101
|
Liu C, Li XH, Chen YX, Cheng ZH, Duan QH, Meng QH, Tao XP, Shang B, Dong HM. Age-Related Response of Rumen Microbiota to Mineral Salt and Effects of Their Interactions on Enteric Methane Emissions in Cattle. MICROBIAL ECOLOGY 2017; 73:590-601. [PMID: 27924402 DOI: 10.1007/s00248-016-0888-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Mineral salt bricks are often used in cow raising as compensation for mineral losses to improve milk yield, growth, and metabolic activity. Generally, effects of minerals are partially thought to result from improvement of microbial metabolism, but their influence on the rumen microbiota has rarely been documented to date. In this study, we investigated the response of microbiota to mineral salt in heifer and adult cows and evaluated ruminal fermentation and enteric methane emissions of cows fed mineral salts. Twelve lactating Holstein cows and twelve heifers fed a total mixed ration (TMR) diet were randomly allocated into two groups, respectively: a treatment group comprising half of the adults and heifers that were fed mineral salt and a control group containing the other half fed a diet with no mineral salt supplement. Enteric methane emissions were reduced by 9.6% (P < 0.05) in adults ingesting a mineral salt diet, while concentrations of ruminal ammonia, butyrate, and propionate were increased to a significant extent (P < 0.05). Enteric methane emissions were also reduced in heifers ingesting a mineral salt diet, but not to a significant extent (P > 0.05). Moreover, the concentrations of ammonia and volatile fatty acids (VFAs) were not significantly altered in heifers (P > 0.05). Based on these results, we performed high-throughput sequencing to explore the bacterial and archaeal communities of the rumen samples. Succiniclasticum and Prevotella, two propionate-producing bacteria, were predominant in samples of both adults and heifers. At the phylotype level, mineral salt intake led to a significant shift from Succiniclasticum to Prevotella and Prevotellaceae populations in adults. In contrast, reduced abundance of Succiniclasticum and Prevotella phylotypes was observed, with no marked shift in propionate-producing bacteria in heifers. Methanogenic archaea were not significantly abundant between groups, either in adult cows or heifers. The shift of Succiniclasticum to Prevotella and Prevotellaceae in adults suggests a response of microbiota to mineral salt that contributes to higher propionate production, which competes for hydrogen utilized by methanogens. Our data collectively indicate that a mineral salt diet can alter interactions of bacterial taxa that result in enteric methane reduction, and this effect is also influenced in an age-dependent manner.
Collapse
Affiliation(s)
- C Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Southern St. No. 12, 100081, Haidian District, Beijing, China
| | - X H Li
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Y X Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Southern St. No. 12, 100081, Haidian District, Beijing, China
| | - Z H Cheng
- Tianjin Agricultural Environmental Protection Management and Monitoring Station, Tianjin, 300061, China
| | - Q H Duan
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Q H Meng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Southern St. No. 12, 100081, Haidian District, Beijing, China
| | - X P Tao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Southern St. No. 12, 100081, Haidian District, Beijing, China
| | - B Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Southern St. No. 12, 100081, Haidian District, Beijing, China
| | - H M Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Southern St. No. 12, 100081, Haidian District, Beijing, China.
| |
Collapse
|
102
|
Dieho K, van den Bogert B, Henderson G, Bannink A, Ramiro-Garcia J, Smidt H, Dijkstra J. Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance. J Dairy Sci 2017; 100:2695-2710. [DOI: 10.3168/jds.2016-11982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
|
103
|
Zhou Z, Fang L, Meng Q, Li S, Chai S, Liu S, Schonewille JT. Assessment of Ruminal Bacterial and Archaeal Community Structure in Yak ( Bos grunniens). Front Microbiol 2017; 8:179. [PMID: 28223980 PMCID: PMC5293774 DOI: 10.3389/fmicb.2017.00179] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the microbial community composition in the rumen of yaks under different feeding regimes. Microbial communities were assessed by sequencing bacterial and archaeal 16S ribosomal RNA gene fragments obtained from yaks (Bos grunniens) from Qinghai-Tibetan Plateau, China. Samples were obtained from 14 animals allocated to either pasture grazing (Graze), a grazing and supplementary feeding regime (GSF), or an indoor feeding regime (Feed). The predominant bacterial phyla across feeding regimes were Bacteroidetes (51.06%) and Firmicutes (32.73%). At genus level, 25 genera were shared across all samples. The relative abundance of Prevotella in the graze and GSF regime group were significantly higher than that in the feed regime group. Meanwhile, the relative abundance of Ruminococcus was lower in the graze group than the feed and GSF regime groups. The most abundant archaeal phylum was Euryarchaeota, which accounted for 99.67% of the sequences. Ten genera were detected across feeding regimes, seven genera were shared by all samples, and the most abundant was genus Methanobrevibacter (91.60%). The relative abundance of the most detected genera were similar across feeding regime groups. Our results suggest that the ruminal bacterial community structure differs across yak feeding regimes while the archaeal community structures are largely similar.
Collapse
Affiliation(s)
- Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Lei Fang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University Xining, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University Xining, China
| | | |
Collapse
|
104
|
Plaizier JC, Li S, Tun HM, Khafipour E. Nutritional Models of Experimentally-Induced Subacute Ruminal Acidosis (SARA) Differ in Their Impact on Rumen and Hindgut Bacterial Communities in Dairy Cows. Front Microbiol 2017; 7:2128. [PMID: 28179895 PMCID: PMC5265141 DOI: 10.3389/fmicb.2016.02128] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
Effects of subacute ruminal acidosis (SARA) challenges on the bacteria in rumen fluid, cecal digesta, and feces of dairy cows were determined using 16S rRNA gene pyrosequencing and real-time quantitative PCR. Six non-lactating Holstein cows with cannulas in the rumen and cecum were used in a 3 × 3 Latin square arrangement of treatments. During the first 3 wk of each experimental period, cows received a control diet containing 70% forages on a dry matter (DM) basis. In wk 4 of each period, cows received one of three diets: (1) the control diet; (2) a diet in which 34% of the dietary DM was replaced with pellets of ground wheat and barley (GBSC); or (3) a diet in which 37% of dietary DM was replaced with pellets of ground alfalfa (APSC). Rumen fluid, cecal digesta and feces were collected on d 5 of wk 4 of each period and the composition of the bacterial community was studied. Rumen fermentation responses were reported in a companion study. Both SARA-inducing challenges resulted in similar digesta pH depressions (as shown by the companion study), and reduced bacterial richness and diversity in rumen fluid, but GBSC had the larger effect. None of the challenges affected these measures in cecal digesta, and only GBSC reduced bacterial richness and diversity in feces. Only GBSC reduced the abundance of Bacteroidetes in rumen fluid. Abundances of limited number of bacterial genera identified by 16S rRNA gene sequencing in the rumen, cecum and feces were affected by the GBSC. The APSC did not affect any of these abundances. Both challenges increased the abundances of several starch, pectin, xylan, dextrin, lactate, succinate, and sugar fermenting bacterial species in the rumen, cecum, and feces as determined by qPCR. Only GBSC increased that of Megasphaera elsdenii in the rumen. Both challenges decreased the abundance of Streptococcus bovis, and increased that of Escherichia coli, in cecal digesta and feces, with GBSC having the larger effect. These results showed that the SARA challenges caused moderate and reversible changes of the composition of the bacteria in the foregut and hindgut, with the greater changes observed during GBSC.
Collapse
Affiliation(s)
- Jan C Plaizier
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Shucong Li
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Hein M Tun
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of ManitobaWinnipeg, MB, Canada; Department of Medical Microbiology, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
105
|
Derakhshani H, Tun HM, Cardoso FC, Plaizier JC, Khafipour E, Loor JJ. Linking Peripartal Dynamics of Ruminal Microbiota to Dietary Changes and Production Parameters. Front Microbiol 2017; 7:2143. [PMID: 28127294 PMCID: PMC5226935 DOI: 10.3389/fmicb.2016.02143] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
During the peripartal period, proper acclimatization of rumen microorganisms to variations in nutritional management can facilitate the transition into lactation. This study characterized the temporal shifts in the composition and functional properties of ruminal microbiota during the periparturient period in dairy cows subjected to a typical two-tiered feeding management approach. Ruminal digesta samples from eight multiparous fistulated Holstein cows were collected on days -14, -7, 10, 20, and 28 relative to parturition. High-throughput Illumina sequencing of the V4 region of the bacterial 16S rRNA gene revealed distinct clustering patterns between pre- and postpartal ruminal microbiota. During the prepartal period, when the voluntary dry matter intake was lower, we observed strikingly lower inter-animal variations in the composition of the ruminal microbiota. Genera Ruminococcus and Butyrivibrio, which are considered major fibrolytic rumen dwellers, were overrepresented in the prepartal rumen ecosystem. In contrast, increased postpartal voluntary DMI was associated with enrichment of bacterial genera mainly consisting of proteolytic, amylolytic, and lactate-producer species (including Prevotella, Streptococcus, and Lactobacillus). These, together with the postpartal enrichment of energy metabolism pathways, suggested a degree of acclimatization of the ruminal microbiota to harvest energy from the carbohydrate-dense lactation diet. In addition, correlations between ruminal microbiota and parameters such as milk yield and milk composition underscored the metabolic contribution of this microbial community to the cow's performance and production.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Hein M Tun
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Felipe C Cardoso
- Department of Animal Sciences, University of Illinois Urbana, IL, USA
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of ManitobaWinnipeg, MB, Canada; Department of Medical Microbiology, University of ManitobaWinnipeg, MB, Canada
| | - Juan J Loor
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Division of Nutritional Sciences and Illinois Informatics Institute, University of IllinoisUrbana, IL, USA
| |
Collapse
|
106
|
Ribeiro RS, Terry SA, Sacramento JP, Silveira SRE, Bento CBP, da Silva EF, Mantovani HC, da Gama MAS, Pereira LGR, Tomich TR, Maurício RM, Chaves AV. Tithonia diversifolia as a Supplementary Feed for Dairy Cows. PLoS One 2016; 11:e0165751. [PMID: 27906983 PMCID: PMC5132235 DOI: 10.1371/journal.pone.0165751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to examine the effects of Tithonia diversifolia as a supplementary forage on dairy cow performance and methane production. Nine lactating Holstein × Zebu dairy cows (519 ± 53.3 kg of body weight and 66 ± 13.3 d in milk) were paired by milk yield (21.3 ± 2.34 kg/d) and body weight and randomly assigned to three dietary treatments in a Latin square design with 21-d experimental periods (14 d for diet adaptation and 7 d for measurements and sample collection). The dietary treatments included the control diet consisting of fresh sugar cane plus concentrate (44:56, % of diet DM), and two treatment diets containing different levels of fresh T. diversifolia (6.5 and 15.4%, DM basis) which partially replaced both sugarcane and concentrates. Methane production was measured using the sulphur hexafluoride (SF6) technique from d 16 to d 21 of each experimental period. Analysis of the gas samples was performed by gas chromatography. The inclusion of T. diversifolia at 15.4% DM had no effects on DM intake, milk production, nitrogen balance or methane production. There was no effect on the concentrations of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) in milk fat (P ≥ 0.28), though individual milk fatty acids were affected. Serum concentrations of glucose, urea nitrogen (BUN), triglycerides, β-hydroxybutyrate (BHBA), and cholesterol were unaffected by the dietary treatments (P ≥ 0.13). There was a time (2 and 6 h post-feeding) and dietary treatment effect (P < 0.01) on the acetate to propionate ratio in the rumen. A denaturing gradient gel electrophoresis analysis of the archaeal community showed distinct clustering of the archaea populations for control and treatment diets. Taken together, our results indicate the potential of T. diversifolia as a supplementary forage for dairy cattle in the tropics.
Collapse
Affiliation(s)
- Rafael Sandin Ribeiro
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | - Stephanie Amelia Terry
- The University of Sydney, Faculty of Veterinary Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - João Paulo Sacramento
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | - Sylvia Rocha e Silveira
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | | | | | | | | | | | | | - Rogério Martins Maurício
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | - Alexandre Vieira Chaves
- The University of Sydney, Faculty of Veterinary Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
107
|
Bannink A, van Lingen HJ, Ellis JL, France J, Dijkstra J. The Contribution of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism. Front Microbiol 2016; 7:1820. [PMID: 27933039 PMCID: PMC5120094 DOI: 10.3389/fmicb.2016.01820] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function.
Collapse
Affiliation(s)
- André Bannink
- Animal Nutrition, Wageningen Livestock Research, Wageningen University and Research Wageningen, Netherlands
| | - Henk J van Lingen
- Animal Nutrition Group, Wageningen University and Research Wageningen, Netherlands
| | - Jennifer L Ellis
- Animal Nutrition Group, Wageningen University and ResearchWageningen, Netherlands; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, GuelphON, Canada
| | - James France
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph ON, Canada
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research Wageningen, Netherlands
| |
Collapse
|
108
|
Paz HA, Anderson CL, Muller MJ, Kononoff PJ, Fernando SC. Rumen Bacterial Community Composition in Holstein and Jersey Cows Is Different under Same Dietary Condition and Is Not Affected by Sampling Method. Front Microbiol 2016; 7:1206. [PMID: 27536291 PMCID: PMC4971436 DOI: 10.3389/fmicb.2016.01206] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
The rumen microbial community in dairy cows plays a critical role in efficient milk production. However, there is a lack of data comparing the composition of the rumen bacterial community of the main dairy breeds. This study utilizes 16S rRNA gene sequencing to describe the rumen bacterial community composition in Holstein and Jersey cows fed the same diet by sampling the rumen microbiota via the rumen cannula (Holstein cows) or esophageal tubing (both Holstein and Jersey cows). After collection of the rumen sample via esophageal tubing, particles attached to the strainer were added to the sample to ensure representative sampling of both the liquid and solid fraction of the rumen contents. Alpha diversity metrics, Chao1 and observed OTUs estimates, displayed higher (P = 0.02) bacterial richness in Holstein compared to Jersey cows and no difference (P > 0.70) in bacterial community richness due to sampling method. The principal coordinate analysis displayed distinct clustering of bacterial communities by breed suggesting that Holstein and Jersey cows harbor different rumen bacterial communities. Family level classification of most abundant (>1%) differential OTUs displayed that OTUs from the bacterial families Lachnospiraceae and p-2534-18B5 to be predominant in Holstein cows compared to Jersey cows. Additionally, OTUs belonging to family Prevotellaceae were differentially abundant in the two breeds. Overall, the results from this study suggest that the bacterial community between Holstein and Jersey cows differ and that esophageal tubing with collection of feed particles associated with the strainer provides a representative rumen sample similar to a sample collected via the rumen cannula. Thus, in future studies esophageal tubing with addition of retained particles can be used to collect rumen samples reducing the cost of cannulation and increasing the number of animals used in microbiome investigations, thus increasing the statistical power of rumen microbial community evaluations.
Collapse
Affiliation(s)
- Henry A Paz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln NE, USA
| | - Christopher L Anderson
- Department of Animal Science, University of Nebraska-Lincoln, LincolnNE, USA; School of Biological Sciences, University of Nebraska-Lincoln, LincolnNE, USA
| | - Makala J Muller
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln NE, USA
| | - Paul J Kononoff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln NE, USA
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, LincolnNE, USA; School of Biological Sciences, University of Nebraska-Lincoln, LincolnNE, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, LincolnNE, USA
| |
Collapse
|
109
|
An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets. Animal 2016; 11:68-77. [PMID: 27364619 DOI: 10.1017/s175173111600121x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best-fit equations considered intakes of metabolisable energy, cellulose, hemicellulose and fat, or for steers GEI and body weight, with r c ranging from 0.35 to 0.52 and RMSPE from 47.4 to 62.9 g/day. Ranking of extant CH4 prediction equations for their accuracy and precision differed with forage content of the diet. When used for cattle fed high-grain diets, extant CH4 prediction models were generally imprecise and lacked accuracy.
Collapse
|
110
|
Loor J, Elolimy A, McCann J. Dietary impacts on rumen microbiota in beef and dairy production. Anim Front 2016. [DOI: 10.2527/af.2016-0030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- J.J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - A.A. Elolimy
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - J.C. McCann
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
111
|
Falentin H, Rault L, Nicolas A, Bouchard DS, Lassalas J, Lamberton P, Aubry JM, Marnet PG, Le Loir Y, Even S. Bovine Teat Microbiome Analysis Revealed Reduced Alpha Diversity and Significant Changes in Taxonomic Profiles in Quarters with a History of Mastitis. Front Microbiol 2016; 7:480. [PMID: 27242672 PMCID: PMC4876361 DOI: 10.3389/fmicb.2016.00480] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 12/24/2022] Open
Abstract
Mastitis is a mammary gland inflammatory disease often due to bacterial infections. Like many other infections, it used to be considered as a host-pathogen interaction driven by host and bacterial determinants. Until now, the involvement of the bovine mammary gland microbiota in the host-pathogen interaction has been poorly investigated, and mainly during the infectious episode. In this study, the bovine teat microbiome was investigated in 31 quarters corresponding to 27 animals, which were all free of inflammation at sampling time but which had different histories regarding mastitis: from no episode of mastitis on all the previous lactations (Healthy quarter, Hq) to one or several clinical mastitis events (Mastitic quarter, Mq). Several quarters whose status was unclear (possible history of subclinical mastitis) were classified as NDq. Total bacterial DNA was extracted from foremilk samples and swab samples of the teat canal. Taxonomic profiles were determined by pyrosequencing on 16s amplicons of the V3-4 region. Hq quarters showed a higher diversity compared to Mq ones (Shannon index: ~8 and 6, respectively). Clustering of the quarters based on their bacterial composition made it possible to separate Mq and Hq quarters into two separate clusters (C1 and C2, respectively). Discriminant analysis of taxonomic profiles between these clusters revealed several differences and allowed the identification of taxonomic markers in relation to mastitis history. C2 quarters were associated with a higher proportion of the Clostridia class (including genera such as Ruminococcus, Oscillospira, Roseburia, Dorea, etc.), the Bacteroidetes phylum (Prevotella, Bacteroides, Paludibacter, etc.), and the Bifidobacteriales order (Bifidobacterium), whereas C1 quarters showed a higher proportion of the Bacilli class (Staphylococcus) and Chlamydiia class. These results indicate that microbiota is altered in udders which have already developed mastitis, even far from the infectious episode. Microbiome alteration may have resulted from the infection itself and or the associated antibiotic treatment. Alternatively, differences in microbiome composition in udders with a history of mastitis may have occurred prior to the infection and even contributed to infection development. Further investigations on the dynamics of mammary gland microbiota will help to elucidate the contribution of this endogenous microbiota to the mammary gland health.
Collapse
Affiliation(s)
- Hélène Falentin
- Institut National de la Recherche Agronomique, UMR 1253 STLORennes, France; Agrocampus Ouest, UMR 1253 STLORennes, France
| | - Lucie Rault
- Institut National de la Recherche Agronomique, UMR 1253 STLORennes, France; Agrocampus Ouest, UMR 1253 STLORennes, France
| | - Aurélie Nicolas
- Institut National de la Recherche Agronomique, UMR 1253 STLORennes, France; Agrocampus Ouest, UMR 1253 STLORennes, France
| | - Damien S Bouchard
- Institut National de la Recherche Agronomique, UMR 1253 STLORennes, France; Agrocampus Ouest, UMR 1253 STLORennes, France
| | - Jacques Lassalas
- Institut National de la Recherche Agronomique, UMR 1348 PEGASESaint-Gilles, France; Agrocampus Ouest, UMR 1348 PEGASERennes, France
| | - Philippe Lamberton
- Institut National de la Recherche Agronomique, UMR 1348 PEGASESaint-Gilles, France; Agrocampus Ouest, UMR 1348 PEGASERennes, France
| | - Jean-Marc Aubry
- Institut National de la Recherche Agronomique, UMR 1348 PEGASESaint-Gilles, France; Agrocampus Ouest, UMR 1348 PEGASERennes, France
| | - Pierre-Guy Marnet
- Institut National de la Recherche Agronomique, UMR 1348 PEGASESaint-Gilles, France; Agrocampus Ouest, UMR 1348 PEGASERennes, France
| | - Yves Le Loir
- Institut National de la Recherche Agronomique, UMR 1253 STLORennes, France; Agrocampus Ouest, UMR 1253 STLORennes, France
| | - Sergine Even
- Institut National de la Recherche Agronomique, UMR 1253 STLORennes, France; Agrocampus Ouest, UMR 1253 STLORennes, France
| |
Collapse
|
112
|
Bainbridge ML, Cersosimo LM, Wright ADG, Kraft J. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol Ecol 2016; 92:fiw059. [PMID: 26985012 DOI: 10.1093/femsec/fiw059] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2016] [Indexed: 01/04/2023] Open
Abstract
Rumen bacteria form a dynamic, complex, symbiotic relationship with their host, degrading forages to provide volatile fatty acids (VFA) and other substrates as energy to the animal. The objectives were to characterize rumen bacteria in three genetic lines of primiparous dairy cattle, Holstein (HO, n = 7), Jersey (JE, n = 8), and HO × JE crossbreeds (CB, n = 7) across a lactation [3, 93, 183 and 273 days in milk (DIM)] and correlate these factors with VFA, bacterial cell membrane fatty acids (FA), and animal production (i.e. milk yield). This study employed Illumina MiSeq (v. 3) to investigate rumen bacterial communities and gas-liquid chromatography/mass spectroscopy to identify bacterial membrane FA. Lactation stage had a prominent effect on rumen bacterial communities, whereas genetics had a lesser effect on rumen bacteria. The FA composition of bacterial cell membranes was affected by both lactation stage and genetics. Few correlations existed between VFA and bacterial communities; however, moderate correlations occurred between milk yield, protein percentage, fat yield and rumen bacterial communities. Positive correlations were found between branched-chain FA (BCFA) in bacterial cell membranes and bacterial genera. In conclusion, bacterial communities and their FA compositions are more affected by stage of lactation than by genetics of dairy cow.
Collapse
Affiliation(s)
- Melissa L Bainbridge
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Laura M Cersosimo
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - André-Denis G Wright
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
113
|
De Nardi R, Marchesini G, Li S, Khafipour E, Plaizier KJC, Gianesella M, Ricci R, Andrighetto I, Segato S. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Vet Res 2016; 12:29. [PMID: 26896166 PMCID: PMC4759956 DOI: 10.1186/s12917-016-0653-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the effects of two feed supplements on rumen bacterial communities of heifers fed a high grain diet. Six Holstein-Friesian heifers received one of the following dietary treatments according to a Latin square design: no supplement (control, C), 60 g/day of fumarate-malate (organic acid, O) and 100 g/day of polyphenol-essential oil (P). Rumen fluid was analyzed to assess the microbial population using Illumina sequencing and quantitative real time PCR. Results The P treatment had the highest number of observed species (P < 0.10), Chao1 index (P < 0.05), abundance based coverage estimated (ACE) (P < 0.05), and Fisher’s alpha diversity (P < 0.10). The O treatment had intermediate values between C and P treatments with the exception of the Chao1 index. The PCoA with unweighted Unifrac distance showed a separation among dietary treatments (P = 0.09), above all between the C and P (P = 0.05). The O and P treatments showed a significant increase of the family Christenenellaceae and a decline of Prevotella brevis compared to C. Additionally, the P treatment enhanced the abundance of many taxa belonging to Bacteroidetes, Firmicutes and Tenericutes phyla due to a potential antimicrobial activity of flavonoids that increased competition among bacteria. Conclusions Organic acid and polyphenols significantly modified rumen bacterial populations during high-grain feeding in dairy heifers. In particular the polyphenol treatment increased the richness and diversity of rumen microbiota, which are usually high in conditions of physiological rumen pH and rumen function.
Collapse
Affiliation(s)
- Roberta De Nardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, 35020, Italy.
| | - Giorgio Marchesini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, 35020, Italy.
| | - Shucong Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2 N2, Canada.
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2 N2, Canada.
| | - Kees J C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2 N2, Canada.
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, 35020, Italy.
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, 35020, Italy.
| | - Igino Andrighetto
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, 35020, Italy.
| | - Severino Segato
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, 35020, Italy.
| |
Collapse
|
114
|
Liu JH, Zhang ML, Zhang RY, Zhu WY, Mao SY. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb Biotechnol 2016; 9:257-68. [PMID: 26833450 PMCID: PMC4767291 DOI: 10.1111/1751-7915.12345] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023] Open
Abstract
The objective of this research was to compare the composition of bacterial microbiota associated with the ruminal content (RC), ruminal epithelium (RE) and faeces of Holstein dairy cows. The RC, RE and faecal samples were collected from six Holstein dairy cows when the animals were slaughtered. Community compositions of bacterial 16S rRNA genes from RC, RE and faeces were determined using a MiSeq sequencing platform with bacterial‐targeting universal primers 338F and 806R. UniFrac analysis revealed that the bacterial communities of RC, RE and faeces were clearly separated from each other. Statistically significant dissimilarities were observed between RC and faeces (P = 0.002), between RC and RE (P = 0.003), and between RE and faeces (P = 0.001). A assignment of sequences to taxa showed that the abundance of the predominant phyla Bacteroidetes was lower in RE than in RC, while a significant higher (P < 0.01) abundance of Proteobacteria was present in RE than in RC. When compared with the RC, the abundance of Firmicutes and Verrucomicrobia was higher in faeces, and RC contained a greater abundance of Bacteroidetes and Tenericutes. A higher proportions of Butyrivibrio and Campylobacter dominated RE as compared to RC. The faecal microbiota was less diverse than RC and dominated by genera Turicibacter and Clostridium. In general, these findings clearly demonstrated the striking compositional differences among RC, RE and faeces, indicating that bacterial communities are specific and adapted to the harbouring environment.
Collapse
Affiliation(s)
- Jun-hua Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Meng-ling Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Rui-yang Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wei-yun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Sheng-yong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
115
|
Nathani NM, Patel AK, Mootapally CS, Reddy B, Shah SV, Lunagaria PM, Kothari RK, Joshi CG. Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics 2015; 16:1116. [PMID: 26714477 PMCID: PMC4696265 DOI: 10.1186/s12864-015-2340-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The rumen microbiota functions as an effective system for conversion of dietary feed to microbial proteins and volatile fatty acids. In the present study, metagenomic approach was applied to elucidate the buffalo rumen microbiome of Jaffrabadi buffalo adapted to varied dietary treatments with the hypothesis that the microbial diversity and subsequent in the functional capacity will alter with diet change and enhance our knowledge of effect of microbe on host physiology. Eight adult animals were gradually adapted to an increasing roughage diet (4 animals each with green and dry roughage) containing 50:50 (J1), 75:25 (J2) and 100:0 (J3) roughage to concentrate proportion for 6 weeks. Metagenomic sequences of solid (fiber adherent microbiota) and liquid (fiber free microbiota) fractions obtained using Ion Torrent PGM platform were analyzed using MG-RAST server and CAZymes approach. RESULTS Taxonomic analysis revealed that Bacteroidetes was the most abundant phylum followed by Firmicutes, Fibrobacter and Proteobacteria. Functional analysis revealed protein (25-30 %) and carbohydrate (15-20 %) metabolism as the dominant categories. Principal component analysis demonstrated that roughage proportion, fraction of rumen and type of forage affected rumen microbiome at taxonomic as well as functional level. Rumen metabolite study revealed that rumen fluid nitrogen content reduced in high roughage diet fed animals and pathway analysis showed reduction in the genes coding enzymes involved in methanogenesis pathway. CAZyme annotation revealed the abundance of genes encoding glycoside hydrolases (GH), with the GH3 family most abundant followed by GH2 and GH13 in all samples. CONCLUSIONS Results reveals that high roughage diet feed improved microbial protein synthesis and reduces methane emission. CAZyme analysis indicated the importance of microbiome in feed component digestion for fulfilling energy requirements of the host. The findings help determine the role of rumen microbes in plant polysaccharide breakdown and in developing strategies to maximize productivity in ruminants.
Collapse
Affiliation(s)
- Neelam M Nathani
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India. .,UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
| | - Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Chandra Shekar Mootapally
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Bhaskar Reddy
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Shailesh V Shah
- Livestock Research Station, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Pravin M Lunagaria
- Livestock Research Station, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Ramesh K Kothari
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| |
Collapse
|
116
|
Laguardia-Nascimento M, Branco KMGR, Gasparini MR, Giannattasio-Ferraz S, Leite LR, Araujo FMG, Salim ACDM, Nicoli JR, de Oliveira GC, Barbosa-Stancioli EF. Vaginal Microbiome Characterization of Nellore Cattle Using Metagenomic Analysis. PLoS One 2015; 10:e0143294. [PMID: 26599789 PMCID: PMC4657983 DOI: 10.1371/journal.pone.0143294] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/03/2015] [Indexed: 12/24/2022] Open
Abstract
Understanding of microbial communities inhabiting cattle vaginal tract may lead to a better comprehension of bovine physiology and reproductive health being of great economic interest. Up to date, studies involving cattle microbiota are focused on the gastrointestinal tract, and little is known about the vaginal microbiota. This study aimed to investigate the vaginal microbiome in Nellore cattle, heifers and cows, pregnant and non-pregnant, using a culture independent approach. The main bacterial phyla found were Firmicutes (~40–50%), Bacteroidetes (~15–25%) and Proteobacteria (~5–25%), in addition to ~10–20% of non-classified bacteria. 45–55% of the samples were represented by only ten OTUs: Aeribacillus, Bacteroides, Clostridium, Ruminococcus, Rikenella, Alistipes, Bacillus, Eubacterium, Prevotella and non-classified bacteria. Interestingly, microbiota from all 20 animals could be grouped according to the respiratory metabolism of the main OTUs found, creating three groups of vaginal microbiota in cattle. Archaeal samples were dominated by the Methanobrevibacter genus (Euryarchaeota, ~55–70%). Ascomycota was the main fungal phylum (~80–95%) and Mycosphaerella the most abundant genus (~70–85%). Hormonal influence was not clear, but a tendency for the reduction of bacterial and increase of archaeal populations in pregnant animals was observed. Eukaryotes did not vary significantly between pregnant and non-pregnant animals, but tended to be more abundant on cows than on heifers. The present work describes a great microbial variability in the vaginal community among the evaluated animals and groups (heifers and cows, pregnant and non-pregnant), which is significantly different from the findings previously reported using culture dependent methods, pointing out the need for further studies on this issue. The microbiome found also indicates that the vaginal colonization appears to be influenced by the gastrointestinal community.
Collapse
Affiliation(s)
- Mateus Laguardia-Nascimento
- Departmento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcela Ribeiro Gasparini
- Departmento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Giannattasio-Ferraz
- Departmento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Jacques Robert Nicoli
- Departmento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Edel Figueiredo Barbosa-Stancioli
- Departmento de Microbiologia, Instituto de Ciencias Biologicas, Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
117
|
Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison). PLoS One 2015; 10:e0142409. [PMID: 26562019 PMCID: PMC4642958 DOI: 10.1371/journal.pone.0142409] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 10/21/2015] [Indexed: 01/23/2023] Open
Abstract
North American bison (Bison bison) are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes.
Collapse
|
118
|
Yáñez-Ruiz DR, Abecia L, Newbold CJ. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front Microbiol 2015; 6:1133. [PMID: 26528276 PMCID: PMC4604304 DOI: 10.3389/fmicb.2015.01133] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/01/2015] [Indexed: 11/13/2022] Open
Abstract
The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations.
Collapse
Affiliation(s)
- David R. Yáñez-Ruiz
- Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Leticia Abecia
- Estación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Charles J. Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
119
|
Malmuthuge N, Griebel PJ, Guan LL. The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract. Front Vet Sci 2015; 2:36. [PMID: 26664965 PMCID: PMC4672224 DOI: 10.3389/fvets.2015.00036] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022] Open
Abstract
A diverse microbial population colonizes the sterile mammalian gastrointestinal tract during and after the birth. There is increasing evidence that this complex microbiome plays a crucial role in the development of the mucosal immune system and influences newborn health. Microbial colonization is a complex process influenced by a two-way interaction between host and microbes and a variety of external factors, including maternal microbiota, birth process, diet, and antibiotics. Following this initial colonization, continuous exposure to host-specific microbes is not only essential for development and maturation of the mucosal immune system but also the nutrition and health of the animal. Thus, it is important to understand host–microbiome interactions within the context of individual animal species and specific management practices. Data is now being generated revealing significant associations between the early microbiome, development of the mucosal immune system, and the growth and health of newborn calves. The current review focuses on recent information and discusses the limitation of current data and the potential challenges to better characterizing key host-specific microbial interactions. We also discuss potential strategies that may be used to manipulate the early microbiome to improve production and health during the time when newborn calves are most susceptible to enteric disease.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, AB , Canada
| | - Philip J Griebel
- Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon, SK , Canada ; School of Public Health, University of Saskatchewan , Saskatoon, SK , Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
120
|
Zepeda Mendoza ML, Sicheritz-Pontén T, Gilbert MTP. Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Brief Bioinform 2015; 16:745-58. [PMID: 25673291 PMCID: PMC4570204 DOI: 10.1093/bib/bbv001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
DNA-based taxonomic and functional profiling is widely used for the characterization of organismal communities across a rapidly increasing array of research areas that include the role of microbiomes in health and disease, biomonitoring, and estimation of both microbial and metazoan species richness. Two principal approaches are currently used to assign taxonomy to DNA sequences: DNA metabarcoding and metagenomics. When initially developed, each of these approaches mandated their own particular methods for data analysis; however, with the development of high-throughput sequencing (HTS) techniques they have begun to share many aspects in data set generation and processing. In this review we aim to define the current characteristics, goals and boundaries of each field, and describe the different software used for their analysis. We argue that an appreciation of the potential and limitations of each method can help underscore the improvements required by each field so as to better exploit the richness of current HTS-based data sets.
Collapse
|
121
|
Arsène-Ploetze F, Bertin PN, Carapito C. Proteomic tools to decipher microbial community structure and functioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13599-13612. [PMID: 25475614 PMCID: PMC4560766 DOI: 10.1007/s11356-014-3898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Recent advances in microbial ecology allow studying microorganisms in their environment, without laboratory cultivation, in order to get access to the large uncultivable microbial community. With this aim, environmental proteomics has emerged as an appropriate complementary approach to metagenomics providing information on key players that carry out main metabolic functions and addressing the adaptation capacities of living organisms in situ. In this review, a wide range of proteomic approaches applied to investigate the structure and functioning of microbial communities as well as recent examples of such studies are presented.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique moléculaire, Génomique et Microbiologie, Université de Strasbourg, UMR7156 CNRS, Strasbourg, France,
| | | | | |
Collapse
|
122
|
Weimer PJ. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 2015; 6:296. [PMID: 25914693 PMCID: PMC4392294 DOI: 10.3389/fmicb.2015.00296] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
The ruminal microbial community is remarkably diverse, containing 100s of different bacterial and archaeal species, plus many species of fungi and protozoa. Molecular studies have identified a “core microbiome” dominated by phyla Firmicutes and Bacteroidetes, but also containing many other taxa. The rumen provides an ideal laboratory for studies on microbial ecology and the demonstration of ecological principles. In particular, the microbial community demonstrates both redundancy (overlap of function among multiple species) and resilience (resistance to, and capacity to recover from, perturbation). These twin properties provide remarkable stability that maintains digestive function for the host across a range of feeding and management conditions, but they also provide a challenge to engineering the rumen for improved function (e.g., improved fiber utilization or decreased methane production). Direct ruminal dosing or feeding of probiotic strains often fails to establish the added strains, due to intensive competition and amensalism from the indigenous residents that are well-adapted to the historical conditions within each rumen. Known exceptions include introduced strains that can fill otherwise unoccupied niches, as in the case of specialist bacteria that degrade phytotoxins such as mimosine or fluoroacetate. An additional complicating factor in manipulating the ruminal fermentation is the individuality or host specificity of the microbiota, in which individual animals contain a particular community whose species composition is capable of reconstituting itself, even following a near-total exchange of ruminal contents from another herd mate maintained on the same diet. Elucidation of the interactions between the microbial community and the individual host that establish and maintain this specificity may provide insights into why individual hosts vary in production metrics (e.g., feed efficiency or milk fat synthesis), and how to improve herd performance.
Collapse
Affiliation(s)
- Paul J Weimer
- US Dairy Forage Research Center, US Department of Agriculture - Agricultural Research Service Madison, WI, USA ; Department of Bacteriology, University of Wisconsin Madison, WI, USA
| |
Collapse
|
123
|
Firkins JL, Yu Z. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition1,2. J Anim Sci 2015; 93:1450-70. [DOI: 10.2527/jas.2014-8754] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- J. L. Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Z. Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
124
|
Zhang X, Tian X, Ma L, Feng B, Liu Q, Yuan L, Fan C, Huang H, Huang H, Yang Q. Biodiversity of the Symbiotic Bacteria Associated with Toxic Marine Dinoflagellate Alexandrium tamarense. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbm.2015.36004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|