101
|
Malik D, Kaul D. Human cellular mitochondrial remodelling is governed by miR-2909 RNomics. PLoS One 2018; 13:e0203614. [PMID: 30252847 PMCID: PMC6155498 DOI: 10.1371/journal.pone.0203614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND There exists a general recognition of the fact that mitochondrial remodelling as a result of aerobic glycolysis ensures human somatic cells to revert to a more primitive-form exhibiting stem-like phenotype. The present study is an attempt to demonstrate that miR-2909 RNomics within human peripheral blood mononuclear cells (PBMCs) has the inherent capacity to re-program these cells to exhibit mitochondrial remodelling paralleled by aerobic glycolysis together with intracellular lipid inclusions. Such re-programmed PBMCs also expressed genes having ability to sustain their de-differentiation state and survival. MATERIAL AND METHODS Human PBMCs were programed to ectopically express miR-2909. Expression levels of genes including glucose transporter-1 (Glut-1), hexokinase (HK), hypoxia inducia factor-1 (HIF-1α), c-Myc, p53,mechanistic target of rapamycin complex (mTORC1), polycombcomplex protein (Bmi-1), Notch,Nanog,Tie-2, Oct-4,CD59, p53, CD34, B-cell lymphoma-2 (Bcl2),sterol regulatory element-binding protein2 (SREBP2), peroxisome proliferator-activated receptor gamma (PPARγ) nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) within miR-2909 expression vector transfected human PBMCs as well as PBMCs transfected with control vector containing scrambled sequence after 48h post-transfection using RT-qPCR and cellular ultrastructural features induced by miR-2909 ectopic expression were observed using transmission electron microscopy and morphometric analysis of an electron micrograph. RESULTS Ectopic expression of miR-2909 within human PBMCs resulted in their reprogramming into stem-like phenotype indicated by mitochondrial globular shaped coupled with cristae-poor morphology. Nuclear to cytoplasmic ratio (N/C), quantification of ATP levels, GSSG/GSH ratio, mitochondrial cytochrome c oxidase activity, secreted lactate concentrations, activity of antioxidant enzymes, levels of esterified cholesterol and triglycerides and flow-cytometric detection of apoptosis confirmed the compromised nature of mitochondrial function induced by ectopic miR-2909 expression in human PBMCs. CONCLUSION Based upon these results we propose that AATF gene-encoded miR-2909 may act as an epigenetic switch for cellular aerobic-glycolysis to ensure de-differentiation.
Collapse
Affiliation(s)
- Deepti Malik
- Molecular Biology Unit, Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh (India)
| | - Deepak Kaul
- Molecular Biology Unit, Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh (India)
| |
Collapse
|
102
|
Guzmán L, Balada C, Flores G, Álvarez R, Knox M, Vinet R, Martínez JL. t-Resveratrol Protects against Acute High Glucose Damage in Endothelial Cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:235-240. [PMID: 30039194 DOI: 10.1007/s11130-018-0683-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Postprandial hyperglycemia in diabetic and nondiabetic subjects is associated with endothelial dysfunction. Evidence shows that high glucose generates oxidative stress and a pro-inflammatory state promoting the development of cardiovascular diseases. trans-Resveratrol (t-RV) has been shown to reduce cardiovascular risk. To determine whether t-RV acts as a protector against acute high glucose (AHG)-induced damage, two in vitro models, rat aortic rings (RAR) and human umbilical vein endothelial cells (HUVEC) were used. RAR pretreated with AHG (25 mM D-glucose) for 3 h dramatically decreased the endothelium-dependent relaxation (EDR) induced by acetylcholine in phenylephrine (PE)-precontracted vessels. However, coincubation with t-RV significantly mitigated the damage induced by AHG on EDR. Pretreatment with AHG did not affect the vasodilation induced by sodium nitroprusside. HUVEC treated with t-RV decreased cytotoxicity and reduced radical oxygen species production induced by AHG. Taken together, these results suggest that t-RV can mitigate the AHG-induced EDR damage through a mechanism involving ROS scavenging and probably an increase in the bioavailability of NO.
Collapse
Affiliation(s)
- Leda Guzmán
- Laboratory of Biological Chemistry, Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Cristóbal Balada
- Laboratory of Biological Chemistry, Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Guillermo Flores
- Laboratory of Pharmacology, Faculty of Pharmacy, Universidad de Valparaíso, 2360102, Valparaíso, Chile
| | - Rocío Álvarez
- Laboratory of Pharmacology, Faculty of Pharmacy, Universidad de Valparaíso, 2360102, Valparaíso, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), 2360134, Valparaíso, Chile
| | - Marcela Knox
- Laboratory of Pharmacology, Faculty of Pharmacy, Universidad de Valparaíso, 2360102, Valparaíso, Chile
| | - Raúl Vinet
- Laboratory of Pharmacology, Faculty of Pharmacy, Universidad de Valparaíso, 2360102, Valparaíso, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), 2360134, Valparaíso, Chile
- Regional Center for the Study in Foods and Health (CREAS), 2362696, Valparaíso, Chile
| | - José L Martínez
- Vice Presidency of Research, Development and Innovation, Universidad de Santiago de Chile, Estación Central, 9160000, Santiago, Chile.
| |
Collapse
|
103
|
Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D. Combretastatin-Inspired Heterocycles as Antitubulin Anticancer Agents. ACS OMEGA 2018; 3:9754-9769. [PMID: 31459105 PMCID: PMC6644768 DOI: 10.1021/acsomega.8b00996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Combretastatin (CA-4) and its analogues are undergoing several clinical trials for treating different types of tumors. In this work, the antiproliferative activity of a series of 2-aminoimidazole-carbonyl analogs of clinically relevant combretastatins A-4 (CA-4) and A-1 was evaluated using a cell-based assay. Among the compounds tested, C-13 and C-21 displayed strong antiproliferative activities against HeLa cells. C-13 inhibited the proliferation of lung carcinoma (A549) cells more potently than combretastatin A-4. C-13 also retarded the migration of A549 cells. Interestingly, C-13 displayed much stronger antiproliferative effects against breast carcinoma and skin melanoma cells compared to noncancerous breast epithelial and skin fibroblast cells. C-13 strongly disassembled cellular microtubules, perturbed the localization of EB1 protein, inhibited mitosis in cultured cells, and bound to tubulin at the colchicine site and inhibited the polymerization of reconstituted microtubules in vitro. C-13 treatment increased the level of reactive oxygen species and induced apoptosis via poly(ADP-ribose) polymerase-cleavage in HeLa cells. The results revealed the importance of the 2-aminoimidazole-carbonyl motif as a double bond replacement in combretastatin and indicated a pharmacodynamically interesting pattern of H-bond acceptors/donors and requisite syn-templated aryls.
Collapse
Affiliation(s)
- Neha Hura
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Avishkar V. Sawant
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Anuradha Kumari
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Sankar K. Guchhait
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
104
|
Deshpande R, Kanitkar M, Kadam S, Dixit K, Chhabra H, Bellare J, Datar S, Kale VP. Matrix-entrapped cellular secretome rescues diabetes-induced EPC dysfunction and accelerates wound healing in diabetic mice. PLoS One 2018; 13:e0202510. [PMID: 30153276 PMCID: PMC6112628 DOI: 10.1371/journal.pone.0202510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Cellular secretory products have infinite potential, which is only recently explored for research and therapeutic applications. The present study elaborated on the formation of a unique matrix-entrapped cellular secretome (MCS), a hydrogel-like secretome produced by bone marrow-derived mononuclear cells when cultured on a three-dimensional electrospun nanofiber matrix under specific conditions. These culture conditions support the growth of a mixed population predominantly comprising of endothelial precursor cells (EPCs), along with mesenchymal stromal cells and pericytes. Interestingly, such secretome is not formed in a pure culture of EPCs on the similarly formulated matrix, suggesting that a heterotypic cell-cell interaction is essential for the formation of MCS. In addition, the specific composition of the matrix was found to be a critical necessity for the formation of MCS. Furthermore, the application of the MCS as a substrate promotes the growth of EPCs in culture. It also rescues the diabetes-induced EPC dysfunction as assessed based on the parameters, such as viability, proliferation, colony formation, cellular adhesion, chemotactic migration, and tubule formation. MCS augments the levels of eNOS-specific mRNA (Nos3) and also promotes the restoration of the SDF1/CXCR4 axis in diabetic EPCs. Notably, a topical application of MCS on diabetic wounds leads to an accelerated wound closure. Thus, the current data showed that MCS forms an excellent cell-free biomaterial in the treatment of diabetic wounds and non-healing ulcers.
Collapse
Affiliation(s)
- Rucha Deshpande
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
- Prof. Ramkrishna More Arts, Commerce and Science College, Akurdi, Pune, Maharashtra India
| | - Meghana Kanitkar
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Sheetal Kadam
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Kadambari Dixit
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Hemlata Chhabra
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| | - Savita Datar
- Prof. Ramkrishna More Arts, Commerce and Science College, Akurdi, Pune, Maharashtra India
- Department of Zoology, S.P.College, Pune, Maharashtra India
| | - Vaijayanti P. Kale
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| |
Collapse
|
105
|
Ghosh C, Gupta N, Mallick A, Santra MK, Basu S. Self-Assembled Glycosylated Chalcone–Boronic Acid Nanodrug Exhibits Anticancer Activity through Mitochondrial Impairment. ACS APPLIED BIO MATERIALS 2018; 1:347-355. [DOI: 10.1021/acsabm.8b00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
| | - Neha Gupta
- Cancer and Epigenetic Lab, National Center for Cell Science (NCCS) Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
| | - Manas Kumar Santra
- Cancer and Epigenetic Lab, National Center for Cell Science (NCCS) Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
- Current address: Discipline of Chemistry, Indian Institute of Technology (IIT)-Gandhinagar, Palaj, Gandhinagar, Gujarat, India, 382355
| |
Collapse
|
106
|
Kim YY, Um JH, Yun J. A Quantitative Measurement of Reactive Oxygen Species and Senescence-associated Secretory Phenotype in Normal Human Fibroblasts During Oncogene-induced Senescence. J Vis Exp 2018. [PMID: 30148482 DOI: 10.3791/57890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cellular senescence has been considered a state of irreversible growth arrest upon exhaustion of proliferative capacity or exposure to various stresses. Recent studies have extended the role of cellular senescence to various physiological processes, including development, wound healing, immune surveillance, and age-related tissue dysfunction. Although cell cycle arrest is a critical hallmark of cellular senescence, an increased intracellular reactive oxygen species (ROS) production has also been demonstrated to play an important role in the induction of cellular senescence. In addition, recent studies revealed that senescent cells exhibit potent paracrine activities on neighboring cells and tissues through a senescence-associated secretory phenotype (SASP). The sharp increase in interest regarding therapeutic strategies against cellular senescence emphasizes the need for a precise understanding of senescence mechanisms, including intracellular ROS and the SASP. Here, we describe protocols for quantitatively assessing intracellular ROS levels during H-Ras-induced cellular senescence using ROS-sensitive fluorescent dye and flow cytometry. In addition, we introduce sensitive techniques for the analysis of the induction of mRNA expression and secretion of SASP factors. These protocols can be applied to various cellular senescence models.
Collapse
Affiliation(s)
- Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University;
| |
Collapse
|
107
|
Shaheen F, Aziz MH, Fatima M, Khan MA, Ahmed F, Ahmad R, Ahmad MA, Alkhuraiji TS, Akram MW, Raza R, Ali SM. In Vitro Cytotoxicity and Morphological Assessments of GO-ZnO against the MCF-7 Cells: Determination of Singlet Oxygen by Chemical Trapping. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E539. [PMID: 30021935 PMCID: PMC6070898 DOI: 10.3390/nano8070539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 11/23/2022]
Abstract
Graphene-based materials have attracted considerable interest owing to their distinctive characteristics, such as their biocompatibility in terms of both their physical and intrinsic chemical properties. The use of nanomaterials with graphene as a biocompatible agent has increased due to an uptick in dedication from biomedical investigators. Here, GO-ZnO was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-Vis) spectroscopy, energy dispersive X-ray analysis (EDAX), and Raman spectroscopy for structural, morphological, and elemental analysis. The toxic extent of GO-ZnO was noted by a methyl-thiazole-tetrazolium (MTT), while cellular morphology was observed towards the MCF-7 cells using an inverted microscope at magnification 40×. The cytotoxic effect of GO-ZnO investigated the cell viability reduction in a dose-dependent manner, as well as prompted the cell demise/destruction in an apoptotic way. Moreover, statistical analysis was performed on the experimental outcomes, with p-values < 0.05 kept as significant to elucidate the results. The generation of reactive oxygen species (ROS) demonstrated the potential applicability of graphene in tumor treatment. These key results attest to the efficacy of GO-ZnO nanocomposites as a substantial candidate for breast malignancy treatment.
Collapse
Affiliation(s)
- Fozia Shaheen
- Department of Physics, Government College (GC) University, Lahore 54000, Pakistan.
- National Synchrotron Radiation Laboratory, University of Science and Technology China (USTC), Hefei 230026, China.
| | - Muhammad Hammad Aziz
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
- School of Life Sciences, University of Science and Technology China (USTC), Hefei 230027, China.
| | - Mahvish Fatima
- Department of Physics, University of Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Ajmal Khan
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Magnetic Materials and Application Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China.
| | - Faisal Ahmed
- Department of Chemical Engineering, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Riaz Ahmad
- The Centre for Advanced Studies in Physics (CASP), Government College (GC) University, Church Road, Lahore 54000, Pakistan.
| | - Muhammad Ashfaq Ahmad
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Turki S Alkhuraiji
- King Abdulaziz City for Science and Technology-KACST, Nuclear Science Research Institute, P.O. BOX 6086, 11442 Riyadh, Saudi Arabia.
| | - Muhammad Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Rizwan Raza
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Syed Mansoor Ali
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
108
|
MicroRNA-133a impairs perfusion recovery after hindlimb ischemia in diabetic mice. Biosci Rep 2018; 38:BSR20180346. [PMID: 29789398 PMCID: PMC6028757 DOI: 10.1042/bsr20180346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
Objective: Peripheral arterial disease (PAD) patients with diabetes mellitus suffer from impaired neovascularization after ischemia which results in poorer outcomes. MicroRNA (miR)-133a is excessively expressed in endothelial cells under diabetic conditions. Here, we test whether diabetes-induced miR-133a up-regulation is involved in the impaired capability of neovascularization in experimental PAD models. Methods and results: MiR-133a level was measured by quantitative RT-PCR and showed a higher expression level in the ischemic muscle from diabetic mice when compared with nondiabetic mice. Knockdown of miR-133a using antagomir improved perfusion recovery and angiogenesis in experimental PAD model with diabetes day 21 after HLI. On the other hand, overexpression of miR-133a impaired perfusion recovery. Ischemic muscle was harvested day 7 after experimental PAD for biochemical test, miR-133a antagonism resulted in reduced malondialdehyde, and it increased GTP cyclohydrolase 1 (GCH1), and cyclic guanine monophosphate (cGMP) levels. In cultured endothelial cells, miR-133a antagonism resulted in reduced reactive oxygen species level, and it increased tube formation, nitric oxide (NO), and cGMP level. Moreover, miR-133a antagonism-induced angiogenesis was abolished by GCH1 inhibitor. In contrary, miR-133a overexpression impairs angiogenesis and it reduces GCH1, NO, and cGMP levels in nondiabetic models. Conclusion: Diabetes mellitus-induced miR-133a up-regulation impairs angiogenesis in PAD by reducing NO synthesis in endothelial cells. MiR-133a antagonism improves postischemic angiogenesis.
Collapse
|
109
|
Liu Z, Qiao J, Nagy T, Xiong MP. ROS-triggered degradable iron-chelating nanogels: Safely improving iron elimination in vivo. J Control Release 2018; 283:84-93. [PMID: 29792889 DOI: 10.1016/j.jconrel.2018.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/08/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Iron-mediated generation of highly toxic Reactive Oxygen Species (ROS) plays a major role in the process leading to iron overload-related diseases. The long-term subcutaneous administration of Deferoxamine (DFO) is currently clinically-approved to improve patient symptoms and survival. However, non-specific toxicity and short circulation times of the drug in humans often leads to poor patient compliance. Herein, thioketal-based ROS-responsive polymeric nanogels containing DFO moieties (rNG-DFO) were designed to chelate iron and to degrade under oxidative stimuli into fragments <10 nm to enhance excretion of iron-bound chelates. Serum ferritin levels and iron concentrations in major organs of IO mice decreased following treatment with rNG-DFO, and fecal elimination of iron-bound chelates increased compared to free DFO. Furthermore, rNG-DFO decreased iron mediated oxidative stress levels in vitro and reduced iron-mediated inflammation in the liver of IO mice. The study confirms that ROS-responsive nanogels may serve as a promising alternative to DFO for safer and more efficient iron chelation therapy.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Jing Qiao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7388, USA
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA.
| |
Collapse
|
110
|
White MC, Schroeder RD, Zhu K, Xiong K, McConkey DJ. HRI-mediated translational repression reduces proteotoxicity and sensitivity to bortezomib in human pancreatic cancer cells. Oncogene 2018; 37:4413-4427. [PMID: 29720726 PMCID: PMC6138554 DOI: 10.1038/s41388-018-0227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
Human cancer cells display extensive heterogeneity in their sensitivities to the proteasome inhibitor bortezomib (Velcade). The molecular mechanisms underlying this heterogeneity remain unclear, and strategies to overcome resistance are limited. Here, we discover that inherent differences in eIF2α phosphorylation among a panel of ten human pancreatic cancer cell lines significantly impacts bortezomib sensitivity, and implicate the HRI (heme-regulated inhibitor) eIF2α kinase as a novel therapeutic target. Within our panel, we identified a subset of cell lines with defective induction of eIF2α phosphorylation, conferring a high degree of sensitivity to bortezomib. These bortezomib-sensitive cells exhibited impaired translation attenuation followed by toxic accumulation of protein aggregates and reactive oxygen species (ROS), whereas the bortezomib-resistant cell lines displayed increased phosphorylation of eIF2α, decreased translation, few protein aggregates, and minimal ROS production. Importantly, we identified HRI as the primary bortezomib-activated eIF2α kinase, and demonstrated that HRI knockdown promoted cell death in the bortezomib-resistant cells. Overall, our data implicate inducible HRI-mediated phosphorylation of eIF2α as a central cytoprotective mechanism following exposure to bortezomib and provide proof-of-concept for the development of HRI inhibitors to overcome proteasome inhibitor resistance.
Collapse
Affiliation(s)
- Matthew C White
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Program in Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Rebecca D Schroeder
- The Program in Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Keyi Zhu
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine Xiong
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David J McConkey
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The Program in Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, 21287, USA.
| |
Collapse
|
111
|
Patil S, Kuman MM, Palvai S, Sengupta P, Basu S. Impairing Powerhouse in Colon Cancer Cells by Hydrazide-Hydrazone-Based Small Molecule. ACS OMEGA 2018; 3:1470-1481. [PMID: 30023806 PMCID: PMC6044916 DOI: 10.1021/acsomega.7b01512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 05/31/2023]
Abstract
Mitochondrion has emerged as one of the unconventional targets in next-generation cancer therapy. Hence, small molecules targeting mitochondria in cancer cells have immense potential in the next-generation anticancer therapeutics. In this report, we have synthesized a library of hydrazide-hydrazone-based small molecules and identified a novel compound that induces mitochondrial outer membrane permeabilization by inhibiting antiapoptotic B-cell CLL/lymphoma 2 (Bcl-2) family proteins followed by sequestration of proapoptotic cytochrome c. The new small molecule triggered programmed cell death (early and late apoptosis) through cell cycle arrest in the G2/M phase and caspase-9/3 cleavage in HCT-116 colon cancer cells, confirmed by an array of fluorescence confocal microscopy, cell sorting, and immunoblotting analysis. Furthermore, cell viability studies have verified that the small molecule rendered toxicity to a panel of colon cancer cells (HCT-116, DLD-1, and SW-620), keeping healthy L929 fibroblast cells unharmed. The novel small molecule has the potential to form a new understudied class of mitochondria targeting anticancer agent.
Collapse
Affiliation(s)
- Sohan Patil
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Meenu Mahesh Kuman
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sandeep Palvai
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Poulomi Sengupta
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sudipta Basu
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
112
|
Ai X, Hu M, Wang Z, Lyu L, Zhang W, Li J, Yang H, Lin J, Xing B. Enhanced Cellular Ablation by Attenuating Hypoxia Status and Reprogramming Tumor-Associated Macrophages via NIR Light-Responsive Upconversion Nanocrystals. Bioconjug Chem 2018; 29:928-938. [PMID: 29466856 DOI: 10.1021/acs.bioconjchem.8b00068] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Near-infrared (NIR) light-mediated photodynamic therapy (PDT), especially based on lanthanide-doped upconversion nanocrystals (UCNs), have been extensively investigated as a promising strategy for effective cellular ablation owing to their unique optical properties to convert NIR light excitation into multiple short-wavelength emissions. Despite the deep tissue penetration of NIR light in living systems, the therapeutic efficiency is greatly restricted by insufficient oxygen supply in hypoxic tumor microenvironment. Moreover, the coexistent tumor-associated macrophages (TAMs) play critical roles in tumor recurrence during the post-PDT period. Herein, we developed a unique photosensitizer-loaded UCNs nanoconjugate (PUN) by integrating manganese dioxide (MnO2) nanosheets and hyaluronic acid (HA) biopolymer to improve NIR light-mediated PDT efficacy through attenuating hypoxia status and synergistically reprogramming TAMs populations. After the reaction with overproduced H2O2 in acidic tumor microenvironment, the MnO2 nanosheets were degraded for the production of massive oxygen to greatly enhance the oxygen-dependent PDT efficiency upon 808 nm NIR light irradiation. More importantly, the bioinspired polymer HA could effectively reprogram the polarization of pro-tumor M2-type TAMs to anti-tumor M1-type macrophages to prevent tumor relapse after PDT treatment. Such promising results provided the great opportunities to achieve enhanced cellular ablation upon NIR light-mediated PDT treatment by attenuating hypoxic tumor microenvironment, and thus facilitated the rational design of new generations of nanoplatforms toward immunotherapy to inhibit tumor recurrence during post-PDT period.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore
| | - Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Juan Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huanghao Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371 , Singapore.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
113
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
114
|
Simanjuntak Y, Liang JJ, Chen SY, Li JK, Lee YL, Wu HC, Lin YL. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission. PLoS Pathog 2018; 14:e1006854. [PMID: 29447264 PMCID: PMC5814061 DOI: 10.1371/journal.ppat.1006854] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022] Open
Abstract
Despite the low case fatality, Zika virus (ZIKV) infection has been associated with microcephaly in infants and Guillain-Barré syndrome. Antiviral and vaccine developments against ZIKV are still ongoing; therefore, in the meantime, preventing the disease transmission is critical. Primarily transmitted by Aedes species mosquitoes, ZIKV also can be sexually transmitted. We used AG129 mice lacking interferon-α/β and -γ receptors to study the testicular pathogenesis and sexual transmission of ZIKV. Infection of ZIKV progressively damaged mouse testes, increased testicular oxidative stress as indicated by the levels of reactive oxygen species, nitric oxide, glutathione peroxidase 4, spermatogenesis-associated-18 homolog in sperm and pro-inflammatory cytokines including IL-1β, IL-6, and G-CSF. We then evaluated the potential role of the antioxidant ebselen (EBS) in alleviating the testicular pathology with ZIKV infection. EBS treatment significantly reduced ZIKV-induced testicular oxidative stress, leucocyte infiltration and production of pro-inflammatory response. Furthermore, it improved testicular pathology and prevented the sexual transmission of ZIKV in a male-to-female mouse sperm transfer model. EBS is currently in clinical trials for various diseases. ZIKV infection could be on the list for potential use of EBS, for alleviating the testicular pathogenesis with ZIKV infection and preventing its sexual transmission.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/therapeutic use
- Azoles/therapeutic use
- Cell Nucleus Shape/drug effects
- Cell Nucleus Size/drug effects
- Cell Shape/drug effects
- Cell Size/drug effects
- Cytokines/metabolism
- Isoindoles
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organoselenium Compounds/therapeutic use
- Oxidative Stress/drug effects
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Sexually Transmitted Diseases, Viral/drug therapy
- Sexually Transmitted Diseases, Viral/pathology
- Sexually Transmitted Diseases, Viral/transmission
- Sexually Transmitted Diseases, Viral/virology
- Spermatogenesis/drug effects
- Spermatozoa/immunology
- Spermatozoa/metabolism
- Spermatozoa/pathology
- Spermatozoa/virology
- Testis/drug effects
- Testis/immunology
- Testis/pathology
- Testis/virology
- Zika Virus/drug effects
- Zika Virus/immunology
- Zika Virus/pathogenicity
- Zika Virus Infection/drug therapy
- Zika Virus Infection/pathology
- Zika Virus Infection/transmission
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Si-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Kun Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
115
|
Holo-lipocalin-2-derived siderophores increase mitochondrial ROS and impair oxidative phosphorylation in rat cardiomyocytes. Proc Natl Acad Sci U S A 2018; 115:1576-1581. [PMID: 29378951 DOI: 10.1073/pnas.1720570115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.
Collapse
|
116
|
Tsakanova G, Arakelova E, Ayvazyan V, Ayvazyan A, Tatikyan S, Aroutiounian R, Dalyan Y, Haroutiunian S, Tsakanov V, Arakelyan A. Two-photon microscopy imaging of oxidative stress in human living erythrocytes. BIOMEDICAL OPTICS EXPRESS 2017; 8:5834-5846. [PMID: 29296508 PMCID: PMC5745123 DOI: 10.1364/boe.8.005834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/05/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Red blood cells (RBCs) are known to be the most suitable cells to study oxidative stress, which is implicated in the etiopathology of many human diseases. The goal of the current study was to develop a new effective approach for assessing oxidative stress in human living RBCs using two-photon microscopy. To mimic oxidative stress in human living RBCs, an in vitro model was generated followed by two-photon microscopy imaging. The results revealed that oxidative stress is clearly visible on the two-photon microscopy images of RBCs under oxidative stress compared to no fluorescence in controls (P<0.0001). This novel approach for oxidative stress investigation in human living RBCs could efficiently be applied in clinical research and antioxidant compounds testing.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Elina Arakelova
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
| | - Violetta Ayvazyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
| | - Anna Ayvazyan
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Stepan Tatikyan
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Rouben Aroutiounian
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
- Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia
| | - Yeva Dalyan
- Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia
| | | | - Vasili Tsakanov
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Arsen Arakelyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
| |
Collapse
|
117
|
Connexin43 and AMPK Have Essential Role in Resistance to Oxidative Stress Induced Necrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3962173. [PMID: 29279848 PMCID: PMC5723946 DOI: 10.1155/2017/3962173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) induced oxidative stress leads to cell damage and neurological disorders in astrocytes. The gap junction protein connexin43 (Cx43) could form intercellular channels in astrocytes and the expression of Cx43 plays an important role in protecting the cells from damage. In the present study, we investigated the contribution of Cx43 to astrocytic necrosis induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which AMPK was involved in this process. Fluorescence microscopy, flow cytometry, and western blot were used quantitatively and qualitatively to determine the cell apoptosis, necrosis, and protein expression. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased H2O2-induced astrocytic necrosis, supporting a cell protective effect of functional Cx43 channels. Our data suggest that AMPK is important for Cx43-mediated ROS resistance. Inhibition of AMPK activation results in reduction of necrosis and ROS production. Taken together, our findings suggest that the role of Cx43 in response to H2O2 stress is dependent on the activation of AMPK signaling pathways and regulates ROS production and cell necrosis.
Collapse
|
118
|
Shaheen F, Hammad Aziz M, Fakhar-E-Alam M, Atif M, Fatima M, Ahmad R, Hanif A, Anwar S, Zafar F, Abbas G, Ali SM, Ahmed M. An In Vitro Study of the Photodynamic Effectiveness of GO-Ag Nanocomposites against Human Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E401. [PMID: 29160836 PMCID: PMC5707618 DOI: 10.3390/nano7110401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Graphene-based materials have garnered significant attention because of their versatile bioapplications and extraordinary properties. Graphene oxide (GO) is an extremely oxidized form of graphene accompanied by the functional groups of oxygen on its surface. GO is an outstanding platform on which to pacify silver nanoparticles (Ag NPs), which gives rise to the graphene oxide-silver nanoparticle (GO-Ag) nanocomposite. In this experimental study, the toxicity of graphene oxide-silver (GO-Ag) nanocomposites was assessed in an in vitro human breast cancer model to optimize the parameters of photodynamic therapy. GO-Ag was prepared using the hydrothermal method, and characterization was done by X-ray diffraction, field-emission scanning electron microscope (FE-SEM), transmission Electron Microscopy (TEM), energy dispersive X-rays Analysis (EDAX), atomic force microscopy and ultraviolet-visible spectroscopy. The experiments were done both with laser exposure, as well as in darkness, to examine the phototoxicity and cytotoxicity of the nanocomposites. The cytotoxicity of the GO-Ag was confirmed via a methyl-thiazole-tetrazolium (MTT) assay and intracellular reactive oxygen species production analysis. The phototoxic effect explored the dose-dependent decrease in the cell viability, as well as provoked cell death via apoptosis. An enormously significant escalation of ¹O₂ in the samples when exposed to daylight was perceived. Statistical analysis was performed on the experimental results to confirm the worth and clarity of the results, with p-values < 0.05 selected as significant. These outcomes suggest that GO-Ag nanocomposites could serve as potential candidates for targeted breast cancer therapy.
Collapse
Affiliation(s)
- Fozia Shaheen
- Department of Physics, Government College (GC) University, Lahore 54000, Pakistan.
| | - Muhammad Hammad Aziz
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Muhammad Fakhar-E-Alam
- Department of Physics, Government College (GC) University, Faisalabad 38000, Pakistan.
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Muhammad Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- National Institute of Laser and Optronics, Nilore 45650, Islamabad.
| | - Mahvish Fatima
- Department of Physics, University of Lahore, Lahore 54000, Pakistan.
| | - Riaz Ahmad
- The Centre for Advanced Studies in Physics (CASP), Government College (GC) University, Church Road, Lahore 54000, Pakistan.
| | - Atif Hanif
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Saqib Anwar
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Fatima Zafar
- Department of Chemistry, GC University, Lahore 54000, Pakistan.
| | - Ghazanfar Abbas
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Syed Mansoor Ali
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mukhtar Ahmed
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| |
Collapse
|
119
|
Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells. Oncotarget 2017; 8:105536-105552. [PMID: 29285270 PMCID: PMC5739657 DOI: 10.18632/oncotarget.22317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular recycling and degradation process for regulating tumor progression, survival and drug resistance. Nickel compounds have been identified as human carcinogens. However, the role of nickel-induced autophagy in lung carcinogenesis has not yet been fully elucidated. In this study, we determined that hexokinase 2 (HK2), which phosphorylates glucose and regulates autophagy, is the key mediator in nickel-induced autophagy in lung bronchial epithelial cells. We attempted to investigate the effects of the antidiabetic drug metformin on HK2 expression and lung cancer chemoprevention. Our results showed that metformin decreases nickel-induced autophagy and activation of apoptosis through inhibition of HK2 gene, protein and activity. Furthermore, we demonstrated that lipocalin 2 (LCN2), which is released by neutrophils at sites of infection and inflammation is involved in HK2-driven autophagy pathway. Knockdown of endogenous HK2 and LCN2 by shRNA reduced nickel-elicited autophagy and apoptosis, illustrating that metabolic alteration and inflammatory action are important in nickel-elicited carcinogenesis. We also determined the association between nickel-induced autophagy and apoptosis. Inhibition of nickel-induced autophagy abolished apoptotic cell death in chloroquine-treated, shLC3 Beas-2B cells and Atg5−/− MFFs. From TGCA database and immunohistochemistry analysis, HK2 and LCN2 expression increased in lung squamous cell carcinoma and their related adjacent normal tissues. Taken together, our results demonstrated that metformin alleviates NiCl2-induced autophagy and apoptosis via HK2-driven LCN2 activation in human bronchial epithelial cells. This novel mechanism provides a strategy for targeting nickel-elicited lung cancer progression, as well as for preventing HK2 cumulative damage triggered by environmental carcinogens.
Collapse
|
120
|
Vishwanatha A, D'Souza CJM, Schweingruber ME. Genes Controlling 2-deoxyglucose Induced Lysis and Formation of Reactive Oxygen Species in Schizosaccharomyces pombe. Pol J Microbiol 2017; 66:393-396. [PMID: 29319508 DOI: 10.5604/01.3001.0010.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schizosaccharomyces pombe cells of strains each carrying a deletion of one of the genes snf5, ypa1, pho7 and pas1 and of a strain overexpressing gene odr1, have been previously shown to grow in presence of the toxic glucose analogue 2-deoxyglucose (2-DG). Here we report that these genes control 2-DG induced lysis and are, with the exception of odr1, also involved in control of formation of reactive oxygen species (ROS) upon exposure of cells to H2O2. Lysis of deletion strains, but not of strain overexpressing odr1, is dependent on glucose concentration of the medium whereas ROS formation is glucose independent.
Collapse
Affiliation(s)
- Akshay Vishwanatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Cletus J M D'Souza
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Martin E Schweingruber
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
121
|
Rwei AY, Paris JL, Wang B, Wang W, Axon CD, Vallet-Regí M, Langer R, Kohane DS. Ultrasound-triggered local anaesthesia. Nat Biomed Eng 2017; 1:644-653. [PMID: 29152410 PMCID: PMC5687284 DOI: 10.1038/s41551-017-0117-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
On-demand relief of local pain would allow patients to control the timing, intensity and duration of nerve block in a safe and non-invasive manner. Ultrasound would be a suitable trigger for such a system, as it is in common clinical use and can penetrate deeply into the body. Here, we demonstrate that ultrasound-triggered delivery of an anaesthetic from liposomes allows the timing, intensity and duration of nerve block to be controlled by ultrasound parameters. On insonation, the encapsulated sonosensitizer protoporphyrin IX produces reactive oxygen species that react with the liposomal membrane, leading to the release of the potent local anaesthetic tetrodotoxin. We also show repeatable ultrasound-triggered nerve blocks in vivo, with nerve-block duration depending on the extent and intensity of insonation. We did not detect any systemic toxicity, and tissue reaction was benign in all groups. On-demand, personalized local anaesthesia could be beneficial for the managing of relatively localized pain states, and potentially minimize opioid use.
Collapse
Affiliation(s)
- Alina Y Rwei
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Juan L Paris
- Dpto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Bruce Wang
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Weiping Wang
- Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher D Axon
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Robert Langer
- David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel S Kohane
- Department of Anaesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Laboratory for Biomaterials and Drug Delivery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
122
|
Choi J, Moquin A, Bomal E, Na L, Maysinger D, Kakkar A. Telodendrimers for Physical Encapsulation and Covalent Linking of Individual or Combined Therapeutics. Mol Pharm 2017; 14:2607-2615. [PMID: 28520445 DOI: 10.1021/acs.molpharmaceut.7b00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New therapeutics for glioblastoma multiforme and our ability to deliver them using efficient nanocarriers constitute topical areas of research. We report a comparative study of temozolomide and quercetin in the treatment of glioblastoma (GBM) in three-dimensions, and their incorporation into micelles obtained from synthetically articulated architectural copolymers, and a commercially available linear polymer poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A versatile synthetic methodology to telodendrimers, which can be easily adapted to the needs of other therapeutic interventions, is presented. These dendritic block copolymers self-assemble into micelles and offer a platform for single or combination drug therapy. Telodendrimer micelles loaded with quercetin did not exhibit superior cell killing effect over the free drug, but acetazolamide, an inhibitor carbonic anhydrase IX, significantly reduced GBM cell viability in 3D spheroids. Results from these studies show that high loading of drugs into telodendrimer micelles requires a physical fit between the biologically active agent and telodendrimer nanocarrier, and points toward new possibilities for incorporation of chemotherapeutic and other agents to enhance their effectiveness.
Collapse
Affiliation(s)
- Jason Choi
- Department of Pharmacology and Therapeutics, McGill University , 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Alexandre Moquin
- Department of Pharmacology and Therapeutics, McGill University , 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Enzo Bomal
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8 Canada
| | - Li Na
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8 Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University , 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8 Canada
| |
Collapse
|
123
|
Chen MH, Wang FX, Cao JJ, Tan CP, Ji LN, Mao ZW. Light-Up Mitophagy in Live Cells with Dual-Functional Theranostic Phosphorescent Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13304-13314. [PMID: 28345337 DOI: 10.1021/acsami.7b01735] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phosphorescent Ir(III) complexes are expected to be new multifunctional theranostic platforms that enable the integration of imaging capabilities and anticancer properties. Mitophagy is an important selective autophagic process that degrades dysfunctional mitochondria. Until now, the regulation of mitophagy is still poorly understood. Herein, we present two phosphorescent cyclometalated iridium(III) complexes (Ir1 and Ir2) that can accumulate in mitochondria and induce mitophagy. Because of their intrinsic phosphorescence, they can specially image mitochondria and track mitochondrial morphological alterations. Mechanism studies show that Ir1 and Ir2 induce mitophagy by depolarization of mitochondrial membrane potential, depletion of cellular ATP, perturbation in mitochondrial metabolic status, and induction of oxidative stress. Moreover, no sign of apoptosis is observed in Ir1- and Ir2-treated cells under the same conditions that an obvious mitophagic response is initiated. We demonstrate that Ir1 is a promising theranostic agent that can induce mitophagy and visualize changes in mitochondrial morphology simultaneously.
Collapse
Affiliation(s)
- Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
124
|
Thapa RK, Nguyen HT, Jeong JH, Kim JR, Choi HG, Yong CS, Kim JO. Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep 2017; 7:43299. [PMID: 28393891 PMCID: PMC5385881 DOI: 10.1038/srep43299] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence, a state of irreversible growth arrest and altered cell function, causes aging-related diseases. Hence, treatment modalities that could target aging cells would provide a robust therapeutic avenue. Herein, for the first time, we utilized CD9 receptors (overexpressed in senescent cells) for nanoparticle targeting in addition to the inherent β-galactosidase activity. In our study, CD9 monoclonal antibody-conjugated lactose-wrapped calcium carbonate nanoparticles loaded with rapamycin (CD9-Lac/CaCO3/Rapa) were prepared for targeted rapamycin delivery to senescent cells. The nanoparticles exhibited an appropriate particle size (~130 nm) with high drug-loading capacity (~20%). In vitro drug release was enhanced in the presence of β-galactosidase suggesting potential cargo drug delivery to the senescent cells. Furthermore, CD9-Lac/CaCO3/Rapa exhibited high uptake and anti-senescence effects (reduced β-galactosidase and p53/p21/CD9/cyclin D1 expression, reduced population doubling time, enhanced cell proliferation and migration, and prevention of cell cycle arrest) in old human dermal fibroblasts. Importantly, CD9-Lac/CaCO3/Rapa significantly improved the proliferation capability of old cells as suggested by BrdU staining along with significant reductions in senescence-associated secretory phenotypes (IL-6 and IL-1β) (P < 0.05). Altogether, our findings suggest the potential applicability of CD9-Lac/CaCO3/Rapa in targeted treatment of senescence.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, Republic of Korea
| | - Jae Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, 705-717, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, Republic of Korea
| |
Collapse
|
125
|
Gil D, Rodriguez J, Ward B, Vertegel A, Ivanov V, Reukov V. Antioxidant Activity of SOD and Catalase Conjugated with Nanocrystalline Ceria. Bioengineering (Basel) 2017; 4:bioengineering4010018. [PMID: 28952497 PMCID: PMC5590447 DOI: 10.3390/bioengineering4010018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions of nanoparticles with biological matter-both somatically and in nature-draw scientists' attention. Nanoparticulate systems are believed to be our saviors, acting as versatile drug delivery vehicles. However, they can also cause life-threatening bodily damage. One of the most important properties of nanocrystalline cerium dioxide is its antioxidant activity, which decreases the abundance of reactive oxygen species during inflammation. In this paper, we report on synergistic effects of inorganic cerium oxide (IV) nanoparticles conjugated with the antioxidative enzymes superoxide dismutase and catalase on scavenging oxygen and nitrogen radicals.
Collapse
Affiliation(s)
- Dmitry Gil
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Jeannette Rodriguez
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Brendan Ward
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Vladimir Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Vladimir Reukov
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
- Institute for Biological Interfaces of Engineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| |
Collapse
|
126
|
Bording-Jorgensen M, Alipour M, Danesh G, Wine E. Inflammasome Activation by ATP Enhances Citrobacter rodentium Clearance through ROS Generation. Cell Physiol Biochem 2017; 41:193-204. [PMID: 28132060 DOI: 10.1159/000455988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nod-like receptor family, pyrin domain containing 3 (NLRP3) is an important cytosolic sensor of cellular stress and infection. Once activated, NLRP3 forms a multiprotein complex (inflammasome) that triggers the maturation and secretion of interleukin (IL)-1β and IL-18. We aimed to define the consequences of NLRP3 induction, utilizing exogenous adenosine triphosphate (ATP) as an inflammasome activator, to determine if inflammasome activation increases macrophage killing of Citrobacter rodentium and define mechanisms. METHODS Bacterial survival was measured using a gentamicin protection assay. Inflammasome activation or inhibition in mouse J774A.1 macrophages were assessed by measuring IL-1β; cytokines and reactive oxygen species (ROS) were measured by ELISA and DCFDA, respectively. RESULTS Activation of the inflammasome increased bacterial killing by macrophages and its inhibition attenuated this effect with no impact on phagocytosis or cell death. Furthermore, inflammasome activation suppressed pro-inflammatory cytokines during infection, possibly due to more effective bacterial killing. While the infection increased ROS production, this effect was reduced by inflammasome inhibitors, indicating that ROS is inflammasome-dependent. ROS inhibitors increased bacterial survival in the presence of ATP, suggesting that inflammasome-induced bacterial killing is mediated, at least in part, by ROS activity. CONCLUSION Improving inflammasome activity during infection may increase bacterial clearance by macrophages and reduce subsequent microbe-induced inflammation.
Collapse
|
127
|
Ajibola Adeyemo A, Shettar A, Bhat IA, Kondaiah P, Mukherjee PS. Self-Assembly of Discrete Ru II8 Molecular Cages and Their in Vitro Anticancer Activity. Inorg Chem 2016; 56:608-617. [PMID: 27997153 DOI: 10.1021/acs.inorgchem.6b02488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four new octanuclear Ru(II) cages (OC-1-OC-4) were synthesized from dinuclear p-cymene ruthenium(II) acceptors [Ru2(μ-η4-C2O4)(CH3OH)2(η6-p-cymene)2](O3SCF3)2 (A1), [Ru2(μ-η4-C6H2O4)(CH3OH)2(η6-p-cymene)2](O3SCF3)2 (A2), [Ru2(dhnq)(H2O)2(η6-p-cymene)2](O3SCF3)2 (A3), and [Ru2(dhtq)(H2O)2(η6-p-cymene)2](O3SCF3)2 (A4) separately with a tetradentate pyridyl ligand (L1) in methanol using coordination-driven self-assembly [L1= N,N,N',N'-tetra(pyridin-4-yl)benzene-1,4-diamine]. The octanuclear cages are fully characterized by various spectroscopic techniques including single-crystal X-ray diffraction analysis of OC-4. The self-assembled cages show strong in vitro anticancer activity against human lung adenocarcinoma A549 and human cervical cancer HeLa cell lines as observed from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Of all the octanuclear cages, OC-3 exhibits remarkable anticancer activity against both cancer cell lines and is more active than that reported for cisplatin. The excellent anticancer activity of OC-3 and OC-4 highlights the importance of the synergistic effects of the spacer component of the dinuclear p-cymene Ru(II) acceptor clips.
Collapse
Affiliation(s)
- Aderonke Ajibola Adeyemo
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Abhijith Shettar
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Imtiyaz Ahmad Bhat
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry and †Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
128
|
Wang N, Zhen Y, Jin Y, Wang X, Li N, Jiang S, Wang T. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release 2016; 246:12-29. [PMID: 27986552 DOI: 10.1016/j.jconrel.2016.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
To develop effective mucosal vaccines, two types of multifunctional liposomes, the mannosylated lipid A-liposomes (MLLs) with a size of 200nm and the stealth lipid A-liposomes (SLLs) of 50nm, both loaded with a model antigen and NH4HCO3, were fabricated together into microneedles, forming the proSLL/MLL-constituted microneedle array (proSMMA), which upon rehydration dissolved rapidly recovering the initial MLLs and SLLs. Mice vaccinated with proSMMAs by vaginal mucosa patching other than conventional intradermal administration established robust antigen-specific humoral and cellular immunity at both systemic and mucosal levels, especially, in the reproductive and intestinal ducts. Further exploration demonstrated that the MLLs reconstituted from the administered proSMMAs were mostly taken up by vaginal mucosal dendritic cells, whereas the recovered SLLs trafficked directly to draining lymph nodes wherein to be picked up by macrophages. Moreover, the antigens delivered by either liposomes were also cross-presented for MHC-I displaying by APCs thanks to lysosome escape and ROS (reactive oxygen species) stimulation, both of which occurred when lysosomal acidifying the liposome-released NH4HCO3 into CO2 and NH4+/NH3 to rupture lysosomes by gas expansion and to cause ROS production by excessive ammonia induction, resulting in a mixed Th1/Th2 type response which was also promoted by liposomal lipid A via activation of TLR4. In addition, vaginal vaccination of the engineered HSV2 antigen gD-loaded proSMMAs successfully protected mice from the virus challenge. Thus, the proSMMAs are in fact a vaccine adjuvant-dual delivery system capable of eliciting robust humoral and cellular immunity against the invading pathogens, especially, the sexually transmitted ones.
Collapse
Affiliation(s)
- Ning Wang
- School of Biological and Medical Engineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Li
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Shaohong Jiang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
129
|
Raghuraman G, Hsiung J, Zuniga MC, Baughman BD, Hitchner E, Guzman RJ, Zhou W. Eotaxin Augments Calcification in Vascular Smooth Muscle Cells. J Cell Biochem 2016; 118:647-654. [PMID: 27681294 DOI: 10.1002/jcb.25752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Calcification of atherosclerotic plaques in elderly patients represents a potent risk marker of cardiovascular events. Plasma analyses of patients with or without calcified plaques reveal significant differences in chemokines, particularly eotaxin, which escalates with increased calcification. We therefore, hypothesize that eotaxin in circulation augments calcification of vascular smooth muscle cells (VSMCs) possibly via oxidative stress in the vasculature. We observe that eotaxin increases the rate of calcification significantly in VSMCs as evidenced by increased alkaline phosphatase activity, calcium deposition, and osteogenic marker expression. In addition, eotaxin promotes proliferation in VSMCs and triggers oxidative stress in a NADPH oxidase dependent manner. These primary novel observations support our proposition that in the vasculature eotaxin augments mineralization. Our findings suggest that eotaxin may represent a potential therapeutic target for prevention of cardiovascular complications in the elderly. J. Cell. Biochem. 118: 647-654, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Joseph Hsiung
- Department of Vascular Surgery, VAPAHCS, Palo Alto, California
| | - Mary C Zuniga
- Department of Vascular Surgery, VAPAHCS, Palo Alto, California
| | | | | | - Raul J Guzman
- Department of Surgery, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, Massachesetts
| | - Wei Zhou
- Department of Vascular Surgery, VAPAHCS, Palo Alto, California.,Department of Surgery, Stanford University, Stanford, California
| |
Collapse
|
130
|
The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci Rep 2016; 6:36994. [PMID: 27841311 PMCID: PMC5107963 DOI: 10.1038/srep36994] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022] Open
Abstract
Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis.
Collapse
|
131
|
Raghuraman G, Zuniga MC, Yuan H, Zhou W. PKCε mediates resistin-induced NADPH oxidase activation and inflammation leading to smooth muscle cell dysfunction and intimal hyperplasia. Atherosclerosis 2016; 253:29-37. [PMID: 27573736 DOI: 10.1016/j.atherosclerosis.2016.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Resistin has been implicated in cardiovascular disease and poor interventional cardiovascular outcomes. Previous studies by our group demonstrated resistin promoted vascular smooth muscle cell (VSMC) migration through protein kinase C epsilon (PKCε) pathways, while few others showed that resistin induced reactive oxygen species (ROS) generation in various cell types. In this study, we aim to systemically examine the functional role of resistin at the cellular and tissue levels as well as the potential mechanistic relationship between resistin-induced PKCε activation and ROS production. METHODS Plasma collected from patients undergoing carotid interventions was analyzed for resistin level and ROS. VSMCs were treated with resistin in the presence or absence of PKCε and NADPH oxidase (Nox)-specific inhibitors. Intracellular ROS production was analyzed using confocal microscopy and Nox activity with chemiluminescence. In vivo studies were performed in apolipoprotein E knock out (ApoE-/-) mice to determine therapeutic effects of PKCε-specific inhibitor, using the guide-wire injury model. RESULTS We observed significant correlation between plasma resistin and circulating levels of oxidative stress in patients with severe atherosclerotic disease. We also demonstrated that resistin induced ROS production via PKCε-mediated Nox activation. Resistin-induced ROS production was time-dependent, and Nox4 was the primary isoform involved. Inhibition of Nox completely abolished resistin-exaggerated VSMC proliferation, migration and dedifferentiation, as well as pro-inflammatory cytokine release. Upstream modulation of PKCε significantly reduced resistin-mediated cytosolic ROS, Nox activity and VSMC dysfunction. Moreover, PKCε-specific inhibitor mitigated resistin-induced Nox activation and intimal hyperplasia in ApoE-/- mice. CONCLUSIONS Resistin-associated VSMC dysfunction and intimal hyperplasia are related to PKCε-dependent Nox activation and ROS generation. Targeting the PKCε-Nox pathway may represent a novel strategy in managing resistin-associated atherosclerotic complications.
Collapse
Affiliation(s)
| | - Mary C Zuniga
- Department of Vascular Surgery, VAPHCS, Palo Alto, CA, USA
| | - Hai Yuan
- Department of Vascular Surgery, VAPHCS, Palo Alto, CA, USA
| | - Wei Zhou
- Department of Vascular Surgery, VAPHCS, Palo Alto, CA, USA; Department of Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
132
|
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y, Chen G. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 2016; 14:2883-98. [PMID: 27574001 PMCID: PMC5042775 DOI: 10.3892/mmr.2016.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bin Zhao
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanqing Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shouqin Shangguan
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Faming Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenqing Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoli Li
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
133
|
Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy. Sci Rep 2016; 6:28596. [PMID: 27334142 PMCID: PMC4917837 DOI: 10.1038/srep28596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023] Open
Abstract
The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.
Collapse
|
134
|
Influence of plasma-activated compounds on melanogenesis and tyrosinase activity. Sci Rep 2016; 6:21779. [PMID: 26931617 PMCID: PMC4773869 DOI: 10.1038/srep21779] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/01/2016] [Indexed: 11/08/2022] Open
Abstract
Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine.
Collapse
|
135
|
Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer 2016; 114:435-43. [PMID: 26882067 PMCID: PMC4815779 DOI: 10.1038/bjc.2016.12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
Background: Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG. Methods: Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow cytometry and cytotoxicity assays. Fluorescent probes and inhibitors were used to determine the mechanisms of cytotoxicity of cells exposed to the plasma field. Combinational therapy with temozolomide (TMZ) and multi-dose treatments were explored as mechanisms to overcome resistance to NTAP. Results: Non-thermal atmospheric plasma decreased cell viability in a dose (time)-dependent manner. U373MG cells were shown to be resistant to NTAP treatment when compared with HeLa cells, and the levels of intracellular reactive oxygen species (ROS) quantified in U373MG cells were much lower than in HeLa cells following exposure to the plasma field. Reactive oxygen species inhibitor N-acetyl cysteine (NAC) only alleviated the cytotoxic effects in HeLa cells and not in the relatively NTAP-resistant cell line U373MG. Longer exposures to NTAP induced a cell death independent of ROS, JNK and caspases in U373MG. The relative resistance of U373MG cells to NTAP could be overcome when used in combination with low concentrations of the GBM chemotherapy TMZ or exposure to multiple doses. Conclusions: For the very first time, we report that NTAP induces an ROS-, JNK- and caspase-independent mechanism of cell death in the U373MG GBM cell line that can be greatly enhanced when used in combination with low doses of TMZ. Further refinement of the technology may facilitate localised activation of cytotoxicity against GBM when used in combination with new and existing chemotherapeutic regimens.
Collapse
|
136
|
Wang K, Fu XT, Li Y, Hou YJ, Yang MF, Sun JY, Yi SY, Fan CD, Fu XY, Zhai J, Sun BL. Induction of S-Phase Arrest in Human Glioma Cells by Selenocysteine, a Natural Selenium-Containing Agent Via Triggering Reactive Oxygen Species-Mediated DNA Damage and Modulating MAPKs and AKT Pathways. Neurochem Res 2016; 41:1439-47. [PMID: 26846141 DOI: 10.1007/s11064-016-1854-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/11/2023]
Abstract
Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and mechanism of SeC in human glioma cells remain unclear. The present study reveals that SeC time- and dose-dependently inhibited U251 and U87 human glioma cells growth by induction of S-phase cell cycle arrest, followed by the marked decrease of cyclin A. SeC-induced S-phase arrest was achieved by inducing DNA damage through triggering generation of reactive oxygen species (ROS) and superoxide anion, with concomitant increase of TUNEL-positive cells and induction of p21waf1/Cip1 and p53. SeC treatment also caused the activation of p38MAPK, JNK and ERK, and inactivation of AKT. Four inhibitors of MAPKs and AKT pathways further confirmed their roles in SeC-induced S-phase arrest in human glioma cells. Our findings advance the understanding on the molecular mechanisms of SeC in human glioma management.
Collapse
Affiliation(s)
- Kun Wang
- Department of Neurology, Shandong University School of Medicine, Jinan, 250012, Shandong, China
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Xiao-Ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Yuan Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Jing-Yi Sun
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Shu-Ying Yi
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Jing Zhai
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
- Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
137
|
Paul S, Jayan A, Sasikumar CS. Physical, chemical and biological studies of gelatin/chitosan based transdermal films with embedded silver nanoparticles. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60968-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
138
|
Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, Gorgoulis VG, d'Adda di Fagagna F. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 2014. [PMID: 24583638 DOI: 10.1038/cdd.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.
Collapse
Affiliation(s)
- M Ogrunc
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - R Di Micco
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - M Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece
| | - L Bombardelli
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - M Mione
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - M Fumagalli
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - V G Gorgoulis
- 1] Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece [2] Basic Science II Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - F d'Adda di Fagagna
- 1] IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy [2] Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, Pavia, Italy
| |
Collapse
|
139
|
Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, Gorgoulis VG, d'Adda di Fagagna F. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 2014; 21:998-1012. [PMID: 24583638 PMCID: PMC4013514 DOI: 10.1038/cdd.2014.16] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022] Open
Abstract
Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.
Collapse
Affiliation(s)
- M Ogrunc
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - R Di Micco
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - M Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece
| | - L Bombardelli
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - M Mione
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - M Fumagalli
- IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy
| | - V G Gorgoulis
- 1] Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece [2] Basic Science II Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - F d'Adda di Fagagna
- 1] IFOM Foundation, The FIRC Institute of Molecular Oncology Foundation, via Adamello 16, Milan, Italy [2] Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, Pavia, Italy
| |
Collapse
|
140
|
Snow-Lisy DC, Sabanegh ES, Samplaski MK, Morris VB, Labhasetwar V. Superoxide dismutase-loaded biodegradable nanoparticles targeted with a follicle-stimulating hormone peptide protect Sertoli cells from oxidative stress. Fertil Steril 2013; 101:560-7. [PMID: 24289999 DOI: 10.1016/j.fertnstert.2013.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/20/2013] [Accepted: 10/23/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To evaluate targeted superoxide dismutase (SOD)-loaded biodegradable nanoparticles' (NPs) ability to protect Sertoli cells from hydrogen peroxide (H2O2)-induced oxidative stress. DESIGN Cell culture controlled experimental study. SETTING Research laboratory. CELLS Mouse testis Sertoli cells (TM4). INTERVENTIONS Sertoli cells were exposed to 0-200 μg/mL plain media, unconjugated NPs, or FSH peptide-conjugated NPs for 2 or 24 hours to assess uptake. Next, Sertoli cells were exposed to 0-50 mmol H₂O₂ with 0-1 mg/mL unconjugated SOD-loaded NPs, FSH-conjugated SOD-loaded NPs, or equivalent units of SOD in solution as a control for 2-6 hours to assess influence on cell survival after oxidative stress. MAIN OUTCOME MEASURE(S) Cell viability, flow cytometry, and microscopy. RESULT(S) FSH peptide targeting improved uptake of NPs by Sertoli cells. FSH-conjugated SOD-NPs significantly protected Sertoli cells at 6 hours of H₂O₂--induced oxidative stress, with 100% survival with FSH-conjugated SOD-NPs compared with unconjugated SOD-NPs (45%) or SOD in solution (36%). CONCLUSION(S) Conjugation of NPs with FSH peptide improves cellular uptake and survival when SOD-loaded NPs are coincubated with Sertoli cells undergoing oxidative stress. This study represents a step toward developing NPs for the targeted treatment of testicular oxidative stress.
Collapse
Affiliation(s)
- Devon C Snow-Lisy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Edmund S Sabanegh
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mary K Samplaski
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Viola B Morris
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|