101
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
102
|
Murugesan A, Ibegbu C, Styles TM, Jones AT, Shanmugasundaram U, Reddy PBJ, Rahman SJ, Saha P, Vijay-Kumar M, Shankar EM, Amara RR, Velu V. Functional MAIT Cells Are Associated With Reduced Simian-Human Immunodeficiency Virus Infection. Front Immunol 2020; 10:3053. [PMID: 32010135 PMCID: PMC6978843 DOI: 10.3389/fimmu.2019.03053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are recently characterized as a novel subset of innate-like T cells that recognize microbial metabolites as presented by the MHC-1b-related protein MR1. The significance of MAIT cells in anti-bacterial defense is well-understood but not clear in viral infections such as SIV/HIV infection. Here we studied the phenotype, distribution, and function of MAIT cells and their association with plasma viral levels during chronic SHIV infection in rhesus macaques (RM). Two groups of healthy and chronic SHIV-infected macaques were characterized for MAIT cells in blood and mucosal tissues. Similar to human, we found a significant fraction of macaque T cells co-expressing MAIT cell markers CD161 and TCRVα-7.2 that correlated directly with macaque MR1 tetramer. These cells displayed memory phenotype and expressed high levels of IL-18R, CCR6, CD28, and CD95. During chronic infection, the frequency of MAIT cells are enriched in the blood but unaltered in the rectum; both blood and rectal MAIT cells displayed higher proliferative and cytotoxic phenotype post-SHIV infection. The frequency of MAIT cells in blood and rectum correlated inversely with plasma viral RNA levels and correlated directly with total CD4 T cells. MAIT cells respond to microbial products during chronic SHIV infection and correlated positively with serum immunoreactivity to flagellin levels. Tissue distribution analysis of MAIT cells during chronic infection showed significant enrichment in the non-lymphoid tissues (lung, rectum, and liver) compared to lymphoid tissues (spleen and LN), with higher levels of tissue-resident markers CD69 and CD103. Exogenous in vitro cytokine treatments during chronic SHIV infection revealed that IL-7 is important for the proliferation of MAIT cells, but IL-12 and IL-18 are important for their cytolytic function. Overall our results demonstrated that MAIT cells are enriched in blood but unaltered in the rectum during chronic SHIV infection, which displayed proliferative and functional phenotype that inversely correlated with SHIV plasma viral RNA levels. Treatment such as combined cytokine treatments could be beneficial for enhancing functional MAIT cells during chronic HIV infection in vivo.
Collapse
Affiliation(s)
- Amudhan Murugesan
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Tiffany M Styles
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Andrew T Jones
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | | | - Pradeep B J Reddy
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sadia J Rahman
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Piu Saha
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Esaki Muthu Shankar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rama Rao Amara
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
103
|
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kasprowicz-Furmańczyk M, Placek W. Immunological Memory of Psoriatic Lesions. Int J Mol Sci 2020; 21:ijms21020625. [PMID: 31963581 PMCID: PMC7014148 DOI: 10.3390/ijms21020625] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
The natural course of psoriasis is the appearance of new lesions in the place of previous ones, which disappeared after a successful therapy. Recent studies of psoriasis etiopathogenesis showed that after psoriatic plaques have disappeared, in healthy skin we can still find a trace of inflammation in the form of tissue resident memory cells (TRM). They are originally responsible for protection against viral and bacterial infections in non-lymphatic tissues. In psoriatic inflammation, they are characterized by heterogeneity depending on their origin. CD8+ T cells TRM are abundantly present in psoriatic epidermis, while CD4+ TRM preferentially populate the dermis. In psoriasis, epidermal CD8+ TRM cells express CLA, CCR6, CD103 and IL-23R antigen and produce IL-17A during ex vivo stimulation. However, CD4+ CD103+ TRM can also colonize the epidermis and produce IL-22 during stimulation. Besides T cells, Th22 and epidermal DCs proved that epidermal cells in healed skin were still present and functioning after several years of disease remission. It explains the clinical phenomenon of the tendency of psoriatic lesions to relapse in the same location and it allows to develop new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Al. Wojska Polskiego 30, 10-229 Olsztyn, Poland; (M.K.-F.); (W.P.)
- Correspondence: ; Tel.: +48-89-678-6670; Fax: +48-89-678-6675
| | - Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-229 Olsztyn, Poland;
- Department of Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland
| | - Marta Kasprowicz-Furmańczyk
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Al. Wojska Polskiego 30, 10-229 Olsztyn, Poland; (M.K.-F.); (W.P.)
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Al. Wojska Polskiego 30, 10-229 Olsztyn, Poland; (M.K.-F.); (W.P.)
| |
Collapse
|
104
|
TLR7 Modulated T Cell Response in the Mesenteric Lymph Node of Schistosoma japonicum-Infected C57BL/6 Mice. J Immunol Res 2019; 2019:2691808. [PMID: 31930147 PMCID: PMC6942828 DOI: 10.1155/2019/2691808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in regulating immune responses during pathogen infection. However, roles of TLRs on T cells reside in the mesenteric lymph node (MLN) were not be fully elucidated in the course of S. japonicum infection. In this study, T lymphocytes from the mesenteric lymph node (MLN) of S. japonicum-infected mice were isolated and the expression and roles of TLR2, TLR3, TLR4, and TLR7 on both CD4+ and CD8+ T cells were compared. We found that the expression of TLR7 was increased in the MLN cells of S. japonicum-infected mice, particularly in CD4+ and CD8+ T cells (P < 0.05). R848, a TLR7 agonist, could enhance the production of IFN-γ from MLN T cells of infected mice (P < 0.05), especially in CD8+ T cells (P < 0.01). In TLR7 gene knockedout (KO) mice, the S. japonicum infection caused a significant decrease (P < 0.05) of the expression of CD25 and CD69, as well as the production of IFN-γ and IL-4 inducted by PMA plus ionomycin on both CD4+ and CD8+ T cells. Furthermore, the decreased level of IFN-γ and IL-4 in the supernatants of SEA- or SWA-stimulated mesenteric lymphocytes was detected (P < 0.05). Our results indicated that S. japonicum infection could induce the TLR7 expression on T cells in the MLN of C57BL/6 mice, and TLR7 mediates T cell response in the early phase of infection.
Collapse
|
105
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
106
|
Lefebvre MN, Harty JT. You Shall Not Pass: Memory CD8 T Cells in Liver-Stage Malaria. Trends Parasitol 2019; 36:147-157. [PMID: 31843536 DOI: 10.1016/j.pt.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Each year over 200 million malaria infections occur, with over 400 000 associated deaths. Vaccines formed with attenuated whole parasites can induce protective memory CD8 T cell responses against liver-stage malaria; however, widespread administration of such vaccines is logistically challenging. Recent scientific findings are delineating how protective memory CD8 T cell populations are primed and maintained and how such cells mediate immunity to liver-stage malaria. Memory CD8 T cell anatomic localization and expression of transcription factors, homing receptors, and signaling molecules appear to play integral roles in protective immunity to liver-stage malaria. Further investigation of how such factors contribute to optimal protective memory CD8 T cell generation and maintenance in humans will inform efforts for improved vaccines.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
107
|
Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, Qi Y, Qiu H, Chen H, Tao A, Mu J, Qin W, Huang J. Changes of CD103-expressing pulmonary CD4 + and CD8 + T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis 2019; 19:999. [PMID: 31775660 PMCID: PMC6880605 DOI: 10.1186/s12879-019-4633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that CD103 is an important marker for tissue-resident memory T cells (TRM) which plays an important role in anti-infection. However, the role of CD103+ TRM was not elucidated in the progress of S. japonicum infection induced disease. METHODS 6-8 weeks old C57BL/6 mice were infected by S. japonicum. Mice were sacrificed and the lungs were removed 5-6 weeks after infection. Immunofluorescent staining and Q-PCR were performed to identify the expression of CD103 molecule. Single cellular populations were made, percentages of CD103 on both CD4+ and CD8+ T lymphocytes were dynamical observed by flow cytometry (FCM). Moreover, the expression of memory T cells related molecules CD69 and CD62L, T cell function associated molecules CD107a, IFN-γ, IL-4, IL-9, and IL-10 were compared between CD103+ CD4+ and CD8+ T cells by FCM. RESULTS CD103+ cells were emerged in the lung of both naive and S. japonicum infected mice. Both the percentage and the absolute numbers of pulmonary CD4+ and CD8+ cells were increased after S. japonicum infection (P < 0.05). The percentage of CD103+ cells in CD8+ T cells decreased significantly at the early stage of S. japonicum infection (P < 0.05). Increased CD69, decreased CD62L and CD107a expressions were detected on both CD4+ and CD8+ CD103+ T cells in the lungs of infected mice (P < 0.05). Compared to CD8+ CD103+ T cells, CD4+ CD103+ T cells from infected mice expressed higher level of CD69 and lower level CD62L molecules (P < 0.05). Moreover, higher percentage of IL-4+, IL-9+ and IL-10+ cells on CD4+ CD103+ pulmonary T cells was found in infected mice (P < 0.05). Significantly increased IL-4 and IL-9, and decreased IFN-γ expressing cells were detected in CD8+CD103+ cells of infected mice (P < 0.05). CONCLUSIONS CD103-expressing pulmonary CD4+ and CD8+ T cells play important roles in mediating S. japonicum infection induced granulomatous inflammation in the lung.
Collapse
Affiliation(s)
- Yi Zhao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Quan Yang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chenxi Jin
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuanfa Feng
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shihao Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyan Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanwei Qi
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaina Qiu
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyuan Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ailin Tao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjuan Qin
- Department of Radiation Oncology, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jun Huang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
108
|
Topham DJ, Reilly EC, Emo KL, Sportiello M. Formation and Maintenance of Tissue Resident Memory CD8+ T Cells after Viral Infection. Pathogens 2019; 8:E196. [PMID: 31635290 PMCID: PMC6963622 DOI: 10.3390/pathogens8040196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Tissue resident memory (TRM) CD8 T cells comprise a memory population that forms in peripheral, non-lymphoid tissues after an infection that does not recirculate into the bloodstream or other tissues. TRM cells often recognize conserved peptide epitopes shared among different strains of a pathogen and so offer a protective role upon secondary encounter with the same or related pathogens. Several recent studies have begun to shed light on the intrinsic and extrinsic factors regulating TRM. In addition, work is being done to understand how canonical "markers" of TRM actually affect the function of these cells. Many of these markers regulate the generation or persistence of these TRM cells, an important point of study due to the differences in persistence of TRM between tissues, which may impact future vaccine development to cater towards these important differences. In this review, we will discuss recent advances in TRM biology that may lead to strategies designed to promote this important protective immune subset.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Kris Lambert Emo
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|