebisacrylamide (BIS). As a composition of hydrogels, the higher AAc increases the swelling size of the microgels and the volume phase transition temperature (VPTT), but the higher BIS decreases the size with no apparent effect on the VPTT. When the anionic microgels are complexed with amine-modified magnetic nanoparticles (aMNP) via electrostatic interaction, the microgels decrease in diameter at 25 °C and shift the volume phase transition temperature (VPTT) to a higher temperature. Hysteresis on the thermoresponsive behavior of microgels is also measured to validate the utility of aMNP-microgel complexation. These results suggest a simple, yet valuable route for development of advanced responsive microgels, which hints at the formation of soft nanomaterials enhanced by inorganic nanoparticles.
Collapse
|
134
|
Lis-Bartos A, Smieszek A, Frańczyk K, Marycz K. Fabrication, Characterization, and Cytotoxicity of Thermoplastic Polyurethane/Poly(lactic acid) Material Using Human Adipose Derived Mesenchymal Stromal Stem Cells (hASCs). Polymers (Basel) 2018; 10:E1073. [PMID: 30960998 PMCID: PMC6403585 DOI: 10.3390/polym10101073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Thermoplastic polyurethane (TPU) and poly(lactic acid) are types of biocompatible and degradable synthetic polymers required for biomedical applications. Physically blended (TPU+PLA) tissue engineering matrices were produced via solvent casting technique. The following types of polymer blend were prepared: (TPU+PLA) 7:3, (TPU+PLA) 6:4, (TPU+PLA) 4:6, and (TPU+PLA) 3:7. Various methods were employed to characterize the properties of these polymers: surface properties such as morphology (scanning electron microscopy), wettability (goniometry), and roughness (profilometric analysis). Analyses of hydrophilic and hydrophobic properties, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) of the obtained polymer blends were conducted. Tensile tests demonstrated that the blends exhibited a wide range of mechanical properties. Cytotoxicity of polymers was tested using human multipotent stromal cells derived from adipose tissue (hASC). In vitro assays revealed that (TPU+PLA) 3:7 matrices were the most cytocompatible biomaterials. Cells cultured on (TPU+PLA) 3:7 had proper morphology, growth pattern, and were distinguished by increased proliferative and metabolic activity. Additionally, it appeared that (TPU+PLA) 3:7 biomaterials showed antiapoptotic properties. hASC cultured on these matrices had reduced expression of Bax-α and increased expression of Bcl-2. This study demonstrated the feasibility of producing a biocompatible scaffold form based on (TPU+PLA) blends that have potential to be applied in tissue engineering.
Collapse
Affiliation(s)
- Anna Lis-Bartos
- AGH University of Science and Technology, Department of Biomaterials and Composites, Faculty of Materials Science and Science and Ceramics, Krakow 30-059, Poland.
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
| | - Agnieszka Smieszek
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
| | - Kinga Frańczyk
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Krakow 30-059, Poland.
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, Gießen 35392, Germany.
| |
Collapse
|
135
|
Casanellas I, García-Lizarribar A, Lagunas A, Samitier J. Producing 3D Biomimetic Nanomaterials for Musculoskeletal System Regeneration. Front Bioeng Biotechnol 2018; 6:128. [PMID: 30294596 PMCID: PMC6159749 DOI: 10.3389/fbioe.2018.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human musculoskeletal system is comprised mainly of connective tissues such as cartilage, tendon, ligaments, skeletal muscle, and skeletal bone. These tissues support the structure of the body, hold and protect the organs, and are responsible of movement. Since it is subjected to continuous strain, the musculoskeletal system is prone to injury by excessive loading forces or aging, whereas currently available treatments are usually invasive and not always effective. Most of the musculoskeletal injuries require surgical intervention facing a limited post-surgery tissue regeneration, especially for widespread lesions. Therefore, many tissue engineering approaches have been developed tackling musculoskeletal tissue regeneration. Materials are designed to meet the chemical and mechanical requirements of the native tissue three-dimensional (3D) environment, thus facilitating implant integration while providing a good reabsorption rate. With biological systems operating at the nanoscale, nanoengineered materials have been developed to support and promote regeneration at the interprotein communication level. Such materials call for a great precision and architectural control in the production process fostering the development of new fabrication techniques. In this mini review, we would like to summarize the most recent advances in 3D nanoengineered biomaterials for musculoskeletal tissue regeneration, with especial emphasis on the different techniques used to produce them.
Collapse
Affiliation(s)
- Ignasi Casanellas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Andrea García-Lizarribar
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Networking Biomedical Research Center (CIBER), Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center (CIBER), Madrid, Spain
| |
Collapse
|
136
|
Khan F, Aratsu F, Kobayashi S, Tanaka M. A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications. J Mater Chem B 2018; 6:5115-5129. [PMID: 32254539 DOI: 10.1039/c8tb00865e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular interactions of amino functional (AF) monomers with chitosan (CS) lead to the formation of external stimuli responsive hydrogels (HGs). These have the potential to produce biomaterials with novel properties by a simple blending approach. Six independent AF monomers such as diethylenetriamine (DETA), bis(3-aminopropyl)amine (BAPA), 3,3'-diamino-N-methyldipropyleamine (DAMPA), hexamethylenediamine (HMDA), N,N-dimethylethylamine (DMEA) and diethylamine (DEA) with distinct functional groups and chain lengths were designed to form stable HGs at physiological pH. Such AF monomers are able to form HGs within a short time (in the range from 10 to 19 seconds) by physically interacting with CS. This is an alternative to the covalently crosslinking reaction process, providing cost effective HG biomaterials. HG complexes were characterized by rheometry, differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. The interaction between AF monomers and the CS polymer has been discussed and the results have been confirmed by FTIR analysis. The storage modulus (G'), loss modulus (G'') and complex viscosity (η*) were evaluated for all HGs using a rheometer, and the ratios of CS and the particular AF monomer were optimized for stable HG formation. The swelling ratio was evaluated using a simple method and was found to be directly related to the structure of the AF monomer, pH and temperature. These HGs were utilised for encapsulation, and the release of active molecules (e.g., reactive red 120 (RR120) as a model compound) was measured at low pH 5.5, physiological pH 7.4 and high pH 9.5. The cell viability and cellular compatibility of the HGs were evaluated in vitro cell culture, demonstrating that all the five different types of HGs support cellular compatibility, attachment and growth. The physical mixing of AF monomers with CS is expedited for the development of new bespoke economically viable biomaterials.
Collapse
Affiliation(s)
- Ferdous Khan
- Senior Polymer Chemist, ECOSE-Biopolymer, Knauf Insulation Limited, P.O. Box 10, ST. HELENS, Stafford Road, WA10 3NS, UK.
| | | | | | | |
Collapse
|
137
|
Jimenez-Rosales A, Flores-Merino MV. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
138
|
Ahadian S, Khademhosseini A. Smart scaffolds in tissue regeneration. Regen Biomater 2018; 5:125-128. [PMID: 29977595 PMCID: PMC6007551 DOI: 10.1093/rb/rby007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in biofabrication technologies and chemical synthesis approaches have enabled the fabrication of smart scaffolds that aim to mimic the dynamic nature of the native extracellular matrix. These scaffolds have paved the way for tissue regeneration in a dynamic and controllable manner.
Collapse
Affiliation(s)
- Samad Ahadian
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ali Khademhosseini
- Department of Bioengineering
- Department of Radiology
- Department of Chemical and Biomolecular Engineering
- Center for Minimally Invasive Therapeutics (C-MIT)
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
139
|
Baptista LS, Kronemberger GS, Côrtes I, Charelli LE, Matsui RAM, Palhares TN, Sohier J, Rossi AM, Granjeiro JM. Adult Stem Cells Spheroids to Optimize Cell Colonization in Scaffolds for Cartilage and Bone Tissue Engineering. Int J Mol Sci 2018; 19:E1285. [PMID: 29693604 PMCID: PMC5983745 DOI: 10.3390/ijms19051285] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Top-down tissue engineering aims to produce functional tissues using biomaterials as scaffolds, thus providing cues for cell proliferation and differentiation. Conversely, the bottom-up approach aims to precondition cells to form modular tissues units (building-blocks) represented by spheroids. In spheroid culture, adult stem cells are responsible for their extracellular matrix synthesis, re-creating structures at the tissue level. Spheroids from adult stem cells can be considered as organoids, since stem cells recapitulate differentiation pathways and also represent a promising approach for identifying new molecular targets (biomarkers) for diagnosis and therapy. Currently, spheroids can be used for scaffold-free (developmental engineering) or scaffold-based approaches. The scaffold promotes better spatial organization of individual spheroids and provides a defined geometry for their 3D assembly in larger and complex tissues. Furthermore, spheroids exhibit potent angiogenic and vasculogenic capacity and serve as efficient vascularization units in porous scaffolds for bone tissue engineering. An automated combinatorial approach that integrates spheroids into scaffolds is starting to be investigated for macro-scale tissue biofabrication.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Gabriela Soares Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Isis Côrtes
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Letícia Emiliano Charelli
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Renata Akemi Morais Matsui
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Thiago Nunes Palhares
- Brazilian Center for Physics Research, Xavier Sigaud 150, 22290-180 Urca, Rio de Janeiro, Brazil.
| | - Jerome Sohier
- Laboratory of tissue biology and therapeutic engineering-UMR 5305, CNRS, 69007 Lyon, France.
| | - Alexandre Malta Rossi
- Brazilian Center for Physics Research, Xavier Sigaud 150, 22290-180 Urca, Rio de Janeiro, Brazil.
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), 24020-140 Niterói, Brazil.
| |
Collapse
|
140
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|