101
|
Kinsey GR, Okusa MD. Role of leukocytes in the pathogenesis of acute kidney injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:214. [PMID: 22429752 PMCID: PMC3681359 DOI: 10.1186/cc11228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
102
|
Cheng L, Tian F, Tang L, Wang S, Chen G, Duan G, Yan X. Local distribution analysis of cytotoxic molecules in liver allograft is helpful for the diagnosis of acute cellular rejection after orthotopic liver transplantation. Diagn Pathol 2012; 7:148. [PMID: 23111143 PMCID: PMC3523046 DOI: 10.1186/1746-1596-7-148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/24/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As it is often difficult for a transplant pathologist to make a definite diagnosis of acute cellular rejection (ACR) by routine morphological analysis of liver allograft biopsy, supplementary methods and objective markers are needed to facilitate this determination. METHODS To evaluate the diagnostic value of cytotoxic molecules in ACR episodes, immunohistochemical staining for perforin, granzyme B and T-cell intracellular antigen-1 (TIA-1) were performed in liver allograft biopsies. The positive cells in the portal tract area and lobules were counted separately to investigate the distribution of the cytotoxic molecules. RESULTS The immunohistochemical study showed that the overall positive rates for the three markers were not significantly different between the ACR and non-ACR groups. However, in the portal tract area, perforin-, granzyme B- and TIA-1-positive cells in the ACR group were significantly more than those in the non-ACR groups. In the lobules, perforin- and granzyme B-positive cells in the ACR group were significantly more than those in the biliary complication and opportunistic infection groups, while TIA-1-positive cells was significantly fewer than those in non-ACR groups. The numbers of positive cells in the portal tract area correlated with the rejection activity index of ACR. CONCLUSIONS These results indicate that, though the overall positive rates have nonsense in ACR diagnosis, the quantification and local distribution analysis of cytotoxic molecule positive cells in liver tissue is helpful for differential diagnosis and severity evaluation of ACR following liver transplantation. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2292255038100487.
Collapse
Affiliation(s)
- Long Cheng
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | | | |
Collapse
|
103
|
Lésions d’ischémie-reperfusion rénale. MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
104
|
Heutinck KM, Kassies J, Florquin S, ten Berge IJM, Hamann J, Rowshani AT. SerpinB9 expression in human renal tubular epithelial cells is induced by triggering of the viral dsRNA sensors TLR3, MDA5 and RIG-I. Nephrol Dial Transplant 2012; 27:2746-54. [PMID: 22167597 DOI: 10.1093/ndt/gfr690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Serine protease inhibitor B9 (serpinB9) protects against granzyme B-mediated apoptosis and could help to reduce tubular damage under inflammatory conditions like interstitial nephritis. Previously, we found that tubular serpinB9 expression was increased during subclinical rejection. Here, we studied the regulation of serpinB9 expression in tubular epithelial cells (TECs) under inflammatory conditions. METHODS SerpinB9 expression was analysed on messenger RNA (mRNA), and protein levels in primary human TECs were stimulated with various cytokines and pattern recognition receptor ligands and in kidney transplant biopsies obtained during different types of viral infection. RESULTS Of the inflammatory stimuli tested, only the double-stranded RNA (dsRNA) analogue poly(I:C) promoted serpinB9 mRNA and protein expression. We found that TECs express the viral dsRNA receptors Toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I). dsRNA receptor ligands enhanced serpinB9 expression, which involved nuclear factor-kappaB (NF-κB) activation, did not require Type I interferon production and was a direct result of dsRNA receptor-induced gene transcription. In kidney transplants, serpinB9 transcription was increased during infection with cytomegalovirus, Epstein-Barr virus or BK virus compared to stable grafts. Immunohistochemistry showed that tubuli and lymphocytes expressed the inhibitor. CONCLUSION SerpinB9 expression in human TECs is induced by triggering of the viral dsRNA sensors TLR3, MDA5 and RIG-I. Viral dsRNA may increase the threshold for granzyme B-mediated apoptosis in TECs via serpinB9 upregulation and thus help to protect the kidney against cytotoxic insults during viral infection.
Collapse
MESH Headings
- BK Virus/genetics
- Biopsy
- Blotting, Western
- Cells, Cultured
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Herpesvirus 4, Human/genetics
- Humans
- Immunoenzyme Techniques
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-Induced Helicase, IFIH1
- Kidney Diseases/metabolism
- Kidney Diseases/surgery
- Kidney Diseases/virology
- Kidney Transplantation
- Kidney Tubules/cytology
- Kidney Tubules/metabolism
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Poly I-C/pharmacology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Serpins/genetics
- Serpins/metabolism
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Kirstin M Heutinck
- Department of Experimental Immunology, Renal Transplant Unit, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
105
|
Park SJ, Kim HJ, Lee JS, Cho HR, Kwon B. Reverse signaling through the co-stimulatory ligand, CD137L, as a critical mediator of sterile inflammation. Mol Cells 2012; 33:533-7. [PMID: 22526397 PMCID: PMC3887753 DOI: 10.1007/s10059-012-0077-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/16/2022] Open
Abstract
CD137 (also called 4-1BB and TNFRSF9) has recently received attention as a therapeutic target for cancer and a variety of autoimmune and inflammatory diseases. Stimulating CD137 in vivo enhances CD8(+) T cell-activity and results in strong immunosuppression in some contexts. This paradoxical phenomenon may be partially explained by the ability of CD137-stimulating reagents (usually agonistic monoclonal antibodies against CD137) to overactivate T cells and other CD137-expressing cells. This over-activity is associated with deleting pathogenic T cells and B cells or generating a tolerogenic microenvironment. Recent studies, however, suggest that the biology of CD137 and its ligand (CD137L) are more complex, mainly due to bidirectional signaling between CD137 and CD137L. For example, signaling through CD137L in non-hematopoietic cells such as epithelial cells and endothelial cells has been shown to play an essential role in sterile inflammation by regulating immune cell recruitment. One outstanding, and clinically important, issue is understanding how bidirectional signaling through CD137 and CD137L controls the vicious cycle of sterile inflammation (e.g., ischemia-reperfusion tissue injury and meta-inflammatory diseases).
Collapse
Affiliation(s)
- Sang Jun Park
- Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Hye Jeong Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Jong Soo Lee
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
- Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 682-714,
Korea
- School of Biological Sciences, University of Ulsan, Ulsan 682-714,
Korea
| |
Collapse
|
106
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
107
|
Feng M, Li G, Qian X, Fan Y, Huang X, Zhang F, Lu L. IL-17A-producing NK cells were implicated in liver injury induced by ischemia and reperfusion. Int Immunopharmacol 2012; 13:135-40. [PMID: 22465963 DOI: 10.1016/j.intimp.2012.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
Abstract
NK cells play a critical role in several types of liver injury. The aim of this study was to evaluate the role of NK cells in liver ischemia reperfusion injury (IRI) and the underlying mechanism. Male Rag1-/- mice and wild type mice were subjected to partial hepatic IRI. Anti-NK1.1 (300 μg/mouse, ip) was used to deplete NK cells. Liver injury was evaluated by level of serum alanine aminotransferase (ALT). Hepatic inflammatory cytokines, neutrophils and CXCL-2 expression were measured following ischemia and reperfusion. Additionally, NK cells were cultured with or without IL-6, IL-21, IL-23 and IL-10 for 24h, then IL-17A level in the supernatants was analyzed by ELISA. Production of IL-17A was increased in NK cells after reperfusion. Various cytokines such as, IL-6, IL-21 and IL-23, which also elevated after IRI, can promote IL-17A production and up-regulate the phosphorylation of STAT3 in NK cells, while the increase was repressed in the presence of IL-10. Depletion of NK cells decreased IL-17A level in Rag1-/- mice ischemic lobes. Meanwhile, hepatic infiltration of neutrophils and CXCL-2 level were reduced and liver injury was ameliorated. Neutralization of IL-17A was used to confirm the role of this cytokine produced by NK cells in Rag1-/- mice. In conclusion, at initial stage of liver IRI, NK cells increase IL-17A production and promote liver injury.
Collapse
Affiliation(s)
- Min Feng
- Department of Liver Transplantation, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
108
|
Blockade of NKG2D Synergized With CTLA4-Ig in Promoting Long-Term Graft Survival in Murine Models of Cardiac Transplantation [RETRACTED]. Transplantation 2012; 93:356-63. [DOI: 10.1097/tp.0b013e31823ffce7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
109
|
Inflammation and microvasculopathy in renal ischemia reperfusion injury. J Transplant 2012; 2012:764154. [PMID: 22530109 PMCID: PMC3316981 DOI: 10.1155/2012/764154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
Acute renal failure (ARF) severely worsens prognosis of hospitalized patients. The most frequent cause of intrarenal ARF is transient or prolonged renal hypoperfusion (ischemia). Ischemia primarily affects the function and structure of tubular epithelial cells, which, in severe cases, is characterized by epithelial cell necrosis. Nevertheless, ischemia does not exclusively lead to alterations of epithelial cells but also causes interstitial inflammation and interstitial microvasculopathy. Both inflammation and microvasculopathy are particularly important in terms of postischemic kidney repair. Postischemic microvasculopathy is characterized by endothelial cell swelling with subsequent microvascular occlusion. Thus, reperfusion is inhibited (no-reflow phenomenon). Such endothelial cell dysfunction offers new therapeutic perspectives in ischemic ARF. Newer observations point towards the role of the so-called endothelial progenitor cells (EPCs) in the treatment of ARF. Systemic administration of EPCs to mice with bilateral renal ischemia mitigates postischemic endothelial cell dysfunction and protects animals from acute renal failure.
Collapse
|
110
|
Herrler T, Wang H, Tischer A, Bartenstein P, Jauch KW, Guba M, Diemling M, Nimmon C, Hacker M. 99mTc-MAG3 scintigraphy for the longitudinal follow-up of kidney function in a mouse model of renal ischemia-reperfusion injury. EJNMMI Res 2012; 2:2. [PMID: 22264389 PMCID: PMC3282629 DOI: 10.1186/2191-219x-2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/20/2012] [Indexed: 11/11/2022] Open
Abstract
Background Experimental models are essential tools in the development and evaluation of novel treatment options, but the preclinical model of renal ischemia-reperfusion injury is limited to the retrieval of (very) early functional data, leaving the pivotal long-term outcome unknown. The present study applies technetium-99m-mercapto-acetyl-tri-glycine [99mTc-MAG3] scintigraphy for the longitudinal follow-up examination of long-term kidney function after renal ischemia-reperfusion injury. Methods Unilateral warm ischemia was induced in scid beige mice by vascular clamping of the kidney hilum for 40 min. 99mTc-MAG3 scintigraphy was performed prior to injury, 8 and 14 days post ischemia. The fractional uptake rate [FUR] was calculated from scintigraphy data as a measure of renal clearance. Results FUR demonstrated a significant functional impairment of the ischemic kidney 8 and 14 days after injury (P < 0.05 vs. baseline), while contralateral non-ischemic kidneys showed no significant changes. In histological analysis, ischemic kidneys exhibited tubular dilatation and cytoplasmic degeneration as signs of hypoxia without any evidence for necrosis. Conclusions FUR enables the detection of renal dysfunction and longitudinal long-term follow-up examination in the same individual. Our model may facilitate preclinical therapy evaluation for the identification of effective renoprotective therapies.
Collapse
Affiliation(s)
- Tanja Herrler
- Department of Nuclear Medicine, University of Munich, Munich, 81377, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 2012; 81:751-61. [PMID: 22237751 DOI: 10.1038/ki.2011.450] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of kidney function in renal ischemia/reperfusion injury is due to programmed cell death, but the contribution of necroptosis, a newly discovered form of programmed necrosis, has not been evaluated. Here, we identified the presence of death receptor-mediated but caspase-independent cell death in murine tubular cells and characterized it as necroptosis by the addition of necrostatin-1, a highly specific receptor-interacting protein kinase 1 inhibitor. The detection of receptor-interacting protein kinase 1 and 3 in whole-kidney lysates and freshly isolated murine proximal tubules led us to investigate the contribution of necroptosis in a mouse model of renal ischemia/reperfusion injury. Treatment with necrostatin-1 reduced organ damage and renal failure, even when administered after reperfusion, resulting in a significant survival benefit in a model of lethal renal ischemia/reperfusion injury. Unexpectedly, specific blockade of apoptosis by zVAD, a pan-caspase inhibitor, did not prevent the organ damage or the increase in urea and creatinine in vivo in renal ischemia/reperfusion injury. Thus, necroptosis is present and has functional relevance in the pathophysiological course of ischemic kidney injury and shows the predominance of necroptosis over apoptosis in this setting. Necrostatin-1 may have therapeutic potential to prevent and treat renal ischemia/reperfusion injury.
Collapse
|
112
|
Reverse signaling through the costimulatory ligand CD137L in epithelial cells is essential for natural killer cell-mediated acute tissue inflammation. Proc Natl Acad Sci U S A 2011; 109:E13-22. [PMID: 22160719 DOI: 10.1073/pnas.1112256109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) after kidney transplantation is a major cause of delayed graft function. Even though IRI is recognized as a highly coordinated and specific process, the pathways and mechanisms through which the innate response is activated are poorly understood. In this study, we used a mouse model of acute kidney IRI to examine whether the interactions of costimulatory receptor CD137 and its ligand (CD137L) are involved in the early phase of acute kidney inflammation caused by IRI. We report here that the specific expressions of CD137 on natural killer cells and of CD137L on tubular epithelial cells (TECs) are required for acute kidney IRI. Reverse signaling through CD137L in TECs results in their production of the chemokine (C-X-C motif) receptor 2 ligands CXCL1 and CXCL2 and the subsequent induction of neutrophil recruitment, resulting in a cascade of proinflammatory events during kidney IRI. Our findings identify an innate pathogenic pathway for renal IRI involving the natural killer cell-TEC-neutrophil axis, whereby CD137-CD137L interactions provide the causal contribution of epithelial cell dysregulation to renal IRI. The CD137L reverse signaling pathway in epithelial cells therefore may represent a good target for blocking the initial stage of inflammatory diseases, including renal IRI.
Collapse
|
113
|
Suárez-Álvarez B, Fernández-Sánchez A, López-Vázquez A, Coto E, Ortega F, López-Larrea C. NKG2D and its ligands: active factors in the outcome of solid organ transplantation? Kidney Int Suppl (2011) 2011; 1:52-57. [PMID: 25018903 PMCID: PMC4089716 DOI: 10.1038/kisup.2011.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of natural killer (NK) cells in solid organ transplantation is not well established, although several recent reports highlight the importance of the activating receptor NKG2D and its ligands in the development of rejection during transplantation. The human NKG2D ligands (MICA and MICB) are induced in allografts during acute and chronic rejection, and the presence of anti-MICA antibodies is correlated with a higher incidence of rejection. The binding of these ligands to its receptor NKG2D activates NK cells, enhances the functions of effectors, and allows NK cells to function as a bridge between innate and adaptive immunity associated with the transplantation. In fact, blockage of NKG2D with the anti-NKG2D monoclonal antibodies prolongs graft survival and prevents CD28-independent rejection in heart and skin allograft mouse models. Furthermore, the current immunosuppressive therapies can modulate the expression of NK cell receptors and consequently the effector functions of NK cells. That is particularly important during the first few months after transplantation, when the susceptibility to opportunistic viral infections is higher and NKG2D has an essential role. In this review, we analyze in detail the potential role of the NKG2D-activating receptor and its ligands in the immune responses during the outcome of solid organ transplantation. These findings open a new pathway for therapeutic intervention that can contribute to tolerance in solid organ transplantation.
Collapse
Affiliation(s)
| | | | - Antonio López-Vázquez
- Department of Immunology, Hospital Universitario Central de Asturias , Oviedo, Spain
| | - Eliecer Coto
- Department of Molecular Genetics, Hospital Universitario Central de Asturias , Oviedo, Spain ; Fundación Renal 'Iñigo Alvarez de Toledo' , Madrid, Spain
| | - Francisco Ortega
- Fundación Renal 'Iñigo Alvarez de Toledo' , Madrid, Spain ; Department of Nephrology, Hospital Universitario Central de Asturias , Oviedo, Spain
| | - Carlos López-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias , Oviedo, Spain ; Fundación Renal 'Iñigo Alvarez de Toledo' , Madrid, Spain
| |
Collapse
|
114
|
Immunopathogenesis of ischemia/reperfusion-associated tissue damage. Clin Immunol 2011; 141:3-14. [PMID: 21839685 DOI: 10.1016/j.clim.2011.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 02/08/2023]
Abstract
Ischemia/reperfusion (IR) instigates a complex array of inflammatory events which result in damage to the local tissue. IR-related organ damage occurs invariably in several clinical conditions including trauma, organ transplantation, autoimmune diseases and revascularization procedures. We critically review available pre-clinical experimental information on the role of immune response in the expression of tissue damage following IR. Distinct elements of the innate and adaptive immune response are involved in the expression of tissue injury. Interventions such as prevention of binding of natural antibody to antigen expressed on the surface of ischemia-conditioned cells, inhibition of the ensuing complement activation, modulation of Toll-like receptors, B or T cell depletion and blockade of inflammatory cytokines and chemokines limit IR injury in preclinical studies. Clinical trials that will determine the therapeutic value of each approach is needed.
Collapse
|
115
|
Chen GE, Wu H, Ma J, Chadban SJ, Sharland A. Toll-like receptor 4 engagement contributes to expression of NKG2D ligands by renal tubular epithelial cells. Nephrol Dial Transplant 2011; 26:3873-81. [DOI: 10.1093/ndt/gfr234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
116
|
Khastar H, Kadkhodaee M, Sadeghipour HR, Seifi B, Hadjati J, Delavari F, Soleimani M. Leukocyte involvement in renal reperfusion-induced liver damage. Ren Fail 2011; 33:79-83. [PMID: 21219210 DOI: 10.3109/0886022x.2010.541585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS/AIMS Renal ischemia-reperfusion (IR) induces organ damage in remote organs. The aim of this study was to assess the role of leukocytes in the induction of liver damage after renal IR injury. METHODS Inbred mice were subjected to either sham operation or bilateral renal IR injury (60 min ischemia followed by 3 h reperfusion). Mice were then anesthetized for collection of leukocytes by heart puncture. Isolated leukocytes were transferred to two other groups: intact recipient mice that received leukocytes from IR mice and intact recipient mice that received leukocytes from sham-operated control mice. After 24 h, recipient mice were anesthetized and samples were collected. RESULTS Alanine aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde increased significantly, and hepatic glutathione decreased significantly in intact recipient mice that received leukocytes from IR mice in comparison with intact recipient mice that received leukocytes from sham-operated control mice. Loss of normal liver architecture, cytoplasmic vacuolization, and focal infiltration of leukocytes were seen. CONCLUSION These results suggest that leukocytes are one of the possible factors that contribute to liver damage after renal IR injury and this damage is partly due to the induction of oxidative stress.
Collapse
Affiliation(s)
- Hossein Khastar
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | | | | | | | | | | |
Collapse
|
117
|
Hotta K, Sho M, Yamato I, Shimada K, Harada H, Akahori T, Nakamura S, Konishi N, Yagita H, Nonomura K, Nakajima Y. Direct targeting of fibroblast growth factor-inducible 14 protein protects against renal ischemia reperfusion injury. Kidney Int 2011; 79:179-88. [DOI: 10.1038/ki.2010.379] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
118
|
Zhang ZX, Shek K, Wang S, Huang X, Lau A, Yin Z, Sun H, Liu W, Garcia B, Rittling S, Jevnikar AM. Osteopontin expressed in tubular epithelial cells regulates NK cell-mediated kidney ischemia reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:967-973. [PMID: 20548025 DOI: 10.4049/jimmunol.0903245] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Renal ischemia reperfusion injury (IRI) occurs after reduced renal blood flow and is a major cause of acute injury in both native and transplanted kidneys. Studies have shown diverse cell types in both the innate and the adaptive immune systems participate in kidney IRI as dendritic cells, macrophages, neutrophils, B cells, CD4(+) NK(+) cells, and CD4(+) T cells all contribute to this form of injury. Recently, we have found that NK cells induce apoptosis in tubular epithelial cells (TECs) and also contribute to renal IRI. However, the mechanism of NK cell migration and activation during kidney IRI remains unknown. In this study, we have identified that kidney TECs express a high level of osteopontin (OPN) in vitro and in vivo. C57BL/6 OPN-deficient mice have reduced NK cell infiltration with less tissue damage compared with wild-type C57BL/6 mice after ischemia. OPN can directly activate NK cells to mediate TEC apoptotic death and can also regulate chemotaxis of NK cells to TECs. Taken together, our study's results indicate that OPN expression by TECs is an important factor in initial inflammatory responses that involves NK cells activity in kidney IRI. Inhibiting OPN expression at an early stage of IRI may be protective and preserve kidney function after transplantation.
Collapse
Affiliation(s)
- Zhu-Xu Zhang
- The Multi-Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Zhuo M, Fujiki M, Wang M, Piard-Ruster K, Wai LE, Wei L, Martinez OM, Krams SM. Identification of the rat NKG2D ligands, RAE1L and RRLT, and their role in allograft rejection. Eur J Immunol 2010; 40:1748-57. [PMID: 20306467 PMCID: PMC3057641 DOI: 10.1002/eji.200939779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NKG2D is a receptor expressed by NK cells and subsets of T lymphocytes. On NK cells, NKG2D functions as a stimulatory receptor that induces effector functions. We cloned and expressed two rat NKG2D ligands, both members of the RAE1 family, RAE1L and RRLT, and demonstrate that these ligands can induce IFN-gamma secretion and cytotoxicity by rat NK cells. To examine changes in expression of NKG2D and the NKG2D ligands RAE1L and RRLT after transplantation, we used a Dark Agouti (DA)-->Lewis rat model of liver transplantation. NKG2D expression was significantly increased in allogeneic liver grafts by day 7 post-transplant. Ligands of NKG2D, absent in normal liver, were readily detected in both syngeneic and allogeneic liver grafts by day 1 post-transplant. By day 7 post-transplant, hepatocyte RAE1L and RRLT expression was significantly and specifically increased in liver allografts. In contrast to acute rejection that develops in the DA-->Lewis model, transplantation of Lewis livers into DA recipients (Lewis-->DA) results in spontaneous tolerance. Interestingly, expression of RAE1L and RRLT is low in Lewis-->DA liver allografts, but significantly increased in DA-->Lewis liver allografts undergoing rejection. In conclusion, our results suggest that expression of NKG2D ligands may be important in allograft rejection.
Collapse
Affiliation(s)
- Ming Zhuo
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Masato Fujiki
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Mouer Wang
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Karine Piard-Ruster
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Lu-En Wai
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Liang Wei
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Olivia M. Martinez
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Sheri M. Krams
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| |
Collapse
|
120
|
Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P, Soloski MJ, Crow MT, Rabb H. Mycophenolate mofetil modifies kidney tubular injury and Foxp3+ regulatory T cell trafficking during recovery from experimental ischemia-reperfusion. Transpl Immunol 2010; 23:45-52. [PMID: 20412855 DOI: 10.1016/j.trim.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/02/2010] [Accepted: 04/05/2010] [Indexed: 01/25/2023]
Abstract
Lymphocytes participate in the early pathogenesis of ischemia-reperfusion injury (IRI) in kidney; however, their role during repair is largely unknown. Recent data have shown that Foxp3(+) regulatory T cells (Tregs) traffic into kidney during healing from IRI and directly participate in repair. Since lymphocyte-targeting therapy is currently administered to prevent rejection during recovery from IRI in renal transplants, we hypothesized that mycophenolate mofetil (MMF) would alter Treg trafficking and kidney repair. C57BL/6J and T cell deficient mice underwent unilateral clamping of renal pedicle for 45 min, followed by reperfusion, and were sacrificed at day 10. Mice were treated with saline (C) or MMF (100mg/kg) i.p. daily starting at day 2 until sacrifice (n=5-12/group). MMF worsened kidney tubular damage compared to C at 10 days (cortex and outer medulla: p<0.05) in wild-type mice; tubular apoptotic index was increased in cortex in MMF group as well (p=0.01). MMF reduced the total number of kidney-infiltrating mononuclear cells (p<0.001 versus C) and the percentages of TCRbeta(+)CD4(+) and TCRbeta(+)CD8(+) T cells (p<0.01), but not natural killer (NK), NKT or B lymphocytes. MMF specifically reduced kidney Foxp3(+) Tregs (0.82+/-0.11% versus 1.75+/-0.17%, p<0.05). Tubular proliferative index and tissue levels of basic FGF were increased in MMF group (p<0.05), IL-10 and IL-6 were decreased (p<0.05). To evaluate if MMF effect occurred through non-lymphocytic cells, T cell deficient mice were treated with MMF. Tubular injury in T cell deficient mice was not affected by MMF treatment, though MMF-treated animals had increased VEGF and decreased PDGF-BB protein tissue levels compared to controls (p<0.05). Thus, MMF modifies the structural, epithelial proliferative and inflammatory response during healing, likely through effects on T cells and possibly Tregs. Kidney repair after IRI can be altered by agents that target lymphocytes.
Collapse
Affiliation(s)
- Maria Teresa Gandolfo
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Mediators of inflammation in acute kidney injury. Mediators Inflamm 2010; 2009:137072. [PMID: 20182538 PMCID: PMC2825552 DOI: 10.1155/2009/137072] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/18/2009] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) remains to be an independent risk factor for mortality and morbidity. Inflammation is now believed to play a major role in the pathopathophysiology of AKI. It is hypothesized that in ischemia, sepsis and nephrotoxic models that the initial insult results in morphological and/or functional changes in vascular endothelial cells and/or in tubular epithelium. Then, leukocytes including neutrophils, macrophages, natural killer cells, and lymphocytes infiltrate into the injured kidneys. The injury induces the generation of inflammatory mediators like cytokines and chemokines by tubular and endothelial cells which contribute to the recruiting of leukocytes into the kidneys. Thus, inflammation has an important role in the initiation and extension phases of AKI. This review will focus on the mediators of inflammation contributing to the pathogenesis of AKI.
Collapse
|
122
|
Current world literature. Curr Opin Oncol 2010; 22:155-61. [PMID: 20147786 DOI: 10.1097/cco.0b013e32833681df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
The effect of murine anti-thymocyte globulin on experimental kidney warm ischemia-reperfusion injury in mice. Transpl Immunol 2009; 22:44-54. [PMID: 19682579 DOI: 10.1016/j.trim.2009.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/23/2009] [Accepted: 08/04/2009] [Indexed: 11/21/2022]
Abstract
Kidney ischemia-reperfusion injury (IRI) is an important contributor to delayed graft function (DGF) and poor outcome of allografts. Small clinical studies suggest a beneficial role for human anti-thymocyte globulin (ATG) in DGF. We investigated the short-term effect of mouse anti-thymocyte globulin (mATG) on kidney warm IRI in mice. We administered either mATG, rabbit immunoglobulin (RIgG), or saline with different dosing schedules in three different IRI models: 30 min bilateral, 60 min bilateral, and 45min unilateral IRI. mATG effectively depleted circulating T cells but had less effect on kidney-infiltrating T cells. There was no difference in serum creatinine levels between groups in each study. Scoring of renal tubular damage and regenerating tubules revealed no difference between groups. The percentage of CD3(+)CD4(-)CD8(-) double-negative (DN) T cells, which were reported to contribute to the pathogenesis of lupus nephritis, increased and the percentages of regulatory T cells and NK cells decreased in the post-ischemic kidneys of mATG treated mice. mATG did not alter the expression of pro-inflammatory cytokines such as IFN-gamma or anti-inflammatory cytokines such as IL-10 in post-ischemic kidneys. mATG treatment, whether initiated before ischemia or immediately after reperfusion, had minimal effects on renal injury following warm IRI in mice.
Collapse
|
124
|
The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med (Berl) 2009; 87:859-64. [PMID: 19562316 DOI: 10.1007/s00109-009-0491-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/17/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
Kidney ischemia-reperfusion injury (IRI) engages both the innate and adaptive immune responses. Cellular mediators of immunity, such as dendritic cells, neutrophils, macrophages, natural killer T, T, and B cells, contribute to the pathogenesis of renal injury after IRI. Postischemic kidneys express increased levels of adhesion molecules on endothelial cells and toll-like receptors on tubular epithelial cells. Soluble components of the immune system, such as complement activation proteins and cytokines, also participate in injury/repair of postischemic kidneys. Experimental studies on the immune response in kidney IRI have resulted in better understanding of the mechanisms underlying IRI and led to the discovery of novel therapeutic and diagnostic targets.
Collapse
|
125
|
Wang Y, John R, Chen J, Richardson JA, Shelton JM, Bennett M, Zhou XJ, Nagami GT, Zhang Y, Wu QQ, Lu CY. IRF-1 promotes inflammation early after ischemic acute kidney injury. J Am Soc Nephrol 2009; 20:1544-55. [PMID: 19443641 DOI: 10.1681/asn.2008080843] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Acute renal ischemia elicits an inflammatory response that may exacerbate acute kidney injury, but the regulation of the initial signals that recruit leukocytes is not well understood. Here, we found that IFN regulatory factor 1 (IRF-1) was a critical, early proinflammatory signal released during ischemic injury in vitro and in vivo. Within 15 min of reperfusion, proximal tubular cells of the S3 segment produced IRF-1, which is a transcription factor that activates proinflammatory genes. Transgenic knockout of IRF-1 ameliorated the impairment of renal function, morphologic injury, and inflammation after acute ischemia. Bone marrow chimera experiments determined that maximal ischemic injury required IRF-1 expression by both leukocytes and radioresistant renal cells, the latter identified as S3 proximal tubule cells in the outer medulla by in situ hybridization and immunohistochemistry. In vitro, reactive oxygen species, generated during ischemia/reperfusion injury, stimulated expression of IRF-1 in an S3 proximal tubular cell line. Taken together, these data suggest that IRF-1 gene activation by reactive oxygen species is an early signal that promotes inflammation after ischemic renal injury.
Collapse
Affiliation(s)
- Yanxia Wang
- Department of Internal Medicine-Nephrology, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390-8856, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
In the context of solid organ transplantation, the exact interactions between the innate and adaptive alloimmune response have not yet been fully explored. In this transplant setting, natural killer (NK) cells have emerged as a particular focus of interest because of their ability to distinguish allogeneic major histocompatibility complex (MHC) antigens and their potent cytolytic activity. Based on this observation and its potential clinical relevance, NK cells have recently been shown to participate in the immune response in both acute and chronic rejection of solid organ allografts. Numerous experimental and clinical studies demonstrate that NK cells determine transplant survival by rejecting an allograft not directly but indirectly by providing bystander effects. In addition, NK cells are influenced by immunosuppressive therapies such as calcineurin inhibitors or steroids. As NK and natural killer T (NKT) cells have also been shown to play a profound role in allograft tolerance induction, this review summarizes the major findings to highlight the functional role of these lymphocyte subsets, which may constitute an underestimated mechanism affecting graft outcome in solid organ transplantation.
Collapse
Affiliation(s)
- Johann Pratschke
- Department of Abdominal, Visceral and Transplantation Surgery, Charité Universitätsmedizin, Campus Virchow, Berlin, Germany
| | | | | |
Collapse
|