L-Glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel.
Biosci Biotechnol Biochem 2013;
77:1008-13. [PMID:
23649271 DOI:
10.1271/bbb.120988]
[Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Corynebacterium glutamicum NCgl1221 mechanosensitive channel mediates L-glutamate secretion by sensing changes in membrane tension caused by treatments such as biotin limitation and penicillin. The NCgl1221 protein has an N-terminal domain (1-286 a.a.) homologous to the Escherichia coli MscS and a long C-terminal domain (287-533 a.a.) of unknown function. In order to investigate the role of the C-terminal domain in L-glutamate secretion, we constructed a series of C-terminally truncated mutants of NCgl1221. We found that the N-terminal domain, homologous to E. coli MscS, retained the ability to cause L-glutamate secretion in response to the treatment. Electrophysiological analysis confirmed that the N-terminal domain mediated L-glutamate secretion. 3D homology modeling has suggested that the N-terminal domain of NCgl1221 has an extra loop structure (221-232 a.a.) that is not found in most other MscS proteins. The mutant NCgl1221, deleted for this loop structure, lost the ability to secrete L-glutamate. In addition, we found that mutant NCgl1221 lacking the C-terminal extracytoplasmic domain (420-533 a.a.) produced L-glutamate without any inducing treatment. These results suggest that the N-terminal domain is necessary and sufficient for the excretion of L-glutamate in response to inducing treatment, and that the C-terminal extracytoplasmic domain has a negative regulatory role in L-glutamate production.
Collapse