101
|
Witcher KG, Eiferman DS, Godbout JP. Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci 2016; 38:609-620. [PMID: 26442695 DOI: 10.1016/j.tins.2015.08.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) can lead to secondary neuropsychiatric problems that develop and persist years after injury. Mounting evidence indicates that neuroinflammatory processes progress after the initial head injury and worsen with time. Microglia contribute to this inflammation by maintaining a primed profile long after the acute effects of the injury have dissipated. This may set the stage for glial dysfunction and hyperactivity to challenges including subsequent head injury, stress, or induction of a peripheral immune response. This review discusses the evidence that microglia become primed following TBI and how this corresponds with vulnerability to a 'second hit' and subsequent neuropsychiatric and neurodegenerative complications.
Collapse
Affiliation(s)
- Kristina G Witcher
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH, USA
| | - Daniel S Eiferman
- Department of Surgery, The Ohio State University, 395 West 12th Avenue, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 West 12th Avenue, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Drive, Columbus, OH, USA.
| |
Collapse
|
102
|
Ojo JO, Mouzon B, Algamal M, Leary P, Lynch C, Abdullah L, Evans J, Mullan M, Bachmeier C, Stewart W, Crawford F. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers. J Neuropathol Exp Neurol 2016; 75:636-55. [PMID: 27251042 DOI: 10.1093/jnen/nlw035] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS).
| | - Benoit Mouzon
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Moustafa Algamal
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Paige Leary
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Cillian Lynch
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Laila Abdullah
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - James Evans
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Michael Mullan
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Corbin Bachmeier
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - William Stewart
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Fiona Crawford
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| |
Collapse
|
103
|
Acabchuk R, Briggs DI, Angoa-Pérez M, Powers M, Wolferz R, Soloway M, Stern M, Talbot LR, Kuhn DM, Conover JC. Repeated mild traumatic brain injury causes focal response in lateral septum and hippocampus. Concussion 2016; 1. [PMID: 28078102 PMCID: PMC5222510 DOI: 10.2217/cnc-2015-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To advance our understanding of regional and temporal cellular responses to repeated mild traumatic brain injury (rmTBI), we used a mouse model of rmTBI that incorporated acceleration, deceleration and rotational forces. Materials & methods: A modified weight-drop method was used to compare two inter-injury intervals, rmTBI-short (five hits delivered over 3 days) and rmTBI-long (five hits delivered over 15 days). Regional investigations of forebrain and midbrain histological alterations were performed at three post-injury time points (immediate, 2 weeks and 6 weeks). Results: The rmTBI-short protocol generated an immediate, localized microglial and astroglial response in the dorsolateral septum and hippocampus, with the astroglial response persisting in the dorsolateral septum. The rmTBI-long protocol showed only a transitory astroglial response in the dorsolateral septum. Conclusion: Our results indicate that the lateral septum and hippocampus are particularly vulnerable regions in rmTBI, possibly contributing to memory and emotional impairments associated with repeated concussions.
Collapse
Affiliation(s)
- Rebecca Acabchuk
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Denise I Briggs
- John D Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mariana Angoa-Pérez
- John D Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Meghan Powers
- Department of Biological Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Richard Wolferz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Melanie Soloway
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Mai Stern
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Lillian R Talbot
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Donald M Kuhn
- John D Dingell VA Medical Center and Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Joanne C Conover
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA ; Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
104
|
Song H, Xu L, Zhang R, Cao Z, Zhang H, Yang L, Guo Z, Qu Y, Yu J. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci Lett 2016; 622:95-101. [DOI: 10.1016/j.neulet.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/08/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
105
|
Hay J, Johnson VE, Smith DH, Stewart W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:21-45. [PMID: 26772317 DOI: 10.1146/annurev-pathol-012615-044116] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.
Collapse
Affiliation(s)
- Jennifer Hay
- School of Medicine and.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom; .,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| |
Collapse
|
106
|
Huang M, Risling M, Baker DG. The role of biomarkers and MEG-based imaging markers in the diagnosis of post-traumatic stress disorder and blast-induced mild traumatic brain injury. Psychoneuroendocrinology 2016; 63:398-409. [PMID: 25769625 DOI: 10.1016/j.psyneuen.2015.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pervasive use of improvised explosive devices (IEDs), rocket-propelled grenades, and land mines in the recent conflicts in Iraq and Afghanistan has brought traumatic brain injury (TBI) and its impact on health outcomes into public awareness. Blast injuries have been deemed signature wounds of these wars. War-related TBI is not new, having become prevalent during WWI and remaining medically relevant in WWII and beyond. Medicine's past attempts to accurately diagnose and disentangle the pathophysiology of war-related TBI parallels current lines of inquiry and highlights limitations in methodology and attribution of symptom etiology, be it organic, psychological, or behavioral. New approaches and biomarkers are needed. PRECLINICAL Serological biomarkers and biomarkers of injury obtained with imaging techniques represent cornerstones in the translation between experimental data and clinical observations. Experimental models for blast related TBI and PTSD can generate critical data on injury threshold, for example for white matter injury from acceleration. Carefully verified and validated models can be evaluated with gene expression arrays and proteomics to identify new candidates for serological biomarkers. Such models can also be analyzed with diffusion MRI and microscopy in order to identify criteria for detection of diffuse white matter injuries, such as DAI (diffuse axonal injury). The experimental models can also be analyzed with focus on injury outcome in brain stem regions, such as locus coeruleus or nucleus raphe magnus that can be involved in response to anxiety changes. CLINICAL Mild (and some moderate) TBI can be difficult to diagnose because the injuries are often not detectable on conventional MRI or CT. There is accumulating evidence that injured brain tissues in TBI patients generate abnormal low-frequency magnetic activity (ALFMA, peaked at 1-4Hz) that can be measured and localized by magnetoencephalography (MEG). MEG imaging detects TBI abnormalities at the rates of 87% for the mild TBI, group (blast-induced plus non-blast causes) and 100% for the moderate group. Among the mild TBI patients, the rates of abnormalities are 96% and 77% for the blast and non-blast TBI groups, respectively. There is emerging evidence based on fMRI and MEG studies showing hyper-activity in the amygdala and hypo-activity in pre-frontal cortex in individuals with PTSD. MEG signal may serve as a sensitive imaging marker for mTBI, distinguishable from abnormalities generated in association with PTSD. More work is needed to fully describe physiological mechanisms of post-concussive symptoms.
Collapse
Affiliation(s)
- Mingxiong Huang
- Radiology Services, VA San Diego Healthcare System, San Diego, CA, USA; Research Services, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA.
| | - Mårten Risling
- Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden
| | - Dewleen G Baker
- Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), San Diego, CA, USA; University of California San Diego, Department of Psychiatry, La Jolla, USA
| |
Collapse
|
107
|
Turner RC, Lucke-Wold BP, Logsdon AF, Robson MJ, Lee JM, Bailes JE, Dashnaw ML, Huber JD, Petraglia AL, Rosen CL. Modeling Chronic Traumatic Encephalopathy: The Way Forward for Future Discovery. Front Neurol 2015; 6:223. [PMID: 26579067 PMCID: PMC4620695 DOI: 10.3389/fneur.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Despite the extensive media coverage associated with the diagnosis of chronic traumatic encephalopathy (CTE), our fundamental understanding of the disease pathophysiology remains in its infancy. Only recently have scientific laboratories and personnel begun to explore CTE pathophysiology through the use of preclinical models of neurotrauma. Some studies have shown the ability to recapitulate some aspects of CTE in rodent models, through the use of various neuropathological, biochemical, and/or behavioral assays. Many questions related to CTE development, however, remain unanswered. These include the role of impact severity, the time interval between impacts, the age at which impacts occur, and the total number of impacts sustained. Other important variables such as the location of impacts, character of impacts, and effect of environment/lifestyle and genetics also warrant further study. In this work, we attempt to address some of these questions by exploring work previously completed using single- and repetitive-injury paradigms. Despite some models producing some deficits similar to CTE symptoms, it is clear that further studies are required to understand the development of neuropathological and neurobehavioral features consistent with CTE-like features in rodents. Specifically, acute and chronic studies are needed that characterize the development of tau-based pathology.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Matthew J. Robson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John M. Lee
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Julian E. Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Matthew L. Dashnaw
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jason D. Huber
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | | | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
108
|
Bailes JE, Turner RC, Lucke-Wold BP, Patel V, Lee JM. Chronic Traumatic Encephalopathy: Is It Real? The Relationship Between Neurotrauma and Neurodegeneration. Neurosurgery 2015; 62 Suppl 1:15-24. [PMID: 26181916 DOI: 10.1227/neu.0000000000000811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Julian E Bailes
- *Departments of Neurosurgery and ‡Pathology and Laboratory Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois; §Department of Neurosurgery and ¶Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | | | | |
Collapse
|
109
|
Iverson GL, Gardner AJ, McCrory P, Zafonte R, Castellani RJ. A critical review of chronic traumatic encephalopathy. Neurosci Biobehav Rev 2015; 56:276-93. [PMID: 26183075 DOI: 10.1016/j.neubiorev.2015.05.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/14/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) has been described in the literature as a neurodegenerative disease with: (i) localized neuronal and glial accumulations of phosphorylated tau (p-tau) involving perivascular areas of the cerebral cortex, sulcal depths, and with a preference for neurons within superficial cortical laminae; (ii) multifocal axonal varicosities and axonal loss involving deep cortex and subcortical white matter; (iii) relative absence of beta-amyloid deposits; (iv) TDP-43 immunoreactive inclusions and neurites; and (v) broad and diverse clinical features. Some of the pathological findings reported in the literature may be encountered with age and other neurodegenerative diseases. However, the focality of the p-tau cortical findings in particular, and the regional distribution, are believed to be unique to CTE. The described clinical features in recent cases are very similar to how depression manifests in middle-aged men and with frontotemporal dementia as the disease progresses. It has not been established that the described tau pathology, especially in small amounts, can cause complex changes in behavior such as depression, substance abuse, suicidality, personality changes, or cognitive impairment. Future studies will help determine the extent to which the neuropathology is causally related to the diverse clinical features.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, MassGeneral Hospital for Children Sports Concussion Program, & Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, MA, USA.
| | - Andrew J Gardner
- Hunter New England Local Health District Sports Concussion Program; & Centre for Translational Neuroscience and Mental Health, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Paul McCrory
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre - Austin Campus, Heidelberg, Victoria, Australia
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School; Spaulding Rehabilitation Hospital; Brigham and Women's Hospital; & Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, MA, USA
| | - Rudy J Castellani
- Division of Neuropathology, University of Maryland School of Medicine, USA
| |
Collapse
|
110
|
Ojo JO, Mouzon BC, Crawford F. Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men. Exp Neurol 2015; 275 Pt 3:389-404. [PMID: 26054886 DOI: 10.1016/j.expneurol.2015.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurological and psychiatric condition marked by preferential perivascular foci of neurofibrillary and glial tangles (composed of hyperphosphorylated-tau proteins) in the depths of the sulci. Recent retrospective case series published over the last decade on athletes and military personnel have added considerably to our clinical and histopathological knowledge of CTE. This has marked a vital turning point in the traumatic brain injury (TBI) field, raising public awareness of the potential long-term effects of mild and moderate repetitive TBI, which has been recognized as one of the major risk factors associated with CTE. Although these human studies have been informative, their retrospective design carries certain inherent limitations that should be cautiously interpreted. In particular, the current overriding issue in the CTE literature remains confusing in regard to appropriate definitions of terminology, variability in individual pathologies and the potential case selection bias in autopsy based studies. There are currently no epidemiological or prospective studies on CTE. Controlled preclinical studies in animals therefore provide an alternative means for specifically interrogating aspects of CTE pathogenesis. In this article, we review the current literature and discuss difficulties and challenges of developing in-vivo TBI experimental paradigms to explore the link between repetitive head trauma and tau-dependent changes. We provide our current opinion list of recommended features to consider for successfully modeling CTE in animals to better understand the pathobiology and develop therapeutics and diagnostics, and critical factors, which might influence outcome. We finally discuss the possible directions of future experimental research in the repetitive TBI/CTE field.
Collapse
Affiliation(s)
- Joseph O Ojo
- Roskamp Institute, Sarasota, FL 34243, USA; The Open University, Department of Life Sciences, Milton Keynes MK7 6AA, UK; Chronic Effects of Neurotrauma Consortium, USA.
| | - Benoit C Mouzon
- Roskamp Institute, Sarasota, FL 34243, USA; The Open University, Department of Life Sciences, Milton Keynes MK7 6AA, UK; James A. Haley Veterans Administration Medical Center, Tampa, FL 33612, USA; Chronic Effects of Neurotrauma Consortium, USA.
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL 34243, USA; The Open University, Department of Life Sciences, Milton Keynes MK7 6AA, UK; James A. Haley Veterans Administration Medical Center, Tampa, FL 33612, USA; Chronic Effects of Neurotrauma Consortium, USA.
| |
Collapse
|
111
|
del Mar N, von Buttlar X, Yu AS, Guley NH, Reiner A, Honig MG. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol 2015; 271:53-71. [PMID: 25957630 DOI: 10.1016/j.expneurol.2015.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly, our findings of extensive axonal injury also caution that repeated trauma is likely to have cumulative adverse consequences for both brain and spinal cord.
Collapse
Affiliation(s)
- Nobel del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xinyu von Buttlar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Angela S Yu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Natalie H Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
112
|
Smith C. The Study and Consequences of Repetitive Traumatic Brain Injury. Introduction. Brain Pathol 2015; 25:287-8. [PMID: 25904044 PMCID: PMC8029171 DOI: 10.1111/bpa.12251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Colin Smith
- Academic NeuropathologyCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
113
|
Semple BD, Lee S, Sadjadi R, Fritz N, Carlson J, Griep C, Ho V, Jang P, Lamb A, Popolizio B, Saini S, Bazarian JJ, Prins ML, Ferriero DM, Basso DM, Noble-Haeusslein LJ. Repetitive concussions in adolescent athletes - translating clinical and experimental research into perspectives on rehabilitation strategies. Front Neurol 2015; 6:69. [PMID: 25883586 PMCID: PMC4382966 DOI: 10.3389/fneur.2015.00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/13/2015] [Indexed: 12/23/2022] Open
Abstract
Sports-related concussions are particularly common during adolescence, a time when even mild brain injuries may disrupt ongoing brain maturation and result in long-term complications. A recent focus on the consequences of repetitive concussions among professional athletes has prompted the development of several new experimental models in rodents, as well as the revision of guidelines for best management of sports concussions. Here, we consider the utility of rodent models to understand the functional consequences and pathobiology of concussions in the developing brain, identifying the unique behavioral and pathological signatures of concussive brain injuries. The impact of repetitive concussions on behavioral consequences and injury progression is also addressed. In particular, we focus on the epidemiological, clinical, and experimental evidence underlying current recommendations for physical and cognitive rest after concussion, and highlight key areas in which further research is needed. Lastly, we consider how best to promote recovery after injury, recognizing that optimally timed, activity-based rehabilitative strategies may hold promise for the adolescent athlete who has sustained single or repetitive concussions. The purpose of this review is to inform the clinical research community as it strives to develop and optimize evidence-based guidelines for the concussed adolescent, in terms of both acute and long-term management.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Sangmi Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Raha Sadjadi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nora Fritz
- Kennedy Krieger Institute, John Hopkins University, Baltimore, MD, USA
| | - Jaclyn Carlson
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Carrie Griep
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa Ho
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Patrice Jang
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Annick Lamb
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Beth Popolizio
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Saini
- San Francisco State University Graduate Program in Physical Therapy, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey J. Bazarian
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Mayumi L. Prins
- Department of Neurosurgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - D. Michele Basso
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
| | - Linda J. Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Physical Therapy and Rehabilitation Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
114
|
Brody DL, Benetatos J, Bennett RE, Klemenhagen KC, Mac Donald CL. The pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions. Mol Cell Neurosci 2015; 66:91-8. [PMID: 25684677 DOI: 10.1016/j.mcn.2015.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. In addition, the role of injury to dendritic spine cytoskeletal structures, vascular reactivity impairments, and microthrombi are intriguing and subjects of ongoing inquiry. Methods for quantitative analysis of axonal injury, dendritic injury, and synaptic loss need to be refined for the field to move forward in a rigorous fashion. We and others are attempting to develop translational approaches to assess these specific pathophysiological events in both animals and humans to facilitate clinically relevant pharmacodynamic assessments of candidate therapeutics. In this article, we review and discuss several of the recent experimental results from our lab and others. We include new initial data describing the difficulty in modeling progressive tau pathology in experimental rcTBI, and results demonstrating that sertraline can alleviate social interaction deficits and depressive-like behaviors following experimental rcTBI plus foot shock stress. Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. This article is part of a Special Issue entitled "Traumatic Brain Injury".
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA.
| | - Joseph Benetatos
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| | - Rachel E Bennett
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| | - Kristen C Klemenhagen
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| | - Christine L Mac Donald
- Department of Neurology, Washington University School of Medicine and Hope Center for Neurological Disorders, St Louis, MO, USA
| |
Collapse
|
115
|
Turner RC, Lucke-Wold BP, Logsdon AF, Robson MJ, Dashnaw ML, Huang JH, Smith KE, Huber JD, Rosen CL, Petraglia AL. The Quest to Model Chronic Traumatic Encephalopathy: A Multiple Model and Injury Paradigm Experience. Front Neurol 2015; 6:222. [PMID: 26539159 PMCID: PMC4611965 DOI: 10.3389/fneur.2015.00222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 02/05/2023] Open
Abstract
Chronic neurodegeneration following a history of neurotrauma is frequently associated with neuropsychiatric and cognitive symptoms. In order to enhance understanding about the underlying pathophysiology linking neurotrauma to neurodegeneration, a multi-model preclinical approach must be established to account for the different injury paradigms and pathophysiologic mechanisms. We investigated the development of tau pathology and behavioral changes using a multi-model and multi-institutional approach, comparing the preclinical results to tauopathy patterns seen in post-mortem human samples from athletes diagnosed with chronic traumatic encephalopathy (CTE). We utilized a scaled and validated blast-induced traumatic brain injury model in rats and a modified pneumatic closed-head impact model in mice. Tau hyperphosphorylation was evaluated by western blot and immunohistochemistry. Elevated-plus maze and Morris water maze were employed to measure impulsive-like behavior and cognitive deficits respectively. Animals exposed to single blast (~50 PSI reflected peak overpressure) exhibited elevated AT8 immunoreactivity in the contralateral hippocampus at 1 month compared to controls (q = 3.96, p < 0.05). Animals exposed to repeat blast (six blasts over 2 weeks) had increased AT8 (q = 8.12, p < 0.001) and AT270 (q = 4.03, p < 0.05) in the contralateral hippocampus at 1 month post-injury compared to controls. In the modified controlled closed-head impact mouse model, no significant difference in AT8 was seen at 7 days, however a significant elevation was detected at 1 month following injury in the ipsilateral hippocampus compared to control (q = 4.34, p < 0.05). Elevated-plus maze data revealed that rats exposed to single blast (q = 3.53, p < 0.05) and repeat blast (q = 4.21, p < 0.05) spent more time in seconds exploring the open arms compared to controls. Morris water maze testing revealed a significant difference between groups in acquisition times on days 22-27. During the probe trial, single blast (t = 6.44, p < 0.05) and repeat blast (t = 8.00, p < 0.05) rats spent less time in seconds exploring where the platform had been located compared to controls. This study provides a multi-model example of replicating tau and behavioral changes in animals and provides a foundation for future investigation of CTE disease pathophysiology and therapeutic development.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Matthew J. Robson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew L. Dashnaw
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott and White Health System, Temple, TX, USA
| | - Kelly E. Smith
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Jason D. Huber
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Anthony L. Petraglia
- Division of Neurosurgery, Rochester Regional Health, Rochester, NY, USA
- *Correspondence: Anthony L. Petraglia,
| |
Collapse
|