101
|
Redox Regulation in Cancer Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:750798. [PMID: 26273424 PMCID: PMC4529979 DOI: 10.1155/2015/750798] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.
Collapse
|
102
|
Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, Menendez JA. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 2015; 5:8306-16. [PMID: 25246709 PMCID: PMC4226684 DOI: 10.18632/oncotarget.2059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSC) may take advantage of the Warburg effect-induced siphoning of metabolic intermediates into de novo fatty acid biosynthesis to increase self-renewal growth. We examined the anti-CSC effects of the antifungal polyketide soraphen A, a specific inhibitor of the first committed step of lipid biosynthesis catalyzed by acetyl-CoA carboxylase (ACACA). The mammosphere formation capability of MCF-7 cells was reduced following treatment with soraphen A in a dose-dependent manner. MCF-7 cells engineered to overexpress the oncogene HER2 (MCF-7/HER2 cells) were 5-fold more sensitive than MCF-7 parental cells to soraphen A-induced reductions in mammosphere-forming efficiency. Soraphen A treatment notably decreased aldehyde dehydrogenase (ALDH)-positive CSC-like cells and impeded the HER2's ability to increase the ALDH+-stem cell population. The following results confirmed that soraphen A-induced suppression of CSC populations occurred through ACACA-driven lipogenesis: a.) exogenous supplementation with supraphysiological concentrations of oleic acid fully rescued mammosphere formation in the presence of soraphen A and b.) mammosphere cultures of MCF-7 cells with stably silenced expression of the cytosolic isoform ACACA1, which specifically participates in de novo lipogenesis, were mostly refractory to soraphen A treatment. Our findings reveal for the first time that ACACA may constitute a previously unrecognized target for novel anti-breast CSC therapies.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Juan Gumuzio
- Fundación Inbiomed, San Sebastián, Gipuzkoa Spain
| | | | - Olatz Leis
- StemTek Therapeutics, Bilbao, Biscay Spain
| | | | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| |
Collapse
|
103
|
Hurtado-López LM, Fernández-Ramírez F, Martínez-Peñafiel E, Ruiz JDC, González NEH. Molecular Analysis by Gene Expression of Mitochondrial ATPase Subunits in Papillary Thyroid Cancer: Is ATP5E Transcript a Possible Early Tumor Marker? Med Sci Monit 2015; 21:1745-51. [PMID: 26079849 PMCID: PMC4482184 DOI: 10.12659/msm.893597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/02/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cancer development involves an "injury" to the respiratory machinery (Warburg effect) due to decreased or impaired mitochondrial function. This circumstance results in a down regulation of some of the ATPase subunits of the malignant tissue. The objective of this work was to assess and compare the relative expression of mRNA of mitochondrial ATPase subunits between samples of thyroid cancer and benign nodules. MATERIAL AND METHODS Samples from 31 patients who had an operation for PTC at the General Hospital of Mexico were snap-frozen and stored at -70°C. Thirty-five patients who had an operation for benign tumors were also included in the study. mRNA expression levels of alpha, beta, gamma, and epsilon subunits of F1 and "c12" of subunit Fo were determined by real-time RT-PCR (by duplicate), in order to determine if abnormal expression of these genes could partially explain the Warburg effect in papillary thyroid cancer (PTC). RESULTS ATP5E transcript alteration (down-expression) was highly associated to PTC diagnosis OR=11.76 (95% confidence interval, 1.245-237.98; p=0.04). CONCLUSIONS Relative down-expression of ATP5E transcript was highly associated with PTC diagnosis. This transcript alteration may be used as a tumoral marker in papillary thyroid cancer.
Collapse
Affiliation(s)
- Luis Mauricio Hurtado-López
- Thyroid Clinic, Hospital General de Mexico, Instituto Politecnico Nacional, Mexico, Mexico
- Molecular Oncology, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, Mexico
| | | | | | | | | |
Collapse
|
104
|
Shen YA, Li WH, Chen PH, He CL, Chang YH, Chuang CM. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol(®)-resistant ovarian cancer. Am J Transl Res 2015; 7:841-55. [PMID: 26175846 PMCID: PMC4494136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Taxol(®) remained as the mainstay therapeutic agent in the treatment of ovarian cancer, however recurrence rate is still high. Cancer stem cells (CSCs) represent a subset of cells in the bulk of tumors and play a central role in inducing drug resistance and recurrence. Furthermore, cancer metabolism has been an area under intensive investigation, since accumulating evidence has shown that CSCs and cancer metabolism are closely linked, an effect named as metabolic reprogramming. In this work, we aimed to investigate the impacts of a novel liposome-encapsulated paclitaxel (Nano-Taxol) on the stemness phenotype and metabolic reprogramming. A paclitaxel-resistant cell line (TR) was established at first. Tumor growth was induced in the mice peritoneal cavity by inoculation of TR cells. A 2x2 factorial experiment was designed to test the therapeutic efficacy in which factor 1 represented the comparison of drugs (Taxol(®) versus Nano-Taxol), while factor 2 represented the delivery route (intravenous versus intraperitoneal delivery). In this work, we found that intraperitoneal delivery of Nano-Taxol redirects metabolic reprogramming, from glycolysis to oxidative phosphorylation, and effectively suppresses cancer stem cells. Also, intraperitoneal delivery of Nano-Taxol led to a significantly better control of tumor growth compared with intravenous delivery of Taxol(®) (current standard treatment). This translational research may serve as a novel pathway for the drug development of nanomedicine. In the future, this treatment modality may be extended to treat several relevant cancers that have been proved to be suitable for the loco-regional delivery of therapeutic agents, including colon cancer, gastric cancer, and pancreatic cancer.
Collapse
Affiliation(s)
- Yao-An Shen
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Wai-Hou Li
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
| | - Po-Hung Chen
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
| | - Chun-Lin He
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
| | - Yen-Hou Chang
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Chi-Mu Chuang
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taipei Veterans General HospitalTaipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| |
Collapse
|
105
|
Tebbe C, Chhina J, Dar SA, Sarigiannis K, Giri S, Munkarah AR, Rattan R. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget 2015; 5:4746-64. [PMID: 24970804 PMCID: PMC4148096 DOI: 10.18632/oncotarget.2012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Omental adipocytes promote ovarian cancer by secretion of adipokines, cytokines and growth factors, and acting as fuel depots. We investigated if metformin modulates the ovarian cancer promoting effects of adipocytes. Effect of conditioned media obtained from differentiated mouse 3T3L1 preadipoctes on the proliferation and migration of a mouse ovarian surface epithelium cancer cell line (ID8) was estimated. Conditioned media from differentiated adipocytes increased the proliferation and migration of ID8 cells, which was attenuated by metformin. Metformin inhibited adipogenesis by inhibition of key adipogenesis regulating transcription factors (CEBPα, CEBPß, and SREBP1), and induced AMPK. A targeted Cancer Pathway Finder RT-PCR (real-time polymerase chain reaction) based gene array revealed 20 up-regulated and 2 down-regulated genes in ID8 cells exposed to adipocyte conditioned media, which were altered by metformin. Adipocyte conditioned media also induced bio-energetic changes in the ID8 cells by pushing them into a highly metabolically active state; these effects were reversed by metformin. Collectively, metformin treatment inhibited the adipocyte mediated ovarian cancer cell proliferation, migration, expression of cancer associated genes and bio-energetic changes. Suggesting, that metformin could be a therapeutic option for ovarian cancer at an early stage, as it not only targets ovarian cancer, but also modulates the environmental milieu.
Collapse
Affiliation(s)
- Calvin Tebbe
- Division of Gynecology Oncology, Department of Women's Health, Obstetrics and Gynecology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jasdeep Chhina
- Division of Gynecology Oncology, Department of Women's Health, Obstetrics and Gynecology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sajad A Dar
- Division of Gynecology Oncology, Department of Women's Health, Obstetrics and Gynecology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Kalli Sarigiannis
- Division of Gynecology Oncology, Department of Women's Health, Obstetrics and Gynecology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Adnan R Munkarah
- Division of Gynecology Oncology, Department of Women's Health, Obstetrics and Gynecology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women's Health, Obstetrics and Gynecology, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
106
|
Cuyàs E, Corominas-Faja B, Menendez JA. The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget 2015; 5:3970-82. [PMID: 24994116 PMCID: PMC4147299 DOI: 10.18632/oncotarget.2147] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The metabolic features of cancer stem (CS) cells and the effects of specific nutrients or metabolites on CS cells remain mostly unexplored. A preliminary study to delineate the nutritional phenome of CS cells exploited the landmark observation that upon experimental induction into an epithelial-to-mesenchymal (EMT) transition, the proportion of CS-like cells drastically increases within a breast cancer cell population. EMT-induced CS-like cells (HMLERshEcad) and isogenic parental cells (HMLERshCntrol) were simultaneously screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput metabolic phenotyping platform comprising >350 wells that were pre-loaded with different carbohydrates/starches, alcohols, fatty acids, ketones, carboxylic acids, amino acids, and bi-amino acids. The generation of “phenetic maps” of the carbon and nitrogen utilization patterns revealed that the acquisition of a CS-like cellular state provided an enhanced ability to utilize additional catabolic fuels, especially under starvation conditions. Crucially, the acquisition of cancer stemness activated a metabolic infrastructure that enabled the vectorial transfer of high-energy nutrients such as glycolysis end products (pyruvate, lactate) and bona fide ketone bodies (β-hydroxybutyrate) from the extracellular microenvironment to support mitochondrial energy production in CS-like cells. Metabolic reprogramming may thus constitute an efficient adaptive strategy through which CS-like cells would rapidly obtain an advantage in hostile conditions such as nutrient starvation following the inhibition of tumor angiogenesis. By understanding how specific nutrients could bioenergetically boost EMT-CS-like phenotypes, “smart foods” or systemic “metabolic nichotherapies” may be tailored to specific nutritional CSC phenomes, whereas high-resolution heavy isotope-labeled nutrient tracking may be developed to monitor the spatiotemporal distribution and functionality of CS-like cells in real time.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, SPAIN; Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, SPAIN
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, SPAIN; Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, SPAIN
| | - Javier A Menendez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, SPAIN; Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, SPAIN
| |
Collapse
|
107
|
Lee JE, Lee AJ, Jo DE, Cho JH, Youn K, Yun EY, Hwang JS, Jun M, Kang BH. Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2015. [DOI: 10.3746/jkfn.2015.44.2.200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
108
|
Feng W, Gentles A, Nair RV, Huang M, Lin Y, Lee CY, Cai S, Scheeren FA, Kuo AH, Diehn M. Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells 2015; 32:1734-45. [PMID: 24497069 DOI: 10.1002/stem.1662] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022]
Abstract
Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about metabolic properties of cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to nontumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs underexpress genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation, and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, plays a critical role in promoting the proglycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminated TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a potential therapeutic strategy for targeting these cells.
Collapse
Affiliation(s)
- Weiguo Feng
- Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Jang H, Yang J, Lee E, Cheong JH. Metabolism in embryonic and cancer stemness. Arch Pharm Res 2015; 38:381-8. [PMID: 25598509 DOI: 10.1007/s12272-015-0558-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
Cells constantly adjust their metabolic state in response to extracellular signals and nutrient availability to meet their demand for energy and building blocks. Recently, there has been significant research into the metabolic aspects of embryonic stem cells/pluripotent stem cells (ESCs/PSCs) and cancer stem cells (CSCs), which has revealed the unique metabolic status of different stem cell lineages. While ESCs and CSCs were largely thought to harbor similar metabolic states, recent evidence demonstrates that their metabolic dependency is distinctly different. The glucose metabolism of ESCs largely depends on glycolysis, including a one-carbon pathway during differentiation. While proliferating cancer cells share the glycolytic phenotype of ESCs, the mitochondria-centric oxidative phosphorylation constitutes an important metabolic circuit of CSCs under metabolic stress, indicating the dynamic nature of metabolic plasticity. In this review, we catalogued metabolic signatures of cellular "stemness" to provide insights into the therapeutic potential of ESCs and CSCs.
Collapse
Affiliation(s)
- Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 410-769, Republic of Korea,
| | | | | | | |
Collapse
|
110
|
Abstract
Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop plays an important role in tumor progression and thus, increased understanding of the pathway has the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current treatment for HCC is less effective than those used against other cancers. We review the current studies of the MDM2-p53 pathway in cancer with a focus on HCC and specifically discuss the impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 pathway.
Collapse
Affiliation(s)
- Xuan Meng
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Derek A Franklin
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jiahong Dong
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China.
| | - Yanping Zhang
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
111
|
Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:117-40. [PMID: 25038997 DOI: 10.1007/978-3-319-07320-0_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are as old as our adult stem cells are; therefore, stem cell exhaustion is considered a hallmark of aging. Our tumors are as aggressive as the number of cancer stem cells (CSCs) they bear because CSCs can survive treatments with hormones, radiation, chemotherapy, and molecularly targeted drugs, thus increasing the difficulty of curing cancer. Not surprisingly, interest in stem cell research has never been greater among members of the public, politicians, and scientists. But how can we slow the rate at which our adult stem cells decline over our lifetime, reducing the regenerative potential of tissues, while efficiently eliminating the aberrant, life-threatening activity of "selfish", immortal, and migrating CSCs? Frustrated by the gene-centric limitations of conventional approaches to aging diseases, our group and other groups have begun to appreciate that bioenergetic metabolism, i.e., the production of fuel & building blocks for growth and division, and autophagy/mitophagy, i.e., the quality-control, self-cannibalistic system responsible for "cleaning house" and "recycling the trash", can govern the genetic and epigenetic networks that facilitate stem cell behaviors. Indeed, it is reasonable to suggest the existence of a "metabostem" infrastructure that operates as a shared hallmark of aging and cancer, thus making it physiologically plausible to maintain or even increase the functionality of adult stem cells while reducing the incidence of cancer and extending the lifespan. This "metabostemness" property could lead to the discovery of new drugs that reprogram cell metabotypes to increase the structural and functional integrity of adult stem cells and positively influence their lineage determination, while preventing the development and aberrant function of stem cells in cancer tissues. While it is obvious that the antifungal antibiotic rapamycin, the polyphenol resveratrol, and the biguanide metformin already belong to this new family of metabostemness-targeting drugs, we can expect a rapid identification of new drug candidates (e.g., polyphenolic xenohormetins) that reverse or postpone "geroncogenesis", i.e., aging-induced metabolic decline as a driver of tumorigenesis, at the stem cell level.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain,
| | | |
Collapse
|
112
|
Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Front Oncol 2014; 4:262. [PMID: 25325014 PMCID: PMC4179679 DOI: 10.3389/fonc.2014.00262] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
The acquisition of and departure from stemness in cancer tissues might not only be hardwired by genetic controllers, but also by the pivotal regulatory role of the cellular metabotype, which may act as a "starter dough" for cancer stemness traits. We have coined the term metabostemness to refer to the metabolic parameters causally controlling or functionally substituting the epitranscriptional orchestration of the genetic reprograming that redirects normal and tumor cells toward less-differentiated cancer stem cell (CSC) cellular states. Certain metabotypic alterations might operate as pivotal molecular events rendering a cell of origin susceptible to epigenetic rewiring required for the acquisition of aberrant stemness and, concurrently, of refractoriness to differentiation. The metabostemness attribute can remove, diminish, or modify the nature of molecular barriers present in Waddington's epigenetic landscapes, thus allowing differentiated cells to more easily (re)-enter into CSC cellular macrostates. Activation of the metabostemness trait can poise cells with chromatin states competent for rapid dedifferentiation while concomitantly setting the idoneous metabolic stage for later reprograming stimuli to finish the journey from non-cancerous into tumor-initiating cells. Because only a few permitted metabotypes will be compatible with the operational properties owned by CSC cellular states, the metabostemness property provides a new framework through which to pharmacologically resolve the apparently impossible problem of discovering drugs aimed to target the molecular biology of the cancer stemness itself. The metabostemness cancer hallmark generates a shifting oncology theory that should guide a new era of metabolo-epigenetic cancer precision medicine.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology-Girona (ICO-Girona) , Girona , Spain ; Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Tomás Alarcón
- Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM) , Barcelona , Spain
| |
Collapse
|
113
|
Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol 2014; 92:43-54. [PMID: 25168677 DOI: 10.1016/j.bcp.2014.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Our group reported a significant association between hexokinase II overexpression and chemoresistance in ovarian cancer, suggesting that aerobic glycolysis in the so-called Warburg effect might contribute to cancer progression. However, a growing body of evidence indicates contradictory findings with regard to the Warburg effect, such as high mitochondrial activity in highly invasive tumors and low ATP contribution of glycolysis in ovarian cancer. As a solution for the dilemma of the Warburg effect, the "reverse Warburg effect" was proposed in which aerobic glycolysis might occur in the stromal compartment of the tumor rather than in the cancer cells, indicating that the glycolytic tumor stroma feed the cancer cells through a type of symbiotic relationship. The reverse Warburg effect acting on the relationship between cancer cells and cancer-associated fibroblasts has evolved into dynamic interplay between cancer cells and multiple tumor stromal compartments, including cancer-associated fibroblasts, the extracellular matrix, endothelial cells, mesenchymal stem cells, adipocytes, and tumor-associated macrophages. Peritoneal cavities including ascites and the omentum also form a unique environment that is highly receptive for carcinomatosis in the advanced stages of ovarian cancer. The complicated but ingeniously orchestrated stroma-mediated cancer metabolism in ovarian cancer provides great heterogeneity in tumors with chemoresistance, which makes the disease thus far difficult to cure by single stromal-targeting agents. This review will discuss the experimental and clinical evidence of the cross-talk between cancer cells and various components of tumor stroma in terms of heterogeneous chemoresistance with focal points for therapeutic intervention in ovarian cancer.
Collapse
Affiliation(s)
- Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
114
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
115
|
Cufí S, Corominas-Faja B, Lopez-Bonet E, Bonavia R, Pernas S, López IÁ, Dorca J, Martínez S, López NB, Fernández SD, Cuyàs E, Visa J, Rodríguez-Gallego E, Quirantes-Piné R, Segura-Carretero A, Joven J, Martin-Castillo B, Menendez JA. Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin. Oncotarget 2014; 4:1484-95. [PMID: 23986086 PMCID: PMC3824528 DOI: 10.18632/oncotarget.1234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells expressing constitutively active phosphatidylinositol-3 kinase (PI3K) are proliferative regardless of the absence of insulin, and they form dietary restriction (DR)-resistant tumors in vivo. Because the binding of insulin to its receptors activates the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling cascade, activating mutations in the PIK3CA oncogene may determine tumor response to DR-like pharmacological strategies targeting the insulin and mTOR pathways. The anti-diabetic drug metformin is a stereotypical DR mimetic that exerts its anti-cancer activity through a dual mechanism involving insulin-related (systemic) and mTOR-related (cell-autonomous) effects. However, it remains unclear whether PIK3CA-activating mutations might preclude the anti-cancer activity of metformin in vivo. To model the oncogenic PIK3CA-driven early stages of cancer, we used the clonal breast cancer cell line MCF10DCIS.com, which harbors the gain-of-function H1047R hot-spot mutation in the catalytic domain of the PI3KCA gene and has been shown to form DR-refractory xenotumors. To model PIK3CA-activating mutations in late stages of cancer, we took advantage of the isogenic conversion of a PIK3CA-wild-type tumor into a PIK3CA H1047R-mutated tumor using the highly metastatic colorectal cancer cell line SW48. MCF10DCIS.com xenotumors, although only modestly affected by treatment with oral metformin (approximately 40% tumor growth inhibition), were highly sensitive to the intraperitoneal (i.p.) administration of metformin, the anti-cancer activity of which increased in a time-dependent manner and reached >80% tumor growth inhibition by the end of the treatment. Metformin treatment via the i.p. route significantly reduced the proliferation factor mitotic activity index (MAI) and decreased tumor cellularity in MCF10DCIS.com cancer tissues. Whereas SW48-wild-type (PIK3CA+/+) cells rapidly formed metformin-refractory xenotumors in mice, ad libitum access to water containing metformin significantly reduced the growth of SW48-mutated (PIK3CAH1047R/+) xenotumors by approximately 50%. Thus, metformin can no longer be considered as a bona fide DR mimetic, at least in terms of anti-cancer activity, because tumors harboring the insulin-unresponsive, DR-resistant, PIK3CA-activating mutation H1047R remain sensitive to the anti-tumoral effects of the drug. Given the high prevalence of PIK3CA mutations in human carcinomas and the emerging role of PIK3CA mutation status in the treatment selection process, these findings might have a significant impact on the design of future trials evaluating the potential of combining metformin with targeted therapy.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:132702. [PMID: 25050322 PMCID: PMC4094711 DOI: 10.1155/2014/132702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.
Collapse
|
117
|
Mapping of the circulating metabolome reveals α-ketoglutarate as a predictor of morbid obesity-associated non-alcoholic fatty liver disease. Int J Obes (Lond) 2014; 39:279-87. [DOI: 10.1038/ijo.2014.53] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
|
118
|
Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, Lesniak MS, Ahmed AU. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 2014; 21:1119-31. [PMID: 24608791 DOI: 10.1038/cdd.2014.31] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme patients have a poor prognosis due to therapeutic resistance and tumor relapse. It has been suggested that gliomas are driven by a rare subset of tumor cells known as glioma stem cells (GSCs). This hypothesis states that only a few GSCs are able to divide, differentiate, and initiate a new tumor. It has also been shown that this subpopulation is more resistant to conventional therapies than its differentiated counterpart. In order to understand glioma recurrence post therapy, we investigated the behavior of GSCs after primary chemotherapy. We first show that exposure of patient-derived as well as established glioma cell lines to therapeutic doses of temozolomide (TMZ), the most commonly used antiglioma chemotherapy, consistently increases the GSC pool over time both in vitro and in vivo. Secondly, lineage-tracing analysis of the expanded GSC pool suggests that such amplification is a result of a phenotypic shift in the non-GSC population to a GSC-like state in the presence of TMZ. The newly converted GSC population expresses markers associated with pluripotency and stemness, such as CD133, SOX2, Oct4, and Nestin. Furthermore, we show that intracranial implantation of the newly converted GSCs in nude mice results in a more efficient grafting and invasive phenotype. Taken together, these findings provide the first evidence that glioma cells exposed to chemotherapeutic agents are able to interconvert between non-GSCs and GSCs, thereby replenishing the original tumor population, leading to a more infiltrative phenotype and enhanced chemoresistance. This may represent a potential mechanism for therapeutic relapse.
Collapse
Affiliation(s)
- B Auffinger
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - A L Tobias
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - Y Han
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - G Lee
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - D Guo
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - M Dey
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | - M S Lesniak
- 1] The Brain Tumor Center, The University of Chicago, Chicago, IL, USA [2] Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - A U Ahmed
- 1] The Brain Tumor Center, The University of Chicago, Chicago, IL, USA [2] Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
119
|
Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, Corominas-Faja B, Rodríguez-Gallego E, Fernández-Arroyo S, Martin-Castillo B, Joven J, Menendez JA. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 2014; 13:1132-44. [PMID: 24553122 DOI: 10.4161/cc.27982] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain; Unit of Clinical Research; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Javier A Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| |
Collapse
|
120
|
Menendez JA, Alarcón T, Joven J. Gerometabolites: the pseudohypoxic aging side of cancer oncometabolites. Cell Cycle 2014; 13:699-709. [PMID: 24526120 DOI: 10.4161/cc.28079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncometabolites are defined as small-molecule components (or enantiomers) of normal metabolism whose accumulation causes signaling dysregulation to establish a milieu that initiates carcinogenesis. In a similar manner, we propose the term "gerometabolites" to refer to small-molecule components of normal metabolism whose depletion causes signaling dysregulation to establish a milieu that drives aging. In an investigation of the pathogenic activities of the currently recognized oncometabolites R(-)-2-hydroxyglutarate (2-HG), fumarate, and succinate, which accumulate due to mutations in isocitrate dehydrogenases (IDH), fumarate hydratase (FH), and succinate dehydrogenase (SDH), respectively, we illustrate the fact that metabolic pseudohypoxia, the accumulation of hypoxia-inducible factor (HIFα) under normoxic conditions, and the subsequent Warburg-like reprogramming that shifts glucose metabolism from the oxidative pathway to aerobic glycolysis are the same mechanisms through which the decline of the "gerometabolite" nicotinamide adenine dinucleotide (NAD)(+) reversibly disrupts nuclear-mitochondrial communication and contributes to the decline in mitochondrial function with age. From an evolutionary perspective, it is reasonable to view NAD(+)-driven mitochondrial homeostasis as a conserved response to changes in energy supplies and oxygen levels. Similarly, the natural ability of 2-HG to significantly alter epigenetics might reflect an evolutionarily ancient role of certain metabolites to signal for elevated glutamine/glutamate metabolism and/or oxygen deficiency. However, when chronically altered, these responses become conserved causes of aging and cancer. Because HIFα-driven pseudohypoxia might drive the overproduction of 2-HG, the intriguing possibility exists that the decline of gerometabolites such as NAD(+) could promote the chronic accumulation of oncometabolites in normal cells during aging. If the sole activation of a Warburg-like metabolic reprogramming in normal tissues might be able to significantly increase the endogenous production of bona fide etiological determinants in cancer, such as oncometabolites, this undesirable trade-off between mitochondrial dysfunction and activation of oncometabolites production might then pave the way for the epigenetic initiation of carcinogenesis in a strictly metabolic-dependent manner. Perhaps it is time to definitely adopt the view that aging and aging diseases including cancer are governed by a pivotal regulatory role of metabolic reprogramming in cell fate decisions.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain; Molecular Oncology Group; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Tomás Alarcón
- Computational & Mathematical Biology Research Group; Centre de Recerca Matemàtica (CRM); Barcelona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB); Institut d'Investigació Sanitaria Pere i Virgili (IISPV); Universitat Rovira i Virgili; Reus, Spain
| |
Collapse
|
121
|
Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells? BIOMED RESEARCH INTERNATIONAL 2014; 2014:859871. [PMID: 24527460 PMCID: PMC3914574 DOI: 10.1155/2014/859871] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called “cancer stem cells” (CSCs). In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.
Collapse
|
122
|
Ciavardelli D, Bellomo M, Crescimanno C, Vella V. Type 3 deiodinase: role in cancer growth, stemness, and metabolism. Front Endocrinol (Lausanne) 2014; 5:215. [PMID: 25566187 PMCID: PMC4269192 DOI: 10.3389/fendo.2014.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Deiodinases are selenoenzymes that catalyze thyroid hormones (THs) activation (type 1 and type 2, D1 and D2, respectively) or inactivation (type 3, D3). THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism, thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper, we review recent advances in the role of D3 in cancer growth, stemness, and metabolic phenotype. In particular, we focus on the main signaling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Center of Excellence on Aging (CeS.I.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Department of Clinical and Molecular Bio-Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- *Correspondence: Veronica Vella, School of Human and Social Sciences, University “Kore” of Enna, via delle Olimpiadi, Enna 94100, Italy e-mail:
| |
Collapse
|
123
|
Kadye R, Kramer AH, Joos-Vandewalle J, Parsons M, Njengele Z, Hoppe H, Prinsloo E. Guardian of the furnace: mitochondria, TRAP1, ROS and stem cell maintenance. IUBMB Life 2013; 66:42-5. [PMID: 24382805 DOI: 10.1002/iub.1234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
Abstract
Mitochondria are key to eukaryotic cell survival and their activity is linked to generation of reactive oxygen species (ROS) which in turn acts as both an intracellular signal and an effective executioner of cells with regards to cellular senescence. The mitochondrial molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1) is often termed the cytoprotective chaperone for its role in cancer cell survival and protection from apoptosis. Here, we hypothesize that TRAP1 serves to modulate mitochondrial activity in stem cell maintenance, survival and differentiation.
Collapse
Affiliation(s)
- Rose Kadye
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | | | | | |
Collapse
|
124
|
Rodríguez-Gallego E, Riera-Borrull M, Hernández-Aguilera A, Mariné-Casadó R, Rull A, Beltrán-Debón R, Luciano-Mateo F, Menendez JA, Vazquez-Martin A, Sirvent JJ, Martín-Paredero V, Corbí AL, Sierra-Filardi E, Aragonès G, García-Heredia A, Camps J, Alonso-Villaverde C, Joven J. Ubiquitous transgenic overexpression of C-C chemokine ligand 2: a model to assess the combined effect of high energy intake and continuous low-grade inflammation. Mediators Inflamm 2013; 2013:953841. [PMID: 24453432 PMCID: PMC3876923 DOI: 10.1155/2013/953841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 12/26/2022] Open
Abstract
Excessive energy management leads to low-grade, chronic inflammation, which is a significant factor predicting noncommunicable diseases. In turn, inflammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial dysfunction seems to be at the crossroads of mutual relationships. The migration of immune cells during inflammation is governed by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a variety of additional functions that are involved in the maintenance of normal metabolism. It is our hypothesis that a ubiquitous and continuous secretion of CCL2 may represent an animal model of low-grade chronic inflammation that, in the presence of an energy surplus, could help to ascertain the afore-mentioned relationships and/or to search for specific therapeutic approaches. Here, we present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-term dietary manipulations were assessed and the findings include metabolic disturbances, premature death, and the manipulation of macrophage plasticity and autophagy. These results raise a number of mechanistic questions for future study.
Collapse
Affiliation(s)
- Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Marta Riera-Borrull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Roger Mariné-Casadó
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Anna Rull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Raúl Beltrán-Debón
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Javier A. Menendez
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 17007 Girona, Spain
| | - Alejandro Vazquez-Martin
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 17007 Girona, Spain
| | - Juan J. Sirvent
- Department of Pathology, Hospital Universitari Joan XXIII, C/ Dr. Mallafrè Guasch 4, 43005 Tarragona, Spain
| | - Vicente Martín-Paredero
- Department of Vascular Surgery, Hospital Universitari Joan XXIII, C/ Dr. Mallafrè Guasch 4, 43005 Tarragona, Spain
| | - Angel L. Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Sierra-Filardi
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gerard Aragonès
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| | - Carlos Alonso-Villaverde
- Servei de Medicina Interna, Hospital Sant Pau i Santa Tecla, Rambla Vella 14, 43003 Tarragona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, Spain
| |
Collapse
|
125
|
Leclerc D, Lévesque N, Cao Y, Deng L, Wu Q, Powell J, Sapienza C, Rozen R. Genes with aberrant expression in murine preneoplastic intestine show epigenetic and expression changes in normal mucosa of colon cancer patients. Cancer Prev Res (Phila) 2013; 6:1171-81. [PMID: 24169962 DOI: 10.1158/1940-6207.capr-13-0198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An understanding of early genetic/epigenetic changes in colorectal cancer would aid in diagnosis and prognosis. To identify these changes in human preneoplastic tissue, we first studied our mouse model in which Mthfr⁺/⁻ BALB/c mice fed folate-deficient diets develop intestinal tumors in contrast to Mthfr⁺/⁺ BALB/c mice fed control diets. Transcriptome profiling was performed in normal intestine from mice with low or high tumor susceptibility. We identified 12 upregulated and 51 downregulated genes in tumor-prone mice. Affected pathways included retinoid acid synthesis, lipid and glucose metabolism, apoptosis and inflammation. We compared murine candidates from this microarray analysis, and murine candidates from an earlier strain-based comparison, with a set of human genes that we had identified in previous methylome profiling of normal human colonic mucosa, from colorectal cancer patients and controls. From the extensive list of human methylome candidates, our approach uncovered five orthologous genes that had shown changes in murine expression profiles (PDK4, SPRR1A, SPRR2A, NR1H4, and PYCARD). The human orthologs were assayed by bisulfite-pyrosequencing for methylation at 14 CpGs. All CpGs exhibited significant methylation differences in normal mucosa between colorectal cancer patients and controls; expression differences for these genes were also observed. PYCARD and NR1H4 methylation differences showed promise as markers for presence of polyps in controls. We conclude that common pathways are disturbed in preneoplastic intestine in our animal model and morphologically normal mucosa of patients with colorectal cancer, and present an initial version of a DNA methylation-based signature for human preneoplastic colon.
Collapse
Affiliation(s)
- Daniel Leclerc
- Montreal Children's Hospital Research Institute, 4060 Ste-Catherine West, Room 200, Montreal, Canada H3Z 2Z3.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2013; 33:4451-63. [PMID: 24096485 DOI: 10.1038/onc.2013.411] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022]
Abstract
Acquired resistance has curtailed cancer survival since the dawn of the chemotherapy age more than half a century ago. Although the application of stem cell (SC) concepts to cancer captured the imagination of scientists for many years, only the last decade has yielded substantial evidence that cancer SCs (CSCs) contribute to chemotherapy resistance. Recent studies suggest that the functional and molecular properties of CSCs constitute therapeutic opportunities to improve the efficacy of chemotherapy. Here we review how these properties have stimulated combination strategies that suppress acquired resistance across a spectrum of malignancies. The clinical implementation of these strategies promises to rejuvenate the effort against an enduring challenge.
Collapse
Affiliation(s)
- S J Vidal
- 1] Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA [2] Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - V Rodriguez-Bravo
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Galsky
- Oncology Department, Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - C Cordon-Cardo
- Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - J Domingo-Domenech
- Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
127
|
Vazquez-Martin A, Cufí S, López-Bonet E, Corominas-Faja B, Cuyàs E, Vellon L, Iglesias JM, Leis O, Martín AG, Menendez JA. Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells. Cell Cycle 2013; 12:3471-7. [PMID: 24107627 DOI: 10.4161/cc.26692] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka's nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E 2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E 2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E 2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E 2. Because E 2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E 2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology, Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ 2013; 21:124-35. [PMID: 24096870 DOI: 10.1038/cdd.2013.131] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/17/2013] [Accepted: 08/02/2013] [Indexed: 02/07/2023] Open
Abstract
Side population (SP) cells within tumors are a small fraction of cancer cells with stem-like properties that can be identified by flow cytometry analysis based on their high ability to export certain compounds such as Hoechst 33342 and chemotherapeutic agents. The existence of stem-like SP cells in tumors is considered as a key factor contributing to drug resistance, and presents a major challenge in cancer treatment. Although it has been recognized for some time that tumor tissue niches may significantly affect cancer stem cells (CSCs), the role of key nutrients such as glucose in the microenvironment in affecting stem-like cancer cells and their metabolism largely remains elusive. Here we report that SP cells isolated from human cancer cells exhibit higher glycolytic activity compared to non-SP cells. Glucose in the culture environment exerts a profound effect on SP cells as evidenced by its ability to induce a significant increase in the percentage of SP cells in the overall cancer cell population, and glucose starvation causes a rapid depletion of SP cells. Mechanistically, glucose upregulates the SP fraction through ATP-mediated suppression of AMPK and activation of the Akt pathway, leading to elevated expression of the ATP-dependent efflux pump ABCG2. Importantly, inhibition of glycolysis by 3-BrOP significantly reduces SP cells in vitro and impairs their ability to form tumors in vivo. Our data suggest that glucose is an essential regulator of SP cells mediated by the Akt pathway, and targeting glycolysis may eliminate the drug-resistant SP cells with potentially significant benefits in cancer treatment.
Collapse
|
129
|
Corominas-Faja B, Cufí S, Oliveras-Ferraros C, Cuyàs E, López-Bonet E, Lupu R, Alarcón T, Vellon L, Iglesias JM, Leis O, Martín ÁG, Vazquez-Martin A, Menendez JA. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 2013; 12:3109-24. [PMID: 23974095 DOI: 10.4161/cc.26173] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg's theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka's stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR--the master switch of cellular catabolism and anabolism--in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1-60, and TRA-1-81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44(+) and ALDEFLUOR-stained ALDH(bright) cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep cells. Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013; 108:378-87. [PMID: 23830195 DOI: 10.1016/j.radonc.2013.06.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022]
Abstract
Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies.
Collapse
Affiliation(s)
- Claudia Peitzsch
- OncoRay National Center for Radiation Research in Oncology, University Hospital/Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| | | | | | | | | |
Collapse
|
131
|
Decroix G, Lagadec C, Vergnes L, Reue K, Frohnen P, Chan M, Alhiyari Y, Dratver MB, Pajonk F. [Attitude of the physician to inoperable cancer of the lung]. Breast Cancer Res Treat 1974; 146:525-34. [PMID: 4131557 DOI: 10.1007/s10549-014-3051-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/27/2014] [Indexed: 12/11/2022]
|
132
|
Degeneration and regeneration of the nerves of the heart after transplantation. Transplantation 1973; 5:e1336. [PMID: 25032859 PMCID: PMC4123079 DOI: 10.1038/cddis.2014.285] [Citation(s) in RCA: 192] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
A number of studies suggest that cancer stem cells are essential for tumour growth, and failure to target these cells can result in tumour relapse. As this population of cells has been shown to be resistant to radiation and chemotherapy, it is essential to understand their biology and identify new therapeutic approaches. Targeting cancer metabolism is a potential alternative strategy to counteract tumour growth and recurrence. Here we applied a proteomic and targeted metabolomic analysis in order to point out the main metabolic differences between breast cancer cells grown as spheres and thus enriched in cancer stem cells were compared with the same cells grown in adherent differentiating conditions. This integrated approach allowed us to identify a metabolic phenotype associated with the stem-like condition and shows that breast cancer stem cells (BCSCs) shift from mitochondrial oxidative phosphorylation towards fermentative glycolysis. Functional validation of proteomic and metabolic data provide evidences for increased activities of key enzymes of anaerobic glucose fate such as pyruvate kinase M2 isoform, lactate dehydrogenase and glucose 6-phopshate dehydrogenase in cancer stem cells as well as different redox status. Moreover, we show that treatment with 2-deoxyglucose, a well known inhibitor of glycolysis, inhibits BCSC proliferation when used alone and shows a synergic effect when used in combination with doxorubicin. In conclusion, we suggest that inhibition of glycolysis may be a potentially effective strategy to target BCSCs.
Collapse
|
133
|
[Gynecologic examinations]. Cancers (Basel) 1965; 10:cancers10020040. [PMID: 29385093 PMCID: PMC5836072 DOI: 10.3390/cancers10020040] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Tumours contain a small number of treatment-resistant cancer stem cells (CSCs), and it is through these that tumour regrowth originates at secondary sites, thus rendering CSCs an attractive target for treatment. Cancer cells adapt cellular metabolism for aggressive proliferation. Tumour cells use less efficient glycolysis for the production of ATP and increasing tumour mass, instead of oxidative phosphorylation (OXPHOS). CSCs show distinct metabolic shift and, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. Since Wnt signalling promotes glycolysis and tumour growth, we investigated the effect of the Wnt antagonist secreted frizzled-related protein 4 (sFRP4) on CSC metabolism. We demonstrate that sFRP4 has a prominent role in basal glucose uptake in CSCs derived from breast and prostate tumour cell lines. We show that sFRP4 treatment on CSCs isolated with variable glucose content induces metabolic reprogramming by relocating metabolic flux to glycolysis or OXPHOS. Altogether, sFRP4 treatment compromises cell proliferation and critically affects cell survival mechanisms such as viability, glucose transporters, pyruvate conversion, mammalian target of rapamycin, and induces CSC apoptosis under conditions of variable glucose content. Our findings provide the feasibility of using sFRP4 to inhibit CSC survival in order to induce metabolic reprogramming in vivo.
Collapse
|