101
|
Isika D, Çeşme M, Osonga FJ, Sadik OA. Novel quercetin and apigenin-acetamide derivatives: design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Adv 2020; 10:25046-25058. [PMID: 35517443 PMCID: PMC9055277 DOI: 10.1039/d0ra04559d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Flavonoids exhibit essential but limited biological properties which can be enhanced through chemical modifications. In this study, we designed, synthesized, and characterized two novel flavonoid derivatives, quercetin penta-acetamide (1S3) and apigenin tri-acetamide (2S3). These compounds were confirmed using (1H, 13C) NMR, UV-Vis, and FT-IR characterizations. Their interaction with fish sperm DNA (FS-DNA) at physiological pH was investigated by UV-Vis and fluorescence spectrophotometry. The binding constant (K b) for the UV-Vis experiment was found to be 1.43 ± 0.3 × 104 M-1 for 1S3 and 2.08 ± 0.2 × 104 M-1 for 2S3. The binding constants (K SV) for the fluorescence quenching experiment were 1.83 × 104 M-1 and 1.96 × 104 M-1 for 1S3 and 2S3, respectively. Based on molecular modeling and docking studies, the binding affinities were found to be -7.9 and -9.1 kcal mol-1, for 1S3 and 2S3, respectively. The compound-DNA docked model correlated with our experimental results, and they are groove binders. Furthermore, mutagenicity potential was examined. 1S3 and its metabolites showed no mutagenic activity for both TA98 and TA100 strains. 2S3 did not show any mutagenic activity for the strain TA 98, while its metabolites were only active at high doses. Both 2S3 and its metabolites showed mutagenic activity in the TA100 strain.
Collapse
Affiliation(s)
- Daniel Isika
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University Kahramanmaras 46040 Turkey
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| |
Collapse
|
102
|
Synthesis, physicochemical characterization and biological properties of two novel Cu(II) complexes based on natural products curcumin and quercetin. J Inorg Biochem 2020; 208:111083. [PMID: 32487364 DOI: 10.1016/j.jinorgbio.2020.111083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
Curcumin and quercetin are two of the most prominent natural polyphenols with a diverse spectrum of beneficial properties, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activity. The complexation of these natural products with bioactive transition metal ions can lead to the generation of novel metallodrugs with enhanced biochemical and pharmacological activities. Within this framework, the synthesis and detailed structural and physicochemical characterization of two novel complex assemblies of Cu(II) with curcumin and quercetin and the ancillary aromatic chelator 2,2'-bipyridine is presented. The two complexes represent the only crystallographically characterized structures with Cu(II) as the central metal ion and curcumin or quercetin as the ligands. The new complexes were biologically evaluated in vitro for their antioxidant potential, both exhibiting strong scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, and their plasmid DNA binding/cleavage properties. Both complexes appear to be non-toxic in the eukaryotic experimental model Saccharomyces cerevisiae and merit further investigation of their pharmacological profile.
Collapse
|
103
|
Pakrashi S, Chakraborty J, Bandyopadhyay J. Neuroprotective Role of Quercetin on Rotenone-Induced Toxicity in SH-SY5Y Cell Line Through Modulation of Apoptotic and Autophagic Pathways. Neurochem Res 2020; 45:1962-1973. [PMID: 32488468 DOI: 10.1007/s11064-020-03061-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/06/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
The detrimental impact on the food chain due to the overuse of rotenone is partly responsible for alpha-synuclein (α-syn) mediated neurotoxicity. It is hypothesized that rotenone overdose leads to cytosolic proteopathy resulting in modulation of apoptosis and autophagic pathways. The aim of our study is to explore the neuroprotective role of quercetin, a beneficial polyphenol against rotenone-induced neurotoxicity in dopaminergic human SH-SY5Y cell lines. In our study we demonstrated the correlation of rotenone-induced neurotoxicity through elevation of intracellular reactive oxygen species (ROS) and imbalance in the mitochondrial membrane potential (MMP). Moreover, the morphological distortion of cell, condensation of nuclei, externalization of the inner phosphatidylserine, cleavage of caspase 3, and Poly ADP Ribose Polymerase (PARP) confirmed apoptosis. However, all these lethal effects were ameliorated by treatment of quercetin to the cells. On the other hand rotenone has a strong effect on autophagy which is a regulated degrading and recycling cellular process to remove dysfunctional proteins. Indeed, rotenone-mediated autophagy resulted in the enhancement of autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) expression. Furthermore, excess accumulation of acidic vesicles was detected in presence of rotenone. Lysosome associated membrane protein (LAMP-2A) is yet another crucial protein that recruits overexpressed or misfolded proteins into the lumen of lysosome to trigger autophagy. In all cases the impact of rotenone on the cells acquired significant protection through quercetin treatment. In the present work we therefore opine the prospects of quercetin as a therapeutic candidate against neurotoxicity.
Collapse
Affiliation(s)
- Sourav Pakrashi
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, West Bengal, India.,Department of Microbiology, Bidhannagar College, Kolkata, West Bengal, India
| | - Joyeeta Chakraborty
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, West Bengal, India
| | - Jaya Bandyopadhyay
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, West Bengal, India.
| |
Collapse
|
104
|
Škandík M, Mrvová N, Bezek Š, Račková L. Semisynthetic quercetin-quinone mitigates BV-2 microglia activation through modulation of Nrf2 pathway. Free Radic Biol Med 2020; 152:18-32. [PMID: 32142880 DOI: 10.1016/j.freeradbiomed.2020.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
During brain ageing, microglia, the resident immune cells of the CNS, are immunologically activated and contribute to neuroinflammation, a vicious cycle that supports development of neurological disorders. Therapeutic approaches focus mainly on downregulation of their pro-inflammatory activated state that is associated with health benefits. Electrophilic compounds, such as natural quinones and their reduced pro-electrophilic precursors, flavonoids, represent a wide group of diverse substances with important biological effects. They can cause considerable cytotoxicity when used at higher dosages, but on the other hand, they have versatile health benefits at lower dosages. In this study, we investigated the cytotoxicity and prooxidant profile of synthetic conjugate of two electrophilic compounds, quercetin and 1,4-naphthoquinone, 4'-O-(2-chloro-1,4-naphthoquinone-3-yloxy) quercetin (CHNQ), and its attenuation of inflammatory responses and modulation of Nrf2 pathway in BV-2 microglial cells. CHNQ showed higher cytotoxicity than its precursors, accompanied by promotion of production of reactive oxygen species along with G2/M cell cycle arrest at higher concentrations tested. Nevertheless, at a lower non-toxic concentration, CHNQ, more significantly than did its precursors, downregulated LPS-stimulated microglia cells as documented by decreased iNOS, COX-2 and TNFα protein levels. Moreover, CHNQ most effectively upregulated expression of phase II antioxidant enzyme HO-1 and β5 subunit of constitutive proteasome. The enhanced anti-inflammatory effect of CHNQ was accompanied by prominent increase in cytosolic expression of Nrf2 and c-Jun, however, induction effect on nuclear Nrf2 translocation was comparable to QUER. Moreover, a conditioned medium from activated BV-2 cells co-treated with quercetin and CHNQ maintained viability of neuron-like PC12 cells. The compounds tested did not show any disturbance of phagocytosis of live or dead PC12 cells. The present experimental data predict a preventive and therapeutic potential of semisynthetic derivative CHNQ in ageing and related pathologies, mediated by activation of proteins of the antioxidant response.
Collapse
Affiliation(s)
- Martin Škandík
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic
| | - Nataša Mrvová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic
| | - Štefan Bezek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic.
| |
Collapse
|
105
|
Zhang H, Chen L, Sun X, Yang Q, Wan L, Guo C. Matrine: A Promising Natural Product With Various Pharmacological Activities. Front Pharmacol 2020; 11:588. [PMID: 32477114 PMCID: PMC7232545 DOI: 10.3389/fphar.2020.00588] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Matrine is an alkaloid isolated from the traditional Chinese medicine Sophora flavescens Aiton. At present, a large number of studies have proved that matrine has an anticancer effect can inhibit cancer cell proliferation, arrest cell cycle, induce apoptosis, and inhibit cancer cell metastasis. It also has the effect of reversing anticancer drug resistance and reducing the toxicity of anticancer drugs. In addition, studies have reported that matrine has a therapeutic effect on Alzheimer's syndrome, encephalomyelitis, asthma, myocardial ischemia, rheumatoid arthritis, osteoporosis, and the like, and its mechanism is mainly related to the inhibition of inflammatory response and apoptosis. Its treatable disease spectrum spans multiple systems such as the nervous system, circulatory system, and immune system. The antidisease effect and mechanism of matrine are diverse, so it has high research value. This review summarizes recent studies on the pharmacological mechanism of matrine, with a view to providing reference for subsequent research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
106
|
Tabrez S, Jabir NR, Adhami VM, Khan MI, Moulay M, Kamal MA, Mukhtar H. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: successes and challenges. Nanomedicine (Lond) 2020; 15:1147-1162. [PMID: 32292109 DOI: 10.2217/nnm-2019-0398] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many dietary polyphenols have been investigated for their therapeutic potential either as single agents or in combinations. Despite the significant anticancer potential of these polyphenols in in vitro cell culture and in vivo animal models, their clinical applications have been limited because of challenges such as ineffective systemic delivery, stability and low bioavailability. Nanoencapsulation of these polyphenols could prolong circulation, improve localization, enhance efficacy and reduce the chances of multidrug resistance. This review summarized the use of various polyphenols especially epigallocatechin gallate, quercetin, curcumin and resveratrol as nanoformulations for cancer prevention and treatment. Despite some success, more research is warranted to design a nanoencapsulated combination of polyphenols, effective in in vitro, in vivo and human systems.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research & Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | | | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Moulay
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
107
|
Xu L, Guo X, Li N, Pan Q, Ma YZ. Effects of quercetin on Aroclor 1254-induced expression of CYP 450 and cytokines in pregnant rats. J Immunotoxicol 2020; 16:140-148. [PMID: 31290710 DOI: 10.1080/1547691x.2019.1604585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the protective effect of quercetin on polychlorinated biphenyls (PCB)-induced liver and embryo damage in pregnant Sprague-Dawley rats. Pregnant rats were divided into five groups, and then were orally gavaged daily with peanut oil (vehicle) or a commercial PCB mixture (Aroclor 1254) - with or without co-treatment with 75, 150, or 300 mg/kg quercetin - on gestation days (GD) 4-7. At GD 9, all rats were euthanized, and their blood, liver, and uterus were collected. Expressions of CYP450 mRNA and protein in liver, cytokines (IFNγ, IL-2, IL-4, and IL-6) and IFNγ/IL-4 ratios in liver and sera, liver morphology, and the status of implanted embryos were analyzed. The results showed Aroclor 1254 treatment alone caused hepatic cord damage (i.e. cell disorganization, swelling, decreased cytoplasm, vacuolization), and that quercetin co-treatment appeared to mitigate this damage. Similarly, levels of CYP1A1 and CYP2B1 mRNA in livers of Aroclor 1254-only-treated rats were significantly higher than those in rats co-treated with quercetin. Hepatic and sera levels of IFNγ, IL-2, IL-6, and IFNγ/IL-4 ratios, and the ratio of delayed-development embryos, all increased in Aroclor 1254-treated rats, but were relatively decreased as a result of quercetin co-treatments. IL-4 levels were decreased by Aroclor 1254 and tended to increase back to normal when quercetin was used. The results indicated that quercetin imparted a protective effect against Aroclor 1254-induced toxicity in pregnant rats, in part, by modulating levels of important pro-inflammatory cytokines and reducing induced CYP1A1 and CYP2B1 expression.
Collapse
Affiliation(s)
- Lina Xu
- a College of Life Science and Food Engineering , Hebei University of Engineering , Handan , China
| | - Xiaojun Guo
- b College of Life Sciences , Hebei Agricultural University , Baoding , China
| | - Nan Li
- c College of Animal Science and Technology , Hebei Agricultural University , Baoding , China
| | - Qing Pan
- d Langfang Polytechnic Institute , Langfang , China
| | - Yu Zhong Ma
- e College of Veterinary Medicine , Hebei Agricultural University , Baoding , China
| |
Collapse
|
108
|
Yang YX, Yu S, Jia BX, Liu N, Wu A. Metabolomic profiling reveals similar cytotoxic effects and protective functions of quercetin during deoxynivalenol- and 15-acetyl deoxynivalenol-induced cell apoptosis. Toxicol In Vitro 2020; 66:104838. [PMID: 32229167 DOI: 10.1016/j.tiv.2020.104838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Among the family of mycotoxins of deoxynivalenol (DON) detected in nature, high proportions of 15-acetyldeoxynivalenol (15ADON) co-occur with the prototype DON and increase the combined exposure and synergistic health risks. The current study aimed to explore the mechanisms underlying the toxicity of 15ADON and compare them with those of DON. As the natural flavonoid compound quercetin (QUE) possesses antioxidant properties, we also aimed to determine the antioxidant effects of QUE on the tested mycotoxins. First, the global metabolomics approach was applied and showed that the metabolites produced from 15ADON or DON were almost identical, while QUE reversed the changes in the levels of key metabolites. Specifically, both DON and 15ADON activated the cell apoptosis pathway mediated by p38 and JNK, but inhibited the cell survival pathway mediated by ERK1/2 in GES-1 cells. Simultaneously, 15ADON induced FOXO3a nuclear translocation, similar to the results described for DON in our recent report. Furthermore, the addition of QUE appeared to counteract the detrimental effects of 15ADON and DON. We observed the effects of QUE treatment on mutant yeast strains with defects in their antioxidant system. More interestingly, QUE also substantially restored the increased ROS levels and the inhibited the growth rate following exposure to the mycotoxins DON and 15ADON. The data reported here support the hypothesis that QUE rescues the toxic effects of DON or 15ADON due to the similar mechanisms of DON and 15ADON toxicity.
Collapse
Affiliation(s)
- Y X Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - S Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - B X Jia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - Na Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, PR China.
| |
Collapse
|
109
|
Yamada N, Matsushima-Nishiwaki R, Kozawa O. Quercetin suppresses the migration of hepatocellular carcinoma cells stimulated by hepatocyte growth factor or transforming growth factor-α: Attenuation of AKT signaling pathway. Arch Biochem Biophys 2020; 682:108296. [PMID: 32032576 DOI: 10.1016/j.abb.2020.108296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
|
110
|
Xiong Q, Wang Y, Wan J, Yuan P, Chen H, Zhang L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int J Biol Macromol 2020; 147:937-945. [DOI: 10.1016/j.ijbiomac.2019.10.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
|
111
|
Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Husnain T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153168. [PMID: 31982837 DOI: 10.1016/j.phymed.2020.153168] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Ijaz
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Nadia Farooq
- Department of Surgery, Sir Gangaram Hospital Lahore Punjab, Pakistan
| | - Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
112
|
Chambers CS, Viktorová J, Řehořová K, Biedermann D, Turková L, Macek T, Křen V, Valentová K. Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1763-1779. [PMID: 30907588 DOI: 10.1021/acs.jafc.9b00694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug resistance (MDR) is a major challenge for the 21th century in both cancer chemotherapy and antibiotic treatment of bacterial infections. Efflux pumps and transport proteins play an important role in MDR. Compounds displaying inhibitory activity toward these proteins are prospective for adjuvant treatment of such conditions. Natural low-cost and nontoxic flavonoids, thanks to their vast structural diversity, offer a great pool of lead structures with broad possibility of chemical derivatizations. Various flavonoids were found to reverse both antineoplastic and bacterial multidrug resistance by inhibiting Adenosine triphosphate Binding Cassette (ABC)-transporters (human P-glycoprotein, multidrug resistance-associated protein MRP-1, breast cancer resistance protein, and bacterial ABC transporters), as well as other bacterial drug efflux pumps: major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small multidrug resistance (SMR) and resistance-nodulation-cell-division (RND) transporters, and glucose transporters. Flavonoids and particularly flavonolignans are therefore highly prospective compounds for defying multidrug resistance.
Collapse
Affiliation(s)
- Christopher S Chambers
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Lucie Turková
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Tomáš Macek
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| |
Collapse
|
113
|
Quercetin Inhibits Cell Survival and Metastatic Ability via the EMT-mediated Pathway in Oral Squamous Cell Carcinoma. Molecules 2020; 25:molecules25030757. [PMID: 32050534 PMCID: PMC7037689 DOI: 10.3390/molecules25030757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate whether quercetin exerts anticancer effects on oral squamous cell carcinoma (OSCC) cell lines and to elucidate its mechanism of action. These anticancer effects in OSCC cells were assessed using an MTT assay, flow cytometry (to assess the cell cycle), wound-healing assay, invasion assay, Western blot analysis, gelatin zymography, and immunofluorescence. To investigate whether quercetin also inhibits transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human keratinocyte cells, HaCaT cells were treated with TGF-β1. Overall, our results strongly suggest that quercetin suppressed the viability of OSCC cells by inducing cell cycle arrest at the G2/M phase. However, quercetin did not affect cell viability of human keratinocytes such as HaCaT (immortal keratinocyte) and nHOK (primary normal human oral keratinocyte) cells. Additionally, quercetin suppresses cell migration through EMT and matrix metalloproteinase (MMP) in OSCC cells and decreases TGF-β1-induced EMT in HaCaT cells. In conclusion, this study is the first, to our knowledge, to demonstrate that quercetin can inhibit the survival and metastatic ability of OSCC cells via the EMT-mediated pathway, specifically Slug. Quercetin may thus provide a novel pharmacological approach for the treatment of OSCCs.
Collapse
|
114
|
Fan M, Chen G, Zhang Y, Nahar L, Sarker SD, Hu G, Guo M. Antioxidant and Anti-Proliferative Properties of Hagenia abyssinica Roots and Their Potentially Active Components. Antioxidants (Basel) 2020; 9:antiox9020143. [PMID: 32041310 PMCID: PMC7070924 DOI: 10.3390/antiox9020143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Hagenia abyssinica (Bruce) J. F. Gmel. is a multipurpose dioecious tree that has been used to treat various ailments, for example, the flowers of H. abyssinica have been widely used as a tea to treat intestinal parasites by local residents and the roots of H.abyssinica could also be used for anticancer purposes. Antioxidant activity could be one of the most important pathways to suppress cancer and there is hardly any information available on the specific chemical components corresponding to the bioactivities of H. abyssinica to date. The present study intended to screen and evaluate the antioxidant and anti-proliferative properties of five different fractions from H. abyssinica along with their corresponding total flavonoid and phenolic contents and then further identify those compounds with the most potent antioxidant and anti-proliferative activities using high performance liquid chromatography (HPLC) coupled to mass spectrometry (MS) and nuclear magnetic resonance (NMR). The total flavonoid and phenolic content assays showed that the ethyl acetate (EA) fraction of H. abyssinica had higher flavonoid and phenolic levels than the other four fractions. Furthermore, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) superoxide radical scavenging abilities, total antioxidant capacity (TAC) assay with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), and ferric-reducing antioxidant power (FRAP) were measured to evaluate the antioxidant activities of the five fractions and some pure compounds isolated from the EA fraction, which displayed higher antioxidant properties than that of the other fractions. Caffeic acid from the EA fraction showed even stronger DPPH scavenging ability (IC50 7.858 ± 0.31 µg/mL) than that of Vc (IC50 8.27 ± 0.11 µg/mL) as the positive control. The anti-proliferative properties of four fractions and the ethanol extract were evaluated by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay and the EA fraction exhibited higher anti-proliferative activities against three cancer cell lines than that of the other fractions. Additionally, the compounds with good antioxidant activity from the EA fraction of H. abyssinica were screened and identified using LC-MS and NMR and were also found to possess good anti-proliferative activity. In the MTT assay, the quercetin showed the strongest dose-dependent anti-proliferative activities to colon cancer cells (HT-29) and liver cancer cells (HepG2) among all of the compounds isolated. This study provided valuable information on the synergistic antioxidant and anti-proliferative properties of H. abyssinica.
Collapse
Affiliation(s)
- Minxia Fan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.F.); (G.C.); (Y.Z.); (G.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.F.); (G.C.); (Y.Z.); (G.H.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.F.); (G.C.); (Y.Z.); (G.H.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Satyajit Dey Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK;
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.F.); (G.C.); (Y.Z.); (G.H.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.F.); (G.C.); (Y.Z.); (G.H.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
115
|
Rosemary Extract Inhibits Proliferation, Survival, Akt, and mTOR Signaling in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21030810. [PMID: 32012648 PMCID: PMC7037743 DOI: 10.3390/ijms21030810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Triple-negative (TN) breast cancer lacks expression of estrogen receptor (ER), progesterone receptor (PR) as well as the expression and/or gene amplification of human epidermal growth factor receptor 2 (HER2). TN breast cancer is aggressive and does not respond to hormone therapy, therefore new treatments are urgently needed. Plant-derived chemicals have contributed to the establishment of chemotherapy agents. In previous studies, rosemary extract (RE) has been found to reduce cell proliferation and increase apoptosis in some cancer cell lines. However, there are very few studies examining the effects of RE in TN breast cancer. In the present study, we examined the effects of RE on TN MDA-MB-231 breast cancer cell proliferation, survival/apoptosis, Akt, and mTOR signaling. RE inhibited MDA-MB-231 cell proliferation and survival in a dose-dependent manner. Furthermore, RE inhibited the phosphorylation/activation of Akt and mTOR and enhanced the cleavage of PARP, a marker of apoptosis. Our findings indicate that RE has potent anticancer properties against TN breast cancer and modulates key signaling molecules involved in cell proliferation and survival.
Collapse
|
116
|
Mishra S, Manna K, Kayal U, Saha M, Chatterjee S, Chandra D, Hara M, Datta S, Bhaumik A, Das Saha K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: a theranostic approach for cancer management. RSC Adv 2020; 10:23148-23164. [PMID: 35520307 PMCID: PMC9054720 DOI: 10.1039/d0ra00664e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based on nanomaterials that can selectively carry chemotherapeutic agents to cancer cells has become a major focus in biomedical research. A novel pH-sensitive multifunctional envelope-type mesoporous silica nanoparticle (SBA-15) was fabricated for targeted drug delivery to human colorectal carcinoma cells (HCT-116). SBA-15 was functionalized with folic acid (FA), and the material was loaded with the water-insoluble flavonoid, quercetin (QN). Additionally, acid-labile magnetite Fe3O4 nanoparticles were embedded over the FA-functionalized QN-loaded monodisperse SBA-15 to prepare the highly orchestrated material FA-FE-SBA15QN. The in vitro and in vivo anti-carcinogenic efficacy of FA-FE-SBA15QN was carried out to explore the pH-sensitive QN release with putative mechanistic aspects. FA-FE-SBA15QN caused a marked tumor suppression, and triggered mitochondrial-dependent apoptosis through a redox-regulated cellular signaling system. Furthermore, FA-IO-SBA-15-QN initiated the c-Jun N-terminal Kinase (JNK)-guided H2AX phosphorylation, which relayed the downstream apoptotic signal to the phosphorylate tumor suppressor protein, p53. On the other hand, the selective inhibition of heat shock protein-27 (HSP-27) by FA-FE-SBA15QN augmented the apoptotic fate through JNK/H2AX/p53 axis. The in vitro and in vivo magnetic resonance imaging (MRI) studies have indicated the theranostic perspective of the composite. Thus, the result suggested that the newly synthesized FA-FE-SBA15QN could be used as a promising chemo theranostic material for the management of carcinoma. pH-Sensitive quercetin/Fe3O4 NPs loaded functionalized mesoporous SBA-15 fabricated for targeted drug delivery to colorectal carcinoma cells with high anti-carcinogenic efficacy.![]()
Collapse
Affiliation(s)
- Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Department of Chemical Technology
| | - Krishnendu Manna
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Utpal Kayal
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Sauvik Chatterjee
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Debraj Chandra
- World Research Hub Initiative (WRHI)
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Sriparna Datta
- Department of Chemical Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Asim Bhaumik
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| |
Collapse
|
117
|
Czerwonka A, Maciołek U, Kałafut J, Mendyk E, Kuźniar A, Rzeski W. Anticancer effects of sodium and potassium quercetin-5′-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the HT-29 human adenocarcinoma cell line. Bioorg Chem 2020; 94:103426. [DOI: 10.1016/j.bioorg.2019.103426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
|
118
|
Lv Q, Zhang P, Quan P, Cui M, Liu T, Yin Y, Chi G. Quercetin, a pneumolysin inhibitor, protects mice against Streptococcus pneumoniae infection. Microb Pathog 2019; 140:103934. [PMID: 31862394 DOI: 10.1016/j.micpath.2019.103934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Pneumolysin (PLY), a pore-forming cytotoxin and a major virulence determinant, is a member of the cholesterol-dependent cytolysin (CDC) family and essential for promoting Streptococcus pneumoniae (S.pneumoniae) infection. Due to the action characteristics of hemolysin itself, the pneumolysin released after killing bacteria with conventional antibiotics still has the ability to damage host cells; therefore, drug treatments directly inhibiting hemolysin activity are the most effective. Hemolysis assays were used to confirm that quercetin can inhibit the activity of PLY, protecting cells in vitro, and an oligomerization assay was used to determine the mechanism of quercetin to suppress PLY activity. Live/Dead testing, lactate dehydrogenase (LDH) release analysis and a murine model of endonasal pulmonary infection were used to explore the capability of quercetin to protect cells and mice from S. pneumoniae-mediated damage in vivo and in vitro. The results indicated that quercetin significantly reduced PLY-induced hemolytic activity and cytotoxicity via repressing the formation of oligomers. In addition, treatment with quercetin can reduce PLY-mediated cell injury, improve the survival rate of mice infected with a lethal dose of S. pneumoniae, alleviate the pathological damage of lung tissue and inhibit the release of cytokines (IL-1β and TNF-α) in bronchoalveolar lavage fluid. Considering the importance of these events in antimicrobial resistant S. pneumoniae pathogenesis, our results indicated that quercetin may be a novel potential drug candidate for the treatment of clinical pneumococcal infections.
Collapse
Affiliation(s)
- Qianghua Lv
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China; Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Pusheng Quan
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Mengyao Cui
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Tianjiao Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Yunhou Yin
- School of Communication, Guizhou Minzu University, Guiyang, China
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
119
|
Liu C, Wang K, Zhuang J, Gao C, Li H, Liu L, Feng F, Zhou C, Yao K, Deng L, Wang L, Li J, Sun C. The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method. Front Pharmacol 2019; 10:1171. [PMID: 31680955 PMCID: PMC6802460 DOI: 10.3389/fphar.2019.01171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 09/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Studies have shown that the natural products of Astragalus membranaceus (AM) can effectively interfere with a variety of cancers, but their mechanism of action on breast cancer remains unclear. Triple-negative breast cancer (TNBC) is associated with a severely poor prognosis due to its invasive phenotype and lack of biomarker-driven-targeted therapies. In this study, the potential mechanism of the target composition acting on TNBC was explored by integrated pharmacological models and in vitro experiments. Materials and Methods: Based on the Gene Expression Omnibus (GEO) database and the relational database of Traditional Chinese Medicines (TCMs), the drug and target components were initially screened to construct a common network module, and multiattribute analysis was then used to characterize the network and obtain key drug-target information. Furthermore, network topology analysis was used to characterize the betweenness and closeness of key hubs in the network. Molecular docking was used to evaluate the affinity between compounds and targets and obtain accurate combination models. Finally, in vitro experiments verified the key component targets. The cell counting kit-8 (CCK-8) assay, invasion assay, and flow cytometric analysis were used to assess cell viability, invasiveness, and apoptosis, respectively, after Astragalus polysaccharides (APS) intervention. We also performed western blot analysis of key proteins to probe the mechanisms of correlated signaling pathways. Results: We constructed “compound-target” (339 nodes and 695 edges) and “compound-disease” (414 nodes and 6458 edges) networks using interaction data. Topology analysis and molecular docking were used as secondary screens to identify key hubs of the network. Finally, the key component APS and biomarkers PIK3CG, AKT, and BCL2 were identified. The in vitro experimental results confirmed that APS can effectively inhibit TNBC cell activity, reduce invasion, promote apoptosis, and then counteract TNBC symptoms in a dose-dependent manner, most likely by inhibiting the PIK3CG/AKT/BCL2 pathway. Conclusion: This study provides a rational approach to discovering compounds with a polypharmacology-based therapeutic value. Our data established that APS intervenes with TNBC cell invasion, proliferation, and apoptosis via the PIK3CG/AKT/BCL2 pathway and could thus offer a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Cun Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kejia Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Zhuang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Kang Yao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Laijun Deng
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Lu Wang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Jia Li
- College of Basic Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Basic Medical Science, Qingdao University, Qingdao, China.,Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
120
|
Tan R, Wang C, Deng C, Zhong X, Yan Y, Luo Y, Lan H, He T, Wang L. Quercetin protects against cisplatin‐induced acute kidney injury by inhibiting Mincle/Syk/NF‐κB signaling maintained macrophage inflammation. Phytother Res 2019; 34:139-152. [DOI: 10.1002/ptr.6507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Rui‐Zhi Tan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Chen Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Chong Deng
- Clinical Laboratory, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Xia Zhong
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Ying Yan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| | - Yi Luo
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical University Luzhou Sichuan China
| | - Hui‐Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, and Shenzhen Research InstituteThe Chinese University of Hong Kong Hong Kong China
| | - Tao He
- School of Basic Medical SciencesSouthwest Medical University Luzhou Sichuan China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine HospitalSouthwest Medical University Luzhou Sichuan China
| |
Collapse
|
121
|
Substituent effects of phenylboronic acid-functionalized resins in pH-controlled separation of catecholic flavonoids. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
122
|
Yarjanli Z, Ghaedi K, Esmaeili A, Zarrabi A, Rahgozar S. The antitoxic effects of quercetin and quercetin-conjugated iron oxide nanoparticles (QNPs) against H 2O 2-induced toxicity in PC12 cells. Int J Nanomedicine 2019; 14:6813-6830. [PMID: 31692568 PMCID: PMC6716587 DOI: 10.2147/ijn.s212582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background We recently showed that quercetin-conjugated iron oxide nanoparticles (QNPs) promoted the bioavailability of quercetin (Qu) in the brain of rats and improved the learning and memory of diabetic rats. In this study, we characterized the modifications in the antitoxic effects of Qu after conjugation. Materials and methods We conjugated Qu to dextran-coated iron oxide nanoparticles (DNPs) and characterized DNPs and QNPs using FTIR, XRD, DLS, Fe-SEM, and EDX analyzes. The antiradical properties of Qu, DNPs, and QNPs were compared by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity assay. Catalase-like activities of DNPs and QNPs were estimated using catalase activity assay kit, and the antitoxic effects of Qu and QNPs were evaluated with spectrophotometry, MTT assay, flow cytometry, and real-time q-PCR. Results Qu had a stronger anti-radical activity than DNPs and its activity decreased after being conjugated to DNPs. The catalase-like activity of DNPs remained intact after conjugation. DNPs had less toxicity on PC12 cells viabilities as compared to free Qu, and the conjugation of Qu with DNPs attenuated its cytotoxicity. Furthermore, MTT assay results indicated 24 h pretreatment with Qu had more protective effects than QNPs against H2O2-induced cytotoxicity, while Qu and QNPs had the same effects for 48 and 72 h incubation. Although the total antioxidant capacity of Qu was attenuated after conjugation, the results of flow cytometry and real-time q-PCR confirmed that 24 h pretreatment with the low concentrations of Qu and QNPs had the similar antioxidant, anti-inflammatory, and anti-apoptotic effects against the cytotoxicity of H2O2. Conclusion Qu and QNPs showed the similar protective activities against H2O2-induced toxicity in PC12 cells. Given the fact that QNPs have magnetic properties, they may serve as suitable carriers to be used in neural research and treatment.
Collapse
Affiliation(s)
- Zahra Yarjanli
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.,Sabanci University Nanotechnology Research and Application Center (SUNUM) , Istanbul, Turkey
| | - Soheila Rahgozar
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
123
|
Wang C, Qu Z, Kong L, Xu L, Zhang M, Liu J, Yang Z. RETRACTED: Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp Mol Pathol 2019; 108:1-8. [PMID: 30849307 DOI: 10.1016/j.yexmp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Chong Wang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhenghai Qu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lingpeng Kong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lei Xu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Mengxue Zhang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianke Liu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhaochuan Yang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
124
|
Ryu S, Park S, Lim W, Song G. Quercetin augments apoptosis of canine osteosarcoma cells by disrupting mitochondria membrane potential and regulating PKB and MAPK signal transduction. J Cell Biochem 2019; 120:17449-17458. [PMID: 31131468 DOI: 10.1002/jcb.29009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a mesenchymal malignant bone tumor accompanied by a high rate of lung metastasis and short survival in dogs. Although various therapies have been reported, the etiological mechanism of osteosarcoma remains undetermined and the development of novel therapeutic agents is warranted. In this study, we have reported the diverse functions of quercetin, one of the well-known flavonoid, in D-17 and DSN (canine osteosarcoma) cell lines. Current results indicate that quercetin decreases proliferative properties and increases programmed cell death, in addition to altering the cell cycle, mitochondrial depolarization, level of reactive oxygen species, and concentration of cytoplasmic calcium in both cells. Furthermore, it was observed that quercetin suppresses phosphorylation of AKT, P70S6K, and S6 proteins and upregulates phosphorylation of ERK1 or 2, P38, c-Jun N-terminal kinase, and P90RSK proteins in both cell lines. Collectively, we suggest that quercetin can be used as a pharmacological agent for suppressing the proliferation and inducing the apoptosis of canine osteosarcoma cells.
Collapse
Affiliation(s)
- Soomin Ryu
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
125
|
Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods 2019; 29:344-354. [PMID: 30636491 DOI: 10.1080/15376516.2018.1564948] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity limits the clinical applications of doxorubicin (Dox), which mechanism might be excess generation of intracellular ROS. Quercetin (Que) is a flavonoid that possesses anti-oxidative activities, exerts myocardial protection. We hypothesized that the cardioprotection against Dox injury of Que involved 14-3-3γ, and mitochondria. To investigate the hypothesis, we treated primary cardiomyocytes with Dox and determined the effects of Que pretreatment with or without 14-3-3γ knockdown. We analyzed various cellular and molecular indexes. Our data showed that Que attenuated Dox-induced toxicity in cardiomyocytes by upregulating 14-3-3γ expression. Que pretreatment increased cell viability, SOD, catalase, and GPx activities, GSH levels, MMP and the GSH/GSSG ratio; decreased LDH and caspase-3 activities, MDA and ROS levels, mPTP opening and the percentage of apoptotic cells. However, Que's cardioprotection were attenuated by knocking down 14-3-3γ expression using pAD/14-3-3γ-shRNA. In conclusion, Que protects cardiomyocytes against Dox injury by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.
Collapse
Affiliation(s)
- Xuanying Chen
- a Department of Pharmacy, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoping Peng
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| | - Yong Luo
- c Jiangxi Provincial Key Laboratory of Women's Reproductive Health , Jiangxi Provincial Maternal and Child Health Hospital , Nanchang , China
| | - Jiegen You
- d Jiangxi Academy of Medical Science, Nanchang University , Nanchang , China
| | - Dong Yin
- e Jiangxi Provincial Key Laboratory of Molecular Medicine , The Second Affiliated Hospital, Nanchang University , Nanchang , China
| | - Qiang Xu
- f Drug Clinical Trial Institution, Jiangxi Province Tumor Hospital , Nanchang , China
| | - Huan He
- g Jiangxi Provincial Key Laboratory of Basic Pharmacology , Nanchang University School of Pharmaceutical Science , Nanchang , China
| | - Ming He
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| |
Collapse
|
126
|
Native Quercetin as a Chloride Receptor in an Organic Solvent. Molecules 2018; 23:molecules23123366. [PMID: 30572599 PMCID: PMC6320934 DOI: 10.3390/molecules23123366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
The binding properties of quercetin toward chloride anions were investigated by means of 1H-NMR, 13C-NMR, and electrospray ionization mass spectrometry (ESI-MS) measurements, as well as computational calculations. The results indicate that quercetin behaves primarily as a ditopic receptor with the binding site of the B ring that exhibits stronger chloride affinity compared to the A ring. However, these sites are stronger receptors than those of catechol and resorcinol because of their conjugation with the carbonyl group located on the C ring. The 1:1 and 1:2 complexation of this flavonoid with Cl− was also supported by ESI mass spectrometry.
Collapse
|
127
|
Flavonoids in Ecuadorian Oreocallis grandiflora (Lam.) R. Br.: Perspectives of Use of This Species as a Food Supplement. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1353129. [PMID: 30643525 PMCID: PMC6311244 DOI: 10.1155/2018/1353129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/25/2018] [Indexed: 01/27/2023]
Abstract
Oreocallis grandiflora (Lam.) R. Br. is an Ecuadorian species belonging to the Proteaceae family, commonly known as cucharillo (Loja and Zamora provinces), cucharilla (Sierra region), gañal (Bolívar province), and algil (Chimborazo province). Its leaves and flowers, collected during blooming, are traditionally used for oral administration to treat liver diseases, vaginal bleeding, and ovary/uterus inflammation and as digestive, diuretic, and hypoglycemic remedy. Related literature does not report any scientific evidences regarding the chemical composition of the used parts of this species (leaves and flowers), while few indications are reported about the healthy properties of their preparations. Based on these premises, the present research was performed with the objectives to fill the gaps of the chemical and biological knowledge about this species, enriching the knowledge related to the plant biodiversity of Amazonian Ecuador and to the ethnobotanical tradition of Andean communities. Chemical and biological investigation (in vitro antioxidant and anti-inflammatory activity) of flower and leaf hydroalcoholic extracts shed a light on the functional metabolites putatively involved in healthy properties of the O. grandiflora traditional preparations. The chemical fingerprinting achieved by HPTLC and 1HNMR analyses showed the presence of flavonoids, subsequently quantitatively estimated by AlCl3 complexation assay and HPLC-DAD. Silica gel chromatography allowed the isolation of the main compounds of the flower extract: quercetin 3-O-β-glucuronide and myricetin 3-O-β-glucuronide. RP-HPLC-DAD-MS analyses showed the presence of quercetin 3-O-rutinoside and isorhamnetin 3-O-rutinoside, in addition to the above-mentioned molecules, in the leaf extract. Regarding the antioxidant (DPPH test, a radical scavenging assay) and anti-inflammatory (WST-1 assay, an oxidative burst test) activities, leaf extract showed the most promising results when compared to the positive controls. The same extract, however, exhibited a higher cytotoxicity compared to the flower extract, indicating the latter preparation as the most interesting anti-inflammatory crude drug.
Collapse
|
128
|
Sangai NP, Patel CN, Pandya HA. Ameliorative effects of quercetin against bisphenol A-caused oxidative stress in human erythrocytes: an in vitro and in silico study. Toxicol Res (Camb) 2018; 7:1091-1099. [PMID: 30542603 PMCID: PMC6244173 DOI: 10.1039/c8tx00105g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor of xenobiotic type, mainly used for the production of polycarbonate plastic, epoxy resins and non-polymer additives. Because of its wide usages in the environment, the toxic effects of BPA have proved to be harmful to human health. However, its effects on human haemoglobin remain unclear. The affinity between BPA and haemoglobin, as well as erythrocytes, is an important factor in understanding the mechanism of the toxicity of BPA. Flavonoids are strong antioxidants that prevent oxidative stress and Quercetin is a flavonoid found in numerous vegetables and fruits. Therefore, the present investigation was undertaken to investigate whether Quercetin can be used to alleviate the toxic effects of BPA in vitro in human red blood cells (RBC). Venous blood samples were collected from healthy, well-nourished adult volunteers (25-30 years old) by phlebotomy. In a RBC suspension with a cell density of 2 × 104 cell per mL, the concentration of BPA (25-150 µg mL-1) was found to cause an increase in the lipid peroxidation (LPO) and a decrease in the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in human RBC. However, the concurrent addition of BPA (150 µg mL-1) and quercetin (10-50 µg mL-1) lead to significant amelioration. In silico studies gave structural insight into BPA and quercetin to decipher the plausible binding mechanism and molecular level recognition.
Collapse
Affiliation(s)
- Neha P Sangai
- Department of Botany , Bioinformatics and Climate Change Impacts Management , University School of Sciences , Gujarat University , Ahmedabad-380 009 , Gujarat , India .
| | - Chirag N Patel
- Department of Botany , Bioinformatics and Climate Change Impacts Management , University School of Sciences , Gujarat University , Ahmedabad-380 009 , Gujarat , India .
| | - Himanshu A Pandya
- Department of Botany , Bioinformatics and Climate Change Impacts Management , University School of Sciences , Gujarat University , Ahmedabad-380 009 , Gujarat , India .
| |
Collapse
|
129
|
Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI JOURNAL 2018; 17:856-863. [PMID: 30233284 PMCID: PMC6141818 DOI: 10.17179/excli2018-1538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
130
|
Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie 2018; 151:107-114. [PMID: 29857184 DOI: 10.1016/j.biochi.2018.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 μM and similar half maximum effects at 8.9 and 8.5 μM respectively. The interaction of quercetin was rapid with t1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1.
Collapse
|
131
|
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer's disease. CNS Neurosci Ther 2018; 24:753-762. [PMID: 29770579 DOI: 10.1111/cns.12971] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disorder characterized by excessive deposition of β-amyloid (Aβ) oligomers, and neurofibrillary tangles (NFTs), comprising of hyperphosphorylated tau proteins. The cholinergic system has been suggested as the earliest and most affected molecular mechanism that describes AD pathophysiology. Moreover, cholinesterase inhibitors (ChEIs) are the potential class of drugs that can amplify cholinergic activity to improve cognition and global performance and reduce psychiatric and behavioral disturbances. Approximately, 60%-80% of all cases of dementia in the world are patients with AD. In view of the continuous rise of this disease especially in the aged population, there is a dire need to come up with a novel compound and/or mixture that could work against this devastating disease. In this regard, the best is to rely on natural compounds rather than synthetic ones, because natural compounds are easily available, cost-effective, and comparatively less toxic. To serve this purpose, lately, scientific community has started exploring the possibility of using different polyphenols either solitary or in combination that can serve as therapeutics against AD. In the current article, we have summarized the role of various polyphenols, namely quercetin, resveratrol, curcumin, gallocatechins, cinnamic acid, caffeine, and caffeic acid as an inhibitor of cholinesterase for the treatment of AD. We have also tried to uncover the mechanistic insight on the action of these polyphenols against AD pathogenicity.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fayaz Rahman Khan
- Department of Physical Therapy, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
132
|
Ding Y, Chen X, Wang B, Yu B, Ge J, Shi X. Quercetin suppresses the chymotrypsin-like activity of proteasome via inhibition of MEK1/ERK1/2 signaling pathway in hepatocellular carcinoma HepG2 cells. Can J Physiol Pharmacol 2018; 96:521-526. [PMID: 29394494 DOI: 10.1139/cjpp-2017-0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasomal system is a promising target for cancer treatment. Quercetin (Que), a flavonoid compound with antitumor ability, displays the inhibitory effect on proteasome activity. However, the underlying molecular mechanisms are ill defined. The present study found that Que treatment significantly reduced the chymotrypsin-like protease activity of proteasome whereas the trypsin- and caspase-like protease activities remained unchanged in HepG2 cancer cells, along with activation of p38 MAPK and JNK and reduction of ERK1/2 phosphorylation. Que-reduced proteasome activity could not be reverted by inhibition of p38 MAPK and JNK signaling pathway. In addition, MEK1 overexpression or knockdown upregulated or downregulated the chymotrypsin-like protease activity of proteasome, respectively. Both Que and MEK1/ERK1/2 inhibitor attenuated the expression levels of proteasome β subunits. These results indicate that Que-induced suppression of MEK1/ERK1/2 signaling and subsequent reduction of proteasome β subunits is responsible for its inhibitory impacts on proteasome activity.
Collapse
Affiliation(s)
- Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoyan Chen
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Wang
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Yu
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhui Ge
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaokang Shi
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
133
|
Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr Polym 2018; 193:99-107. [PMID: 29773403 DOI: 10.1016/j.carbpol.2018.03.092] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
In the present study, we have synthesized chitin-glucan-aldehyde-quercetin (chi-glu-ald-que) conjugate via condensation reaction. Synthesis of chitin-glucan-aldehyde (chi-glu-ald) complex was facilitated by the oxidation of chitin-glucan (chi-glu) complex. Formation of conjugate was confirmed by Proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Morphological studies showed that after grafting of quercetin, several changes on surface were depicted and a more crystalline nature was observed. The chi-glu-ald-que conjugate displayed strong antioxidant activity. It showed 69% of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, DPPH* scavenging activity at 1 mg/mL and 72% of 2, 2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation, ABTS*+ scavenging activity at 1 mg/mL concentration, which are much higher than that of chi-glu complex. The anticancer activity of chi-glu-ald-que conjugate was performed in Macrophage cancer cell lines (J774) and biocompatibility was performed in Peripheral blood mononuclear cells (PBMCs). The chi-glu-ald-que conjugate showed excellent cytotoxicity against J774 cell lines but no cytotoxicity towards PBMCs.
Collapse
Affiliation(s)
- Anu Singh
- Polymer Research Laboratory, Department of Chemistry, India
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, India.
| | - Hridyesh Kumar
- Polymer Research Laboratory, Department of Chemistry, India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| |
Collapse
|
134
|
Signorile PG, Viceconte R, Baldi A. Novel dietary supplement association reduces symptoms in endometriosis patients. J Cell Physiol 2018; 233:5920-5925. [PMID: 29243819 DOI: 10.1002/jcp.26401] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Endometriosis is characterized by disabling symptoms that afflict young women with severe physical discomfort, difficulty in relationship life, and infertility; however, the currently available therapeutic strategies are unsatisfactory. Goal of this research was to identify a new combination of natural active ingredients that, administered as dietary supplements, could have the effect of reducing inflammatory response in endometriosis patients, decreasing the symptoms the disease produces and its harmful effects on affected organs. A cohort of endometriosis patient was treated for 3 months with a composition including quercitin, curcumin, parthenium, nicotinamide, 5-methyltetrahydrofolate, and omega 3/6. Using a VAS scale, we demonstrated a significant reduction of the symptoms in endometriosis patients treated with the dietary composition respect to the controls. Moreover, we demonstrated also a significant reduction in the serum levels of PGE2 and CA-125. Further study are required to compare the effect of this combination of molecules with standard therapies and to evaluate if the use of these dietary supplements in combination with standard therapies may lead to the improvement of the regular medical treatment for endometriosis.
Collapse
Affiliation(s)
| | | | - Alfonso Baldi
- Italian Endometriosis Foundation, Formello, Rome, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli,", Caserta, Italy
| |
Collapse
|
135
|
Teles YCF, Souza MSR, Souza MDFVD. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules 2018; 23:molecules23020480. [PMID: 29473839 PMCID: PMC6017314 DOI: 10.3390/molecules23020480] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022] Open
Abstract
The great diversity of enzymatic reactions in plant secondary metabolism allows the continuous discovery of new natural compounds and derivatives. Flavonoids, for example, can be found as aglycone or as several sorts of glycosylated, acetylated, methylated, and sulphated derivatives. This review focuses on sulphated flavonoids, an uncommon group of flavonoid derivatives found in some plant families. This work presents a compilation of sulphated flavonoids and their natural sources reported in the literature. Biosynthetic aspects and biological activities have also been reviewed, showing that these particular kinds of natural compounds play an interesting role in plant metabolism, as well as being potential candidates for the development of new drugs.
Collapse
Affiliation(s)
- Yanna C F Teles
- Department of Chemistry and Physics, Agrarian Sciences Center, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil.
| | - Maria Sallett R Souza
- Post graduation Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.
| | - Maria de Fátima Vanderlei de Souza
- Post graduation Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.
- Post graduation in Development and Technological Innovation in Medicines, Health Sciences Center, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.
| |
Collapse
|