101
|
Rasouli S, Hashemianzadeh SM, Moghbeli MR. Role of physicochemical characteristics of poly(N,N-diethylacrylamide) on the polymer thermal responsivity and interfacial properties in aqueous solution: All-atom simulation study. J Mol Graph Model 2022; 112:108140. [DOI: 10.1016/j.jmgm.2022.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
|
102
|
Wenisch SE, Schaffer A, Rieger B. Effect of Hofmeister Salts on the LCST of Poly(diethyl vinylphosphonate) and Poly(2‐vinylpyridine‐
block‐
diethyl vinylphosphonate). MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sandra E. Wenisch
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| | - Andreas Schaffer
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| | - Bernhard Rieger
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| |
Collapse
|
103
|
Beudert M, Hahn L, Horn AHC, Hauptstein N, Sticht H, Meinel L, Luxenhofer R, Gutmann M, Lühmann T. Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels. J Control Release 2022; 347:115-126. [PMID: 35489547 DOI: 10.1016/j.jconrel.2022.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/16/2022] [Indexed: 11/15/2022]
Abstract
3D printing of biomaterials enables spatial control of drug incorporation during automated manufacturing. This study links bioresponsive release of the anabolic biologic, insulin-like growth factor-I (IGF-I) in response to matrix metalloproteinases (MMP) to 3D printing using the block copolymer of poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine) (POx-b-POzi). For that, a chemo-enzymatic synthesis was deployed, ligating IGF-I enzymatically to a protease sensitive linker (PSL), which was conjugated to a POx-b-POzi copolymer. The product was blended with the plain thermogelling POx-b-POzi hydrogel. MMP exposure of the resulting hydrogel triggered bioactive IGF-I release. The bioresponsive IGF-I containing POx-b-POzi hydrogel system was further detailed for shape control and localized incorporation of IGF-I via extrusion 3D printing for future applications in biomedicine and biofabrication.
Collapse
Affiliation(s)
- Matthias Beudert
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany
| | - Lukas Hahn
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany; Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Anselm H C Horn
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 1, 91058 Erlangen, Germany
| | - Niklas Hauptstein
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 1, 91058 Erlangen, Germany
| | - Lorenz Meinel
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Straße 2, DE-97080 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Marcus Gutmann
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany.
| | - Tessa Lühmann
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany.
| |
Collapse
|
104
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
105
|
Cook MT, Abou-Shamat MA, Stair JL, Calvo-Castro J. Raman spectroscopy coupled to computational approaches towards understanding self-assembly in thermoreversible poloxamer gels. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
106
|
Gao C, Feng Y, Wilson DA, Tu Y, Peng F. Micro-Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106263. [PMID: 35032145 DOI: 10.1002/smll.202106263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 XZ, The Netherlands
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
107
|
Braccini S, Tacchini C, Chiellini F, Puppi D. Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. Int J Mol Sci 2022; 23:3265. [PMID: 35328686 PMCID: PMC8954571 DOI: 10.3390/ijms23063265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) grows and interacts constantly with a complex microenvironment, in which immune cells, fibroblasts, blood vessels, signal molecules and the extracellular matrix (ECM) coexist. This heterogeneous environment provides structural and biochemical support to the surrounding cells and undergoes constant and dynamic remodeling that actively promotes tumor initiation, progression, and metastasis. Despite the fact that traditional 2D cell culture systems have led to relevant medical advances in cancer research, 3D cell culture models could open new possibilities for the development of an in vitro tumor microenvironment more closely reproducing that observed in vivo. The implementation of materials science and technology into cancer research has enabled significant progress in the study of cancer progression and drug screening, through the development of polymeric scaffold-based 3D models closely recapitulating the physiopathological features of native tumor tissue. This article provides an overview of state-of-the-art in vitro tumor models with a particular focus on 3D OC cell culture in pre-clinical studies. The most representative OC models described in the literature are presented with a focus on hydrogel-based scaffolds, which guarantee soft tissue-like physical properties as well as a suitable 3D microenvironment for cell growth. Hydrogel-forming polymers of either natural or synthetic origin investigated in this context are described by highlighting their source of extraction, physical-chemical properties, and application for 3D ovarian cancer cell culture.
Collapse
Affiliation(s)
| | | | | | - Dario Puppi
- BioLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (S.B.); (C.T.)
| |
Collapse
|
108
|
Chen C, Zhang W, Zhang Y, Wang P, Ren F. Tunable Thermo-Responsive Properties of Hydroxybutyl Chitosan Oligosaccharide. Front Chem 2022; 10:830516. [PMID: 35360543 PMCID: PMC8960259 DOI: 10.3389/fchem.2022.830516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a simple method was used to synthesize novel thermosensitive hydroxybutyl chitosan oligosaccharide (HBCOS) by introducing hydroxybutyl groups to C6–OH of chitosan oligosaccharide (COS) chain. The variation in light scattering demonstrated that HBCOS had good thermosensitive properties and the particle size of HBCOS changed from 2.21–3.58 to 281.23–4,162.40 nm as the temperature increased to a critical temperature (LCST). The LCST of HBCOS (10 mg/ml) decreased from 56.25°C to 40.2°C as the degrees of substitution (DSs) increased from 2.96 to 4.66. The LCST of HBCOS with a DS of 4.66 decreased to 33.5°C and 30°C as the HBCOS and NaCl concentrations increased to 50 mg/ml and 4% (w/v), respectively. Variable-temperature FTIR spectroscopy confirmed that dehydration of hydrophobic chains and the transition of hydrogen bonds were the driving forces for the phase transition of HBCOS. Moreover, HBCOS was not cytotoxic at different concentrations. This work generated a novel thermosensitive HBCOS with tunable thermoresponsive properties and excellent biocompatibility, which may be a potential nanocarrier for the biomedical application.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed By Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed By Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Pengjie Wang, ; Fazheng Ren,
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed By Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Pengjie Wang, ; Fazheng Ren,
| |
Collapse
|
109
|
Fatimah I, Fadillah G, Purwiandono G, Sahroni I, Purwaningsih D, Riantana H, Avif AN, Sagadevan S. Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
110
|
Zhao H, Liu R, Zhang H, Cao P, Liu Z, Li Y. Research Progress on the Flexibility of an Implantable Neural Microelectrode. MICROMACHINES 2022; 13:386. [PMID: 35334680 PMCID: PMC8954487 DOI: 10.3390/mi13030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/25/2021] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
Abstract
Neural microelectrode is the important bridge of information exchange between the human body and machines. By recording and transmitting nerve signals with electrodes, people can control the external machines. At the same time, using electrodes to electrically stimulate nerve tissue, people with long-term brain diseases will be safely and reliably treated. Young's modulus of the traditional rigid electrode probe is not matched well with that of biological tissue, and tissue immune rejection is easy to generate, resulting in the electrode not being able to achieve long-term safety and reliable working. In recent years, the choice of flexible materials and design of electrode structures can achieve modulus matching between electrode and biological tissue, and tissue damage is decreased. This review discusses nerve microelectrodes based on flexible electrode materials and substrate materials. Simultaneously, different structural designs of neural microelectrodes are reviewed. However, flexible electrode probes are difficult to implant into the brain. Only with the aid of certain auxiliary devices, can the implant be safe and reliable. The implantation method of the nerve microelectrode is also reviewed.
Collapse
Affiliation(s)
- Huiqing Zhao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Huiling Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Peng Cao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China
| | - Ye Li
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
111
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
112
|
Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. NANOMATERIALS 2022; 12:nano12030303. [PMID: 35159647 PMCID: PMC8840331 DOI: 10.3390/nano12030303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was constituted by flower-like magnetite nanoparticles with a size of 16.4 nm prepared by the polyol approach, with good saturation magnetization and a high specific absorption rate. The core was encapsulated in poly (N-vinylcaprolactam-co-acrylic acid) obtaining magnetic nanocarriers that revealed reversible hydration/dehydration transition at the acidic condition and/or at temperatures above physiological body temperature, which can be triggered by magnetic hyperthermia. The efficacy of the system was proved by loading doxorubicin with very high encapsulation efficiency (>96.0%) at neutral pH. The double pH- and temperature-responsive nature of the magnetic nanocarriers facilitated a burst, almost complete release of the drug at acidic pH under hyperthermia conditions, while a negligible amount of doxorubicin was released at physiological body temperature at neutral pH, confirming that in addition to pH variation, drug release can be improved by hyperthermia treatment. These results suggest this multi-stimuli-sensitive nanoplatform is a promising candidate for remote-controlled drug release in combination with magnetic hyperthermia for cancer treatment.
Collapse
|
113
|
Kavaliauskaite M, Steponaviciute M, Kievisaite J, Katelnikovas A, Klimkevicius V. Synthesis and Study of Thermoresponsive Amphiphilic Copolymers via RAFT Polymerization. Polymers (Basel) 2022; 14:229. [PMID: 35054636 PMCID: PMC8777995 DOI: 10.3390/polym14020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 01/02/2023] Open
Abstract
Synthesis and study of well-defined thermoresponsive amphiphilic copolymers with various compositions were reported. Kinetics of the reversible addition-fragmentation chain transfer (RAFT) (co)polymerization of styrene (St) and oligo(ethylene glycol) methyl ether methacrylate (PEO5MEMA) was studied by size exclusion chromatography (SEC) and 1H NMR spectroscopy, which allows calculating not only (co)polymerization parameters but also gives valuable information on RAFT (co)polymerization kinetics, process control, and chain propagation. Molecular weight Mn and dispersity Đ of the copolymers were determined by SEC with triple detection. The detailed investigation of styrene and PEO5MEMA (co)polymerization showed that both monomers prefer cross-polymerization due to their low reactivity ratios (r1 < 1, r2 < 1); therefore, the distribution of monomeric units across the copolymer chain of p(St-co-PEO5MEMA) with various compositions is almost ideally statistical or azeotropic. The thermoresponsive properties of p(St-co-PEO5MEMA) copolymers in aqueous solutions as a function of different hydrophilic/hydrophobic substituent ratios were evaluated by measuring the changes in hydrodynamic parameters under applied temperature using the dynamic light scattering method (DLS).
Collapse
Affiliation(s)
| | | | | | | | - Vaidas Klimkevicius
- Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania; (M.K.); (M.S.); (J.K.); (A.K.)
| |
Collapse
|
114
|
|
115
|
Perçin I, Idil N, Denizli A. Preparation of Molecularly Imprinted Poly(N-Isopropylacrylamide) Thermosensitive Based Cryogels. Methods Mol Biol 2022; 2466:249-260. [PMID: 35585323 DOI: 10.1007/978-1-0716-2176-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryogels are defined as polymeric gel matrices with interconnected macropores providing an advantage to be efficient carriers enabling unhindered diffusion of interested molecule. Cryogels could be easily prepared with the combination of molecular imprinting. Molecular imprinting technology provides selective and sensitive recognition for biomolecules. Immunoglobulin G (IgG) is a main effector component in human response. It is recently well recognized that the purification strategies for IgG have intensively gained attention to treat immune defects. Several methods including affinity chromatography have been applied for the purification of IgG from complex media. The purification of IgG plays a crucial role in medical applications using several materials. Among these, cryogels have been widely applied for the purification of several biomolecules. They offer to create low-cost affinity systems with high chemical and physical stability. Above all, temperature sensitive polymers enable a reversible phase transition against small temperature changes, by the way, reversible swelling and shrinking manner is observed.In this chapter, immunoglobulin G imprinted thermosensitive poly(N-isopropylacrylamide-N methacryloyl-(l)-histidine) [p(NIPA-MAH)/IgG-MIP] monolithic cryogel is explained. The preparation and characterization of cryogels are summarized. In addition, IgG binding studies with different parameters are briefly described. Herein, an effective design principle is presented to create imprinted temperature-sensitive cryogels for IgG purification. A p(NIPA-MAH)/IgG-MIP monolithic cryogel was synthesized for IgG purification. Afterward, IgG binding capacity of p(NIPA-MAH)/IgG-MIP cryogels was examined in different experimental conditions. Apart from these, selectivity of the p(NIPA-MAH)/IgG-MIP cryogel was shown by comparing IgG binding capacity of nonimprinted [p(NIPA-MAH)/NIP] one. Finally, the IgG purification ability of the p(NIPA-MAH)/IgG-MIP cryogel from human plasma was demonstrated proving its application in affinity chromatography using real sample.
Collapse
Affiliation(s)
- Işık Perçin
- Department of Biology, Hacettepe University, Ankara, Turkey
| | - Neslihan Idil
- Department of Biology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
116
|
da Silva JB, Dos Santos RS, Vecchi CF, Bruschi ML. Drug Delivery Platforms Containing Thermoresponsive Polymers and Mucoadhesive Cellulose Derivatives: A Review of Patents. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:90-102. [PMID: 35379163 DOI: 10.2174/2667387816666220404123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the development of mucoadhesive systems for drug delivery has gained keen interest, with enormous potential in applications through different routes. Mucoadhesion characterizes an attractive interaction between the pharmaceutical dosage form and the mucosal surface. Many polymers have shown the ability to interact with mucus, increasing the residence time of local and/or systemic administered preparations, such as tablets, patches, semi-solids, and micro and nanoparticles. Cellulose is the most abundant polymer on the earth. It is widely used in the pharmaceutical industry as an inert pharmaceutical ingredient, mainly in its covalently modified forms: methylcellulose, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and carboxymethylcellulose salts. Aiming to overcome the drawbacks of oral, ocular, nasal, vaginal, and rectal routes and thereby maintaining patient compliance, innovative polymer blends have gained the interest of the pharmaceutical industry. Combining mucoadhesive and thermoresponsive polymers allows for simultaneous in situ gelation and mucoadhesion, thus enhancing the retention of the system at the site of administration and drug availability. Thermoresponsive polymers have the ability to change physicochemical properties triggered by temperature, which is particularly interesting considering the physiological temperature. The present review provides an analysis of the main characteristics and applications of cellulose derivatives as mucoadhesive polymers and their use in blends together with thermoresponsive polymers, aiming at platforms for drug delivery. Patents were reviewed, categorized, and discussed, focusing on the applications and pharmaceutical dosage forms using this innovative strategy. This review manuscript also provides a detailed introduction to the topic and a perspective on further developments.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Camila Felix Vecchi
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| |
Collapse
|
117
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
118
|
Cardiovascular Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
119
|
Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. MICROMACHINES 2021; 13:mi13010075. [PMID: 35056239 PMCID: PMC8780533 DOI: 10.3390/mi13010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
Tissue engineering provides a powerful solution for current organ shortages, and researchers have cultured blood vessels, heart tissues, and bone tissues in vitro. However, traditional top-down tissue engineering has suffered two challenges: vascularization and reconfigurability of functional units. With the continuous development of micro-nano technology and biomaterial technology, bottom-up tissue engineering as a promising approach for organ and tissue modular reconstruction has gradually developed. In this article, relevant advances in living blocks fabrication and assembly techniques for creation of higher-order bioarchitectures are described. After a critical overview of this technology, a discussion of practical challenges is provided, and future development prospects are proposed.
Collapse
|
120
|
Wang BX, Li J, Cheng DH, Lu YH, Liu L. Fabrication of Antheraea pernyi Silk Fibroin-Based Thermoresponsive Hydrogel Nanofibers for Colon Cancer Cell Culture. Polymers (Basel) 2021; 14:108. [PMID: 35012130 PMCID: PMC8747543 DOI: 10.3390/polym14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Antheraea pernyi silk fibroin (ASF)-based nanofibers have wide potential for biomaterial applications due to superior biocompatibility. It is not clear whether the ASF-based nanofibers scaffold can be used as an in vitro cancer cell culture platform. In the current study, we fabricated novel ASF-based thermoresponsive hydrogel nanofibers by aqueous electrospinning for colon cancer (LoVo) cells culture. ASF was reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE), which provided the possibility of copolymerization with allyl monomer. The investigation of ASF-AGE structure by 1H NMR revealed that reactive allyl groups were successfully linked with ASF. ASF-based thermoresponsive hydrogel nanofibers (p (ASF-AGE-NIPAAm)) were successfully manufactured by aqueous electrospinning with the polymerization of ASF and N-isopropylacrylamide (NIPAAm). The p (ASF-AGE-NIPAAm) spinning solution showed good spinnability with the increase of polymerization time, and uniform nanofibers were formed at the polymerization time of 360 min. The obtained hydrogel nanofibers exhibited good thermoresponsive that the LCST was similar with PNIPAAm at about 32 °C, and good degradability in protease XIV PBS solution. In addition, the cytocompatibility of colon cancer (LoVo) cells cultured in hydrogel nanofibers was assessed. It was demonstrated that LoVo cells grown on hydrogel nanofibers showed improved cell adhesion, proliferation, and viability than those on hydrogel. The results suggest that the p (ASF-AGE-NIPAAm) hydrogel nanofibers have potential application in LoVo cells culture in vitro. This study demonstrates the feasibility of fabricating ASF-based nanofibers to culture LoVo cancer cells that can potentially be used as an in vitro cancer cell culture platform.
Collapse
Affiliation(s)
- Bo-Xiang Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - Jia Li
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - De-Hong Cheng
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - Yan-Hua Lu
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - Li Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
121
|
Razmimanesh F, Sodeifian G. Investigation of temperature-responsive tocosomal nanocarriers as the efficient and robust drug delivery system for Sunitinib malate anti-cancer drug: Effects of MW and chain length of PNIPAAm on LCST and dissolution rate. J Pharm Sci 2021; 111:1937-1951. [PMID: 34963573 DOI: 10.1016/j.xphs.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
In this study, for the first time, the coated tocosome by blend of chitosan, CS, and poly(N-isopropylacrylamide), PNIPAAm, was developed as the efficient and robust drug delivery system with improved drug encapsulation efficiency, extended stability, proper particle size and industrial upscaling for Sunitinib malate anti-cancer drug. Tocosome was synthesized by using Mozafari method as a scalable and robust method and without the need for organic solvents. The effects of tocosome composition and drug concentration on the stability, particle size of tocosome, zeta potential, encapsulation efficacy and loading of drug into it were investigated by Taguchi method, and optimum composition was selected for combining with the polymeric blend. Homopolymer of PNIPAAm was synthesized by two different polymerization methods, including free radical and reversible addition-fragmentation chain transfer (RAFT). Effects of molecular weight (MW) and chain length of the polymers on lower critical solution temperature (LCST) were examined. The developed nanocarrier in this research, CS-Raft-PNIPAAm-tocosome, indicated LCST value beyond 37°C (about 45°C) and this is suitable for hyperthermia and spatio-temporal release of drug particles.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran; Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran; Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran.
| |
Collapse
|
122
|
Vandeberg R, Grysan P, Sion C, Włodarczyk-Biegun MK, Lentzen E, Bour J, Krishnamoorthy S, Olmos E, Grandfils C. Dextran-based matrix functionalization to promote WJ-MSCs amplification: synthesis and characterization. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Romain Vandeberg
- Interfaculty Research Center of Biomaterials, University of Liège, Liège, Belgium
| | - Patrick Grysan
- Nano-Enabled Medicine and Cosmetics Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Caroline Sion
- The Reactions and Chemical Engineering Laboratory, University of Lorraine, CNRS UMR 7274, Nancy, France
| | | | - Esther Lentzen
- Nano-Enabled Medicine and Cosmetics Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jérôme Bour
- Nano-Enabled Medicine and Cosmetics Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Sivashankar Krishnamoorthy
- Nano-Enabled Medicine and Cosmetics Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Eric Olmos
- The Reactions and Chemical Engineering Laboratory, University of Lorraine, CNRS UMR 7274, Nancy, France
| | - Christian Grandfils
- Interfaculty Research Center of Biomaterials, University of Liège, Liège, Belgium
| |
Collapse
|
123
|
Munir MM, Ahmad H, Liu JB. M-Polynomial and Imbalance-Based Irregularity Indices of Smart Polymers SP[n]. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2007139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Haseeb Ahmad
- Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Jia-Bao Liu
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, China
- School of Mathematics, Southeast University, Nanjing, China
| |
Collapse
|
124
|
Lateef S, Ganaie NB, Peerzada GM. Novel Routes for the Synthesis of a Thermoresponsive Polymer: A Comparative Approach. ChemistrySelect 2021. [DOI: 10.1002/slct.202103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shafia Lateef
- Department of Chemistry University of Kashmir Srinagar Jammu and Kashmir 190006 India
| | - Nadeem Bashir Ganaie
- Department of Chemistry Govt. College for Women Nawakadal Srinagar Jammu and Kashmir 190002 India
| | | |
Collapse
|
125
|
Haddow PJ, da Silva MA, Kaldybekov DB, Dreiss CA, Hoffman E, Hutter V, Khutoryanskiy VV, Kirton SB, Mahmoudi N, McAuley WJ, Cook MT. Polymer Architecture Effects on Poly(N,N-Diethyl Acrylamide)-b-Poly(Ethylene Glycol)-b-Poly(N,N-Diethyl Acrylamide) Thermoreversible Gels and Their Evaluation as a Healthcare Material. Macromol Biosci 2021; 22:e2100432. [PMID: 34859566 DOI: 10.1002/mabi.202100432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Thermoreversible gels which transition between liquid-like and solid-like states when warmed have enabled significant novel healthcare technologies. Poly(N,N-diethyl acrylamide) (PDEA) is a thermoresponsive polymer which can be used as a trigger to form thermoreversible gels, however its use in these materials is limited and crucial design principles are unknown. Herein ABA copolymers with the structure PDEA-b-poly(ethylene glycol) (PEG)-b-PDEA are synthesized to give four block copolymers with varied molecular weight of PDEA and PEG blocks. Rheometry on solutions of the block copolymers reveals that high molecular weight PEG blocks are required to form thermoreversible gels with predominantly solid-like behavior. Furthermore, small-angle X-ray scattering elucidates clear differences in the nanostructure of the copolymer library which can be linked to distinct rheological behaviors. A thermoreversible gel formulation based on PDEA (20 kDa)-b-PEG (10 kDa)-b-PDEA (20 kDa) is designed by optimizing the polymer concentration and ionic strength. It is found that the gel is mucoadhesive, stable, and non-toxic, as well as giving controlled release of a hydrophobic drug. Overall, this study provides insight into the effect of polymer architecture on the nanostructure and rheology of PDEA-b-PEG-b-PDEA and presents the development of a highly functional thermoreversible gel with high promise for healthcare applications.
Collapse
Affiliation(s)
- Peter J Haddow
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Marcelo A da Silva
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Daulet B Kaldybekov
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, Berkshire, RG6 6UR, UK.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Cecile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Ewelina Hoffman
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Victoria Hutter
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Vitaliy V Khutoryanskiy
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, Berkshire, RG6 6UR, UK.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Stewart B Kirton
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - William J McAuley
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Michael T Cook
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| |
Collapse
|
126
|
Speer S, Amin S. Sustainable thermoresponsive whey protein- and chitosan-based oil-in-water emulsions for cosmetic applications. Int J Cosmet Sci 2021; 44:30-41. [PMID: 34800296 DOI: 10.1111/ics.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE In this study, the biopolymers whey protein and chitosan were used to create a thermoresponsive emulsion. The impact of the inclusion of chitosan and inclusion of specific oils on the rheological properties and response to temperature were investigated by a stepwise build-up from simple solutions to oil-in-water (O/W) emulsions. Whey protein (WP) concentration and chitosan concentration were varied. The results may help develop strategies for incorporating thermoresponsive materials in stable and high-performing formulations for use in cosmetics. METHODS Solutions of whey protein concentrate (WPC) by itself, chitosan by itself and the combination of the two at various concentrations were tested with flow sweeps, temperature sweeps and frequency sweeps. Then, three different oils of jojoba, avocado and silicone were included to form emulsions and the tests were repeated to determine flow behaviour, response to temperature and structure. RESULTS By comparing 15 wt. % and 20 wt. % WP solutions, it was found that 15 wt. % WP could provide good viscosities and modulus at a lower amount of material used. The solution composed of 15 wt. % WP, and 0.5 wt. % chitosan was found to have the greatest structural response to temperature compared to solutions with 1.0 wt. % and 1.5 wt. % chitosan. Compared to the addition of 10 wt. % silicone and 10 wt. % avocado oil to form emulsions, the addition of 10 wt. % jojoba oil further strengthened the gel network the most. The final emulsion with pigment added had improved viscosity and thermoresponsive behaviour. The WP and chitosan emulsions were shear thinning, elastically dominated and behaved as classical gels. The behaviour of the emulsions was dependent upon the hydrophobic interactions between the protein and the oil and the electrostatic interactions between the protein and the chitosan. CONCLUSION An emulsion composed of 15 wt. % WP, 10 wt. % jojoba oil and 0.5 wt. % chitosan solution was found to have the greatest structural response to temperature. This study of an O/W emulsion containing whey protein concentrate and chitosan demonstrated that different oils and conditions can be used to tune thermoresponsive and rheological behaviour.
Collapse
Affiliation(s)
- Sarah Speer
- Department of Chemical Engineering, Manhattan College, Riverdale, New York, USA
| | - Samiul Amin
- Department of Chemical Engineering, Manhattan College, Riverdale, New York, USA
| |
Collapse
|
127
|
Nagareddy R, Thomas RG, Jeong YY. Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. Int J Mol Sci 2021; 22:ijms222212510. [PMID: 34830392 PMCID: PMC8625613 DOI: 10.3390/ijms222212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
- Correspondence:
| |
Collapse
|
128
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
129
|
Inhomogeneities in PNIPAM Aqueous Solutions: The Inside View by Spin Probe EPR Spectroscopy. Polymers (Basel) 2021; 13:polym13213829. [PMID: 34771385 PMCID: PMC8588346 DOI: 10.3390/polym13213829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Coil to globule transition in poly(N-isopropylacrylamide) aqueous solutions was studied using spin probe continuous-wave electronic paramagnetic resonance (CW EPR) spectroscopy with an amphiphilic TEMPO radical as a guest molecule. Using Cu(II) ions as the “quencher” for fast-moving radicals in the liquid phase allowed obtaining the individual spectra of TEMPO radicals in polymer globule and observing inhomogeneities in solutions before globule collapsing. EPR spectra simulations confirm the formation of molten globules at the first step with further collapsing and water molecules coming out of the globule, making it denser.
Collapse
|
130
|
Dabhade A, Chaudhury S. Simulation Study of the Conformational Properties of Diblock Polyelectrolytes in Salt Solutions. Chem Asian J 2021; 16:3354-3362. [PMID: 34410041 DOI: 10.1002/asia.202100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Coarse-grained molecular dynamics simulations are performed to understand the behavior of diblock polyelectrolytes in solutions of divalent salt by studying the conformations of chains over a wide range of salt concentrations. The polymer molecules are modeled as bead spring chains with different charged fractions and the counterions and salt ions are incorporated explicitly. Upon addition of a divalent salt, the salt cations replace the monovalent counterions, and the condensation of divalent salt cations onto the polyelectrolyte increases, and the chains favor to collapse. The condensation of ions changes with the salt concentration and depends on the charged fraction. Also, the degree of collapse at a given salt concentration changes with the increasing valency of the counterion due to the bridging effect. As a quantitative measure of the distribution of counterions around the polyelectrolyte chain, we study the radial distribution function between monomers on different polyelectrolytes and the counterions inside the counterion worm surrounding a polymer chain at different concentrations of the divalent salt. Our simulation results show a strong dependence of salt concentration on the conformational properties of diblock copolymers and indicate that it can tune the self-assembly behaviors of such charged polyelectrolyte block copolymers.
Collapse
Affiliation(s)
- Akash Dabhade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
131
|
Hirama A, Chou LC, Kakuchi R. Streamlined access to end-functionalized thermoresponsive polymers via a combination of bulk RAFT polymerization and quasi solvent-free Passerini three-component reaction. Polym J 2021. [DOI: 10.1038/s41428-021-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
132
|
Lei M, Huang W, Sun J, Shao Z, Zhao L, Zheng K, Fang Y. Synthesis and characterization of thermo-responsive polymer based on carboxymethyl chitosan and its potential application in water-based drilling fluid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
133
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
134
|
Bisbjerg G, Brown GW, Pham KS, Kock RA, Ramos W, Patierno JA, Bautista A, Zawalick NM, Vigil V, Padrnos JD, Mathers RT, Heying MD, Costanzo PJ. Exploring polymer solubility with thermally‐responsive Diels‐Alder monomers: Revisiting the monkey's fist. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Greg Bisbjerg
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Ginger W. Brown
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Kimberly S. Pham
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Ryan A. Kock
- Department of Chemistry Boston University Boston Massachusetts USA
| | - William Ramos
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Jordan A. Patierno
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | | | - Natalie M. Zawalick
- Department of Chemistry University of California at Los Angeles Los Angeles California USA
| | - Viviana Vigil
- Department of Marine Science California State University Monterey Bay Marina California USA
| | - John D. Padrnos
- Department of Chemistry Penn State University New Kensington Pennsylvania USA
| | - Robert T. Mathers
- Department of Chemistry Penn State University New Kensington Pennsylvania USA
| | - Michael D. Heying
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Philip J. Costanzo
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| |
Collapse
|
135
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
136
|
Dahanayake R, Dormidontova EE. Hydrogen Bonding Sequence Directed Coil-Globule Transition in Water Soluble Thermoresponsive Polymers. PHYSICAL REVIEW LETTERS 2021; 127:167801. [PMID: 34723603 DOI: 10.1103/physrevlett.127.167801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The origin of the coil-globule transition for water-soluble thermoresponsive polymers frequently used in nanomaterials remains elusive. Using polypropylene oxide as an example we demonstrate by means of atomistic molecular dynamics simulations that temperature-induced increase in the sequence length of monomers that are not hydrogen bonded to water drives the coil-globule transition. Longer chains statistically exhibit longer sequences which serve as nucleation sites for hydrophobic cluster formation, facilitating chain collapse at lower temperature in agreement with experimental data.
Collapse
Affiliation(s)
- Rasika Dahanayake
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
137
|
Apostolides DE, Patrickios CS. Model dynamic covalent organogels based on end‐linked three‐armed oligo(ethylene glycol) star macromonomers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
138
|
Chen Y, Yin L, Ge F, Tong X, Zhang H, Zhao Y. Liquid Crystalline Hydrogel with Thermally Induced Reversible Shape Change and Water-Triggered Shape Memory. Macromol Rapid Commun 2021; 42:e2100495. [PMID: 34633718 DOI: 10.1002/marc.202100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Liquid crystalline hydrogel (LCH) is synthesized through simultaneous polymerization of hydrophobic and hydrophilic monomers in an oil-in-water emulsion, resulting in phase-separated liquid crystalline network (LCN) embedded in a hydrogel matrix. This material features some properties and functions of both LCN and hydrogel, displaying stable LC phase over repeated hydration and dehydration cycles of the hydrogel matrix. Using mechanically stretched and photocrosslinked LCH, the thermally induced LC-isotropic phase transition in LCN domains can be translated into reversible macroscopic deformation of the LCH. Moreover, the LCH exhibits water absorption-controlled shape memory effect.
Collapse
Affiliation(s)
- Yiming Chen
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Lu Yin
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Feijie Ge
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Xia Tong
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| |
Collapse
|
139
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
140
|
Sorichetti V, Hugouvieux V, Kob W. Dynamics of Nanoparticles in Polydisperse Polymer Networks: from Free Diffusion to Hopping. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valerio Sorichetti
- Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, France
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, F-34095 Montpellier, France
- IATE, Université Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Virginie Hugouvieux
- IATE, Université Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, F-34095 Montpellier, France
| |
Collapse
|
141
|
Luo P, Xiang S, Li C, Zhu M. Photomechanical polymer hydrogels based on molecular photoswitches. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peng‐Fei Luo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Shi‐Li Xiang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
142
|
Khiabani SS, Aghazadeh M, Rakhtshah J, Davaran S. A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids Surf B Biointerfaces 2021; 208:112035. [PMID: 34455315 DOI: 10.1016/j.colsurfb.2021.112035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Bone fracture is usually a medical condition where occurred by high force impact or stress. Recent advances to repair damaged or diseased bone tissues employs three-dimensional (3D) polymer matrices. This review aims to investigate the potential of injectable, dual thermally, and chemically gelable N-isopropyl acrylamide-based hydrogels to deliver scaffold, cells, and growth factors in vitro and in vivo.
Collapse
Affiliation(s)
| | - Marziyeh Aghazadeh
- Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid Rakhtshah
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Health Innovation Acceleration Center of Tabriz University of Medical Science and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
143
|
Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021; 17:2123-2163. [PMID: 34476018 PMCID: PMC8381851 DOI: 10.3762/bjoc.17.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
Collapse
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, NE 68588, Lincoln, USA
| |
Collapse
|
144
|
Wang B, Xu H, Li J, Cheng D, Lu Y, Liu L. Degradable allyl Antheraea pernyi silk fibroin thermoresponsive hydrogels to support cell adhesion and growth. RSC Adv 2021; 11:28401-28409. [PMID: 35480775 PMCID: PMC9038017 DOI: 10.1039/d1ra04436b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
At present, Antheraea pernyi silk fibroin (ASF) based hydrogels have wide potential applications as biomaterials because of their superior cytocompatibility. Herein, ASF is used as a nucleophilic reagent, reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE). The investigation of ASF-AGE structure by 1H NMR and FTIR are revealed that reactive allyl groups were obtained on ASF by nucleophilic substitution. A series of ASF based hydrogels are manufactured by N-isopropylacrylamide (NIPAAm) copolymerization bridged with ASF-AGE. By the silk fibroin self-assembly process, stably physical cross-linked hydrogels are formed without any crosslinking agent. These hydrogels exhibit good thermoresponsive and degradability, for which the LCST was about 32 °C, and these hydrogels can be degraded in protease XIV solution. Excellent cell proliferation, viability and morphology is demonstrated for b End.3 cells on the hydrogels by the characteristic MTT assay, CLSM and SEM. The cytocompatibility of b End.3 cells was demonstrated with excellent cell adhesion and growth on these ASF based hydrogels in vitro. These degradable and thermoresponsive ASF based hydrogels may find potential applications for cells delivery devices and tissue engineering. At present, Antheraea pernyi silk fibroin (ASF) based hydrogels have wide potential applications as biomaterials because of its superior cytocompatibility.![]()
Collapse
Affiliation(s)
- Boxiang Wang
- School of Materials Science and Engineering, Shanghai University Shanghai 200444 China .,Key Laboratory of Functional Textile Materials, Eastern Liaoning University Dandong 118003 Liaoning Province China
| | - Hangdan Xu
- Key Laboratory of Functional Textile Materials, Eastern Liaoning University Dandong 118003 Liaoning Province China
| | - Jia Li
- Key Laboratory of Functional Textile Materials, Eastern Liaoning University Dandong 118003 Liaoning Province China
| | - Dehong Cheng
- Key Laboratory of Functional Textile Materials, Eastern Liaoning University Dandong 118003 Liaoning Province China
| | - Yanhua Lu
- Key Laboratory of Functional Textile Materials, Eastern Liaoning University Dandong 118003 Liaoning Province China
| | - Li Liu
- School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| |
Collapse
|
145
|
Suzuki N, Koyama S, Koike R, Ebara N, Arai R, Takeoka Y, Rikukawa M, Tsai FY. Palladium-Catalyzed Mizoroki-Heck and Copper-Free Sonogashira Coupling Reactions in Water Using Thermoresponsive Polymer Micelles. Polymers (Basel) 2021; 13:2717. [PMID: 34451255 PMCID: PMC8402173 DOI: 10.3390/polym13162717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
A few kinds of thermoresponsive diblock copolymers have been synthesized and utilized for palladium-catalyzed coupling reactions in water. Poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-diethylacrylamide) (PDEAAm) are employed for thermoresponsive segments and poly(sodium 4-styrenesulfonate) (PSSNa) and poly(sodium 2-acrylamido-methylpropanesulfonate) (PAMPSNa) are employed for hydrophilic segments. Palladium-catalyzed Mizoroki-Heck reactions are performed in water and the efficiency of the extraction process is studied. More efficient extraction was observed for the PDEAAm copolymers when compared with the PNIPAAm copolymers and conventional surfactants. In the study of the Sonogashira coupling reactions in water, aggregative precipitation of the products was observed. Washing the precipitate with water gave the product with satisfactory purity with a good yield.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Shun Koyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Rina Koike
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Nozomu Ebara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Rikito Arai
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Yuko Takeoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Masahiro Rikukawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Fu-Yu Tsai
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan
| |
Collapse
|
146
|
Cunha C, Klein P, Rosenauer C, Scherf U, Seixas de Melo JS. Fluorescence Studies on a Thermoresponsive PNIPAM-Polyfluorene Graft Copolymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Carla Cunha
- CQC, Department of Chemistry, University of Coimbra, Coimbra P3004-535, Portugal
| | - Patrick Klein
- Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universitat Wuppertal, Gauss-Str. 20, Wuppertal D-42119, Germany
| | - Christine Rosenauer
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universitat Wuppertal, Gauss-Str. 20, Wuppertal D-42119, Germany
| | | |
Collapse
|
147
|
Mohammad Gholiha H, Ehsani M, Saeidi A, Ghadami A, Alizadeh N. Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior. Prog Biomater 2021; 10:173-183. [PMID: 34370266 DOI: 10.1007/s40204-021-00161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Magnetic thermoresponsive nanogels present a promising new approach for targeted drug delivery. In the present study, bovine serum albumin (BSA) loaded thermo-responsive magnetic semi-IPN nanogels (MTRSI-NGs) were developed. At first poly(N-vinyl caprolactam) (PNVCL) was synthesized by free radical polymerization and then MTRSI-NGs were prepared by crosslinking chitosan in presence of chitosan and Fe3O4. The formation of MTRSI-NGs has been confirmed by FTIR, and the average molecular weight of PNVCL was determined by GPC analysis. Rheological and turbidimetry analysis were used to determine lower critical solution temperature (LCST) of PNVCL and magnetic thermo-responsive nanogels (MTRSI-NGs) around 32 and 37 °C, respectively. FE-SEM analysis showed particle size at less than 20 nm in the dried state. Dynamic light scattering determined particle size at about 30 nm in a swelling state. The analysis of release behavior showed that the BSA release ratio at 40 °C was faster than 25 °C. The pH release behavior was evaluated at pH 5.5 and 7.4 and showed that the drug release rate at pH 5.5 was more rapid than pH 7.4. The results show MTRSI-NGs are applicable to protein targeted delivery by thermosensitive targeted drug delivery systems.
Collapse
Affiliation(s)
- Hamed Mohammad Gholiha
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Ehsani
- Department of polymer processing, Iran polymer and petrochemical institute (IPPI), Tehran, Iran. .,Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ardeshir Saeidi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Alizadeh
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
148
|
Chan VWY, Phan CM, Walther H, Ngo W, Jones L. Effects of Temperature and Blinking on Contact Lens Dehydration of Contemporary Soft Lens Materials Using an In Vitro Blink Model. Transl Vis Sci Technol 2021; 10:11. [PMID: 34251425 PMCID: PMC8287047 DOI: 10.1167/tvst.10.8.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the effects of temperature and blinking on contact lens (CL) dehydration using an in vitro blink model. Methods Three silicone hydrogel (delefilcon A, senofilcon A, and comfilcon A) and two conventional hydrogel (etafilcon A and omafilcon A) CL materials were evaluated at 1 and 16 hours. The water content (WC) of the CLs was measured using a gravimetric method. Lenses were incubated on a blink model, internally heated to achieve a clinically relevant surface temperature of 35°C. An artificial tear solution (ATS) was delivered to the blink model at 4.5 µL/min with a blink rate of 6 blinks/min. A comparison set of lenses were incubated in a vial containing either 2 mL of ATS or phosphate-buffered saline (PBS) at 35°C. Results Increasing temperature to 35°C resulted in a decrease in WC for all tested CLs over time (P ≤ 0.0052). For most CLs, there was no significant difference in WC over time between ATS or PBS in the vial (P > 0.05). With the vial system, WC decreased and plateaued over time. However, on the blink model, for most CLs, the WC significantly decreased after 1 hour but returned toward initial WC levels after 16 hours (P > 0.05). Conclusions The reduction in WC of CLs on the eye is likely due to both an increase in temperature and dehydration from air exposure and blinking. Translational Relevance This study showed that the novel, heated, in vitro blink model could be used to provide clinical insights into CL dehydration on the eye.
Collapse
Affiliation(s)
- Vivian W Y Chan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Hendrik Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong
| |
Collapse
|
149
|
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Front Bioeng Biotechnol 2021; 9:696514. [PMID: 34307323 PMCID: PMC8297506 DOI: 10.3389/fbioe.2021.696514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.
Collapse
Affiliation(s)
- Xinfu Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
150
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|