101
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
102
|
Jung JH, Lee H, Kim JH, Sim DY, Ahn H, Kim B, Chang S, Kim SH. p53-Dependent Apoptotic Effect of Puromycin via Binding of Ribosomal Protein L5 and L11 to MDM2 and its Combination Effect with RITA or Doxorubicin. Cancers (Basel) 2019; 11:cancers11040582. [PMID: 31022952 PMCID: PMC6520892 DOI: 10.3390/cancers11040582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
Among ribosomal proteins essential for protein synthesis, the functions of ribosomal protein L5 (RPL5) and RPL11 still remain unclear to date. Here, the roles of RPL5 and RPL11 were investigated in association with p53/p21 signaling in the antitumor effect of puromycin mainly in HCT116 and H1299 cancer cells. Cell proliferation assays using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays and colony formation assays, cell cycle analysis, Reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were performed in cancer cells. Puromycin exerted cytotoxic and anti-proliferative effects in p53 wild-type HCT116 more than in p53 null H1299 cells. Consistently, puromycin increased sub-G1, cleaved Poly (ADP-ribose) polymerase (PARP), activated p53, p21, and Mouse double minute 2 homolog (MDM2), and attenuated expression of c-Myc in HCT116 cells. Notably, puromycin upregulated the expression of RPL5 and RPL11 to directly bind to MDM2 in HCT116 cells. Conversely, deletion of RPL5 and RPL11 blocked the activation of p53, p21, and MDM2 in HCT116 cells. Also, puromycin enhanced the antitumor effect with reactivating p53 and inducing tumor apoptosis (RITA) or doxorubicin in HCT116 cells. These findings suggest that puromycin induces p53-dependent apoptosis via upregulation of RPL5 or RPL11 for binding with MDM2, and so can be used more effectively in p53 wild-type cancers by combination with RITA or doxorubicin.
Collapse
Affiliation(s)
- Ji Hoon Jung
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyemin Lee
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ju-Ha Kim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Deok Yong Sim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyojin Ahn
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bonglee Kim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Sung-Hoon Kim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
103
|
Bi X, Ye Q, Li D, Peng Q, Wang Z, Wu X, Zhang Y, Zhang Q, Jiang F. Inhibition of nucleolar stress response by Sirt1: A potential mechanism of acetylation-independent regulation of p53 accumulation. Aging Cell 2019; 18:e12900. [PMID: 30623565 PMCID: PMC6413664 DOI: 10.1111/acel.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/28/2018] [Accepted: 12/08/2018] [Indexed: 02/04/2023] Open
Abstract
The mammalian Sirt1 deacetylase is generally thought to be a nuclear protein, but some pilot studies have suggested that Sirt1 may also be involved in orchestrating nucleolar functions. Here, we show that nucleolar stress response is a ubiquitous cellular reaction that can be induced by different types of stress conditions, and Sirt1 is an endogenous suppressor of nucleolar stress response. Using stable isotope labeling by amino acids in cell culture approach, we have identified a physical interaction of between Sirt1 and the nucleolar protein nucleophosmin, and this protein-protein interaction appears to be necessary for Sirt1 inhibition on nucleolar stress, whereas the deacetylase activity of Sirt1 is not strictly required. Based on the reported prerequisite role of nucleolar stress response in stress-induced p53 protein accumulation, we have also provided evidence suggesting that Sirt1-mediated inhibition on nucleolar stress response may represent a novel mechanism by which Sirt1 can modulate intracellular p53 accumulation independent of lysine deacetylation. This process may represent an alternative mechanism by which Sirt1 regulates functions of the p53 pathway.
Collapse
Affiliation(s)
- Xiaolei Bi
- School of Basic MedicineShandong UniversityJinanShandong ProvinceChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
- Present address:
Department of CardiologyQingdao Municipal HospitalQingdaoShandong ProvinceChina
| | - Qing Ye
- School of Basic MedicineShandong UniversityJinanShandong ProvinceChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Daoyuan Li
- National Glycoengineering Research CenterShandong UniversityJinanChina
| | - Qisheng Peng
- Key Laboratory of Zoonosis ResearchJilin UniversityChangchunJilin ProvinceChina
| | - Zhe Wang
- Division of Endocrinology and MetabolismShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
| | - Xiao Wu
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Fan Jiang
- School of Basic MedicineShandong UniversityJinanShandong ProvinceChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
104
|
Tarimo BB, Hritzo BA, Law HCH, Tao D, Pastrana-Mena R, Kanzok SM, Buza JJ, Dinglasan RR. Ribosomal/nucleolar stress induction regulates tert-Butyl hydroperoxide (tBHP) mediated oxidative stress in Anopheles gambiae midguts. BMC Res Notes 2019; 12:182. [PMID: 30922378 PMCID: PMC6440166 DOI: 10.1186/s13104-019-4196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Objective A fundamental understanding of redox homeostasis in Anopheles gambiae midgut cells under different oxidative conditions is missing. Such knowledge can aid in the development of new malaria transmission-blocking strategies aimed at disrupting natural homeostatic processes in the mosquito during Plasmodium parasite uptake (i.e. blood feeding). The aim of this study was to understand how the An. gambiae midgut regulates oxidative stress to reactive oxygen species (ROS), especially to a potent ROS-inducer such as tert-Butyl hydroperoxide (tBHP). Results Initial studies using quantitative immunoblot indicated that the expression of the classical antioxidant protein An. gambiae thioredoxin-1 (AgTrx-1) remained unchanged across challenges with different concentrations of tBHP suggesting that additional mechanisms to regulate ROS may be involved. We therefore conducted a global proteomic survey, which revealed that An. gambiae midguts under low (50 μM) and high (200 μM) tBHP concentrations were enriched in proteins indicative of ribosomal/nucleolar stress. Ribosomal stress is an inherent cellular response to an imbalance in ribosomal proteins (RPs) due to cellular stress such as oxidative stress. Our data suggest that ribosomal/nucleolar stress is the primary cellular response in An. gambiae midguts under tBHP challenge. Considering these results, we discuss harnessing the ribosomal stress response as a potential malaria transmission-blocking strategy. Electronic supplementary material The online version of this article (10.1186/s13104-019-4196-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian B Tarimo
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha, 23302, Tanzania.,W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Dar es Salaam, 14112, Tanzania
| | - Bernadette A Hritzo
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Henry Chun Hin Law
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, 2055 Mowry Road, Rm 375, Gainesville, FL, 32611, USA
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Rebecca Pastrana-Mena
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Joram J Buza
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha, 23302, Tanzania
| | - Rhoel R Dinglasan
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha, 23302, Tanzania. .,W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, 2055 Mowry Road, Rm 375, Gainesville, FL, 32611, USA.
| |
Collapse
|
105
|
Nyhus C, Pihl M, Hyttel P, Hall VJ. Evidence for nucleolar dysfunction in Alzheimer's disease. Rev Neurosci 2019; 30:685-700. [PMID: 30849050 DOI: 10.1515/revneuro-2018-0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer's disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Caitlin Nyhus
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| |
Collapse
|
106
|
Tye BW, Commins N, Ryazanova LV, Wühr M, Springer M, Pincus D, Churchman LS. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. eLife 2019; 8:43002. [PMID: 30843788 PMCID: PMC6453566 DOI: 10.7554/elife.43002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/31/2022] Open
Abstract
To achieve maximal growth, cells must manage a massive economy of ribosomal proteins (r-proteins) and RNAs (rRNAs) to produce thousands of ribosomes every minute. Although ribosomes are essential in all cells, natural disruptions to ribosome biogenesis lead to heterogeneous phenotypes. Here, we model these perturbations in Saccharomyces cerevisiae and show that challenges to ribosome biogenesis result in acute loss of proteostasis. Imbalances in the synthesis of r-proteins and rRNAs lead to the rapid aggregation of newly synthesized orphan r-proteins and compromise essential cellular processes, which cells alleviate by activating proteostasis genes. Exogenously bolstering the proteostasis network increases cellular fitness in the face of challenges to ribosome assembly, demonstrating the direct contribution of orphan r-proteins to cellular phenotypes. We propose that ribosome assembly is a key vulnerability of proteostasis maintenance in proliferating cells that may be compromised by diverse genetic, environmental, and xenobiotic perturbations that generate orphan r-proteins. Cells are made up of thousands of different proteins that perform unique roles required for life. To create all of these proteins, cells use machines called ribosomes that are partly formed of elements known as r-proteins. When cells grow and divide, the ribosomes have to make copies of themselves through a process called ribosome biogenesis. Although all cells need ribosomes, certain types of cells are especially sensitive to events that interfere with ribosome biogenesis. For example, patients that have mutations in genes needed for ribosome biogenesis produce fewer red blood cells, but their other cells and tissues are mostly healthy. It is not clear why some cells are more sensitive than others. Ribosome biogenesis is very similar between different organisms, so researchers often use budding yeast as a model to study the process. Here, Tye et al. used genetic and chemical tools to interfere with ribosome biogenesis on short time scales, which made it possible to detect early on what was going wrong in the cells. The experiments found that when ribosome biogenesis was disrupted, r-proteins that were waiting to be assembled into ribosomes quickly stuck to one another and formed clumps that reduced the ability of the yeast cells to grow. The cells responded by switching on a protein called Hsf1, which restored their ability to grow. Yeast cells that were growing quickly, and therefore making more ribosomes, were more sensitive to abnormal ribosome biogenesis than slow-growing cells. These results indicate that how actively a cell is growing, and its ability to cope with r-proteins sticking together, may in part explain why certain cells are more vulnerable to events that interfere with ribosome biogenesis. Since human cells also have Hsf1, future experiments could investigate whether turning it on might also protect fast-growing human cells from such events.
Collapse
Affiliation(s)
- Blake W Tye
- Department of Genetics, Harvard Medical School, Boston, United States.,Program in Chemical Biology, Harvard University, Cambridge, United States
| | - Nicoletta Commins
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Lillia V Ryazanova
- Department of Molecular Biology, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States.,Center for Physics of Evolving Systems, University of Chicago, Chicago, United States
| | | |
Collapse
|
107
|
Engidaye G, Melku M, Enawgaw B. Diamond Blackfan Anemia: Genetics, Pathogenesis, Diagnosis and Treatment. EJIFCC 2019; 30:67-81. [PMID: 30881276 PMCID: PMC6416817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Diamond Blackfan Anaemia (DBA) is a sporadic inherited anemia with broad spectrum of anomalies that are presented soon after delivery. It is inherited mainly in autosomal dominant inheritance manner and caused by mutations and deletions in either large or small ribosomal protein genes that results in an imbalance between the biosynthesis of rRNA and ribosomal proteins, eventually the activation and stabilization of p53. Diagnosing DBA is usually problematic due to a partial phenotype and its wide inconsistency in its clinical expression; however, molecular studies have identified a heterozygous mutated gene in up to 50% of the DBA cases and corticosteroid drugs are the backbone treatment options of DBA. Anomalies in bone marrow function in DBA cases are broadly associated with both congenital and acquired bone marrow failure syndromes in human. In this review different literatures were searched in Medline (eg. PubMed, PMC, Hinari, Google scholar), OMIM, EMBASE by using search engines (Google, Yahoo, Baidu Ask.com) and searching was performed by using search key words (DBA, ribosomopathies, Bone Marrow Failure Syndromes, pure red cell aplasia). Only human studies were included. This review is summarizing the current understandings of DBA.
Collapse
Affiliation(s)
- Getabalew Engidaye
- Amhara Regional State Debre Berhan Health Science College, Debre Berhan, Ethiopia, Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Ethiopia,Corresponding author: Bamlaku Enawgaw Department of Hematology & Immunohematology School of Biomedical and Laboratory Sciences College of Medicine and Health Sciences University of Gondar Ethiopia E-mail:
| |
Collapse
|
108
|
Zhang Q, An Y, Chen ZS, Koon AC, Lau KF, Ngo JCK, Chan HYE. A Peptidylic Inhibitor for Neutralizing r(GGGGCC) exp-Associated Neurodegeneration in C9ALS-FTD. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:172-185. [PMID: 30889483 PMCID: PMC6424097 DOI: 10.1016/j.omtn.2019.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
One drug, two diseases is a rare and economical therapeutic strategy that is highly desirable in the pharmaceutical industry. We previously reported a 21-amino acid peptide named beta-structured inhibitor for neurodegenerative diseases (BIND) that can effectively inhibit expanded CAG trinucleotide toxicity in polyglutamine (polyQ) diseases. Here we report that BIND also effectively inhibits GGGGCC repeat-mediated neurodegeneration in vitro and in vivo. When fused with a cell-penetrating peptide derived from the transactivator of transcription (TAT) protein of the HIV, TAT-BIND reduces cell death, formation of GGGGCC RNA foci, and levels of poly-GR, poly-GA, and poly-GP dipeptide proteins in cell models of C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS-FTD). We showed that TAT-BIND disrupts the interaction between GGGGCC RNA and nucleolin protein, restores rRNA maturation, and inhibits mislocalization of nucleolin and B23, which eventually suppresses nucleolar stress in C9ALS-FTD. In a Drosophila model of C9ALS-FTD, TAT-BIND suppresses retinal degeneration, rescues climbing ability, and extends the lifespan of flies. In contrast, TAT-BIND has no effect on UAS-poly-glycine-arginine (poly-GR)100-expressing flies, which generate only poly-GR protein toxicity, indicating BIND ameliorates toxicity in C9ALS-FTD models via a r(GGGGCC)exp-dependent inhibitory mechanism. Our findings demonstrated that, apart from being a potential therapeutic for polyQ diseases, BIND is also a potent peptidylic inhibitor that suppresses expanded GGGGCC RNA-mediated neurodegeneration, highlighting its potential application in C9ALS-FTD treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
| |
Collapse
|
109
|
Fernández MN, Muñoz-Olivas R, Luque-Garcia JL. SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity. Nanotoxicology 2019; 13:812-826. [DOI: 10.1080/17435390.2019.1579374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. N. Fernández
- Faculty of Chemical Sciences, Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - R. Muñoz-Olivas
- Faculty of Chemical Sciences, Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - J. L. Luque-Garcia
- Faculty of Chemical Sciences, Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
110
|
Ferguson B, Handoko HY, Mukhopadhyay P, Chitsazan A, Balmer L, Morahan G, Walker GJ. Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma. eLife 2019; 8:e42424. [PMID: 30681412 PMCID: PMC6428585 DOI: 10.7554/elife.42424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Genetic variation conferring resistance and susceptibility to carcinogen-induced tumorigenesis is frequently studied in mice. We have now turned this idea to melanoma using the collaborative cross (CC), a resource of mouse strains designed to discover genes for complex diseases. We studied melanoma-prone transgenic progeny across seventy CC genetic backgrounds. We mapped a strong quantitative trait locus for rapid onset spontaneous melanoma onset to Prkdc, a gene involved in detection and repair of DNA damage. In contrast, rapid onset UVR-induced melanoma was linked to the ribosomal subunit gene Rrp15. Ribosome biogenesis was upregulated in skin shortly after UVR exposure. Mechanistically, variation in the 'usual suspects' by which UVR may exacerbate melanoma, defective DNA repair, melanocyte proliferation, or inflammatory cell infiltration, did not explain melanoma susceptibility or resistance across the CC. Instead, events occurring soon after exposure, such as dysregulation of ribosome function, which alters many aspects of cellular metabolism, may be important.
Collapse
Affiliation(s)
- Blake Ferguson
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Herlina Y Handoko
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Pamela Mukhopadhyay
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Arash Chitsazan
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Lois Balmer
- Centre for Diabetes ResearchHarry Perkins Institute of Medical ResearchPerthAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| | - Grant Morahan
- Centre for Diabetes ResearchHarry Perkins Institute of Medical ResearchPerthAustralia
| | - Graeme J Walker
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| |
Collapse
|
111
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
112
|
The potential role of tubeimosides in cancer prevention and treatment. Eur J Med Chem 2019; 162:109-121. [DOI: 10.1016/j.ejmech.2018.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022]
|
113
|
Baillon L, Germani F, Rockel C, Hilchenbach J, Basler K. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells. Sci Rep 2018; 8:17712. [PMID: 30531963 PMCID: PMC6286310 DOI: 10.1038/s41598-018-36277-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
The elimination of unfit cells from a tissue is a process known in Drosophila and mammals as cell competition. In a well-studied paradigm “loser” cells that are heterozygous mutant for a haploinsufficient ribosomal protein gene are eliminated from developing tissues via apoptosis when surrounded by fitter wild-type cells, referred to as “winner” cells. However, the mechanisms underlying the induction of this phenomenon are not fully understood. Here we report that a CCAAT-Enhancer-Binding Protein (C/EBP), Xrp1, which is known to help maintaining genomic stability after genotoxic stress, is necessary for the elimination of loser clones in cell competition. In loser cells, Xrp1 is transcriptionally upregulated by an autoregulatory loop and is able to trigger apoptosis - driving cell elimination. We further show that Xrp1 acts in the nucleus to regulate the transcription of several genes that have been previously involved in cell competition. We therefore speculate that Xrp1 might play a fundamental role as a molecular caretaker of the genomic integrity of tissues.
Collapse
Affiliation(s)
- Ludovic Baillon
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Federico Germani
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Claudia Rockel
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jochen Hilchenbach
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
114
|
McCarthy A, Deiulio A, Martin ET, Upadhyay M, Rangan P. Tip60 complex promotes expression of a differentiation factor to regulate germline differentiation in female Drosophila. Mol Biol Cell 2018; 29:2933-2945. [PMID: 30230973 PMCID: PMC6329907 DOI: 10.1091/mbc.e18-06-0385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
Germline stem cells (GSCs) self-renew and differentiate to sustain a continuous production of gametes. In the female Drosophila germ line, two differentiation factors, bag of marbles ( bam) and benign gonial cell neoplasm ( bgcn), work in concert in the stem cell daughter to promote the generation of eggs. In GSCs, bam transcription is repressed by signaling from the niche and is activated in stem cell daughters. In contrast, bgcn is transcribed in both the GSCs and stem cell daughters, but little is known about how bgcn is transcriptionally modulated. Here we find that the conserved protein Nipped-A acts through the Tat interactive protein 60-kDa (Tip60) histone acetyl transferase complex in the germ line to promote GSC daughter differentiation. We find that Nipped-A is required for efficient exit from the gap phase 2 (G2) of cell cycle of the GSC daughter and for expression of a differentiation factor, bgcn. Loss of Nipped-A results in accumulation of GSC daughters . Forced expression of bgcn in Nipped-A germline-depleted ovaries rescues this differentiation defect. Together, our results indicate that Tip60 complex coordinates cell cycle progression and expression of bgcn to help drive GSC daughters toward a differentiation program.
Collapse
Affiliation(s)
- Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Aron Deiulio
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Elliot Todd Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| |
Collapse
|
115
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
116
|
Crosstalk between NF-κB and Nucleoli in the Regulation of Cellular Homeostasis. Cells 2018; 7:cells7100157. [PMID: 30301139 PMCID: PMC6210184 DOI: 10.3390/cells7100157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Nucleoli are emerging as key sensors of cellular stress and regulators of the downstream consequences on proliferation, metabolism, senescence, and apoptosis. NF-κB signalling is activated in response to a similar plethora of stresses, which leads to modulation of cell growth and death programs. While nucleolar and NF-κB pathways are distinct, it is increasingly apparent that they converge at multiple levels. Exposure of cells to certain insults causes a specific type of nucleolar stress that is characterised by degradation of the PolI complex component, TIF-IA, and increased nucleolar size. Recent studies have shown that this atypical nucleolar stress lies upstream of cytosolic IκB degradation and NF-κB nuclear translocation. Under these stress conditions, the RelA component of NF-κB accumulates within functionally altered nucleoli to trigger a nucleophosmin dependent, apoptotic pathway. In this review, we will discuss these points of crosstalk and their relevance to anti-tumour mechanism of aspirin and small molecule CDK4 inhibitors. We will also briefly the discuss how crosstalk between nucleoli and NF-κB signalling may be more broadly relevant to the regulation of cellular homeostasis and how it may be exploited for therapeutic purpose.
Collapse
|
117
|
Huang CH, Chen YT, Lin JH, Wang HT. Acrolein induces ribotoxic stress in human cancer cells regardless of p53 status. Toxicol In Vitro 2018; 52:265-271. [PMID: 29964147 DOI: 10.1016/j.tiv.2018.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
Abstract
Acrolein (Acr) cytotoxicity contributes to chemotherapeutic activity of cyclophosphamide via metabolism of the anticancer drug. Our previous studies have shown that Acr causes ribosomal DNA (rDNA) damages, thus shuts down ribosomal RNA (rRNA) synthesis and leads to ribosomal stress in human cancer cells. Ribosome senses stress in 28S rRNA and induces subsequent activation of mitogen-activated protein kinase (MAPK) pathway which triggers ribotoxic stress response (RSR). Here, we report that cells harboring p53 or not responds differently to Acr-induced RSR. Our results show that Acr induced rRNA cleavage via the activated caspases in cancer cells with wild type p53, but not in cells with deficient p53. Furthermore, MAPK pathways were activated by Acr in cancer cells regardless of p53 status. Acr induced apoptosis in cells with wild type p53, while it induced G2/M cell cycle arrest in cancer cells with deficient p53. In conclusion, the presence of functional p53 plays a significant role in the mechanisms of Acr-induced rRNA cleavage and cell fates. Our results enhance our understanding of the molecular mechanisms of Acr-mediated antitumor activity which helps develop better therapeutic strategies for killing cancer cells with different p53 status.
Collapse
Affiliation(s)
- Chun-Hao Huang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ting Chen
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jing-Heng Lin
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
118
|
Hayashi Y, Fujimura A, Kato K, Udagawa R, Hirota T, Kimura K. Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry. SCIENCE ADVANCES 2018; 4:eaap7777. [PMID: 29881774 PMCID: PMC5990311 DOI: 10.1126/sciadv.aap7777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The nucleolus is a dynamic nuclear body that has been demonstrated to disassemble at the onset of mitosis; the relationship between cell cycle progression and nucleolar integrity, however, remains poorly understood. We studied the role of nucleolar proteins in mitosis by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on nucleolar protein 11 (NOL11), with currently unknown mitotic functions. Depletion of NOL11 delayed entry into the mitotic phase owing to increased inhibitory phosphorylation of cyclin-dependent kinase 1 (Cdk1) and aberrant accumulation of Wee1, a kinase that phosphorylates and inhibits Cdk1. In addition to effects on overall mitotic phenotypes, NOL11 depletion reduced ribosomal RNA (rRNA) levels and caused nucleolar disruption during interphase. Notably, mitotic phenotypes found in NOL11-depleted cells were recapitulated when nucleolar disruption was induced by depletion of rRNA transcription factors or treatment with actinomycin D. Furthermore, delayed entry into the mitotic phase, caused by the depletion of pre-rRNA transcription factors, was attributable to nucleolar disruption rather than to G2/M checkpoint activation or reduced protein synthesis. Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Wee1 and Cdk1.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Rina Udagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
119
|
Frankowski KJ, Wang C, Patnaik S, Schoenen FJ, Southall N, Li D, Teper Y, Sun W, Kandela I, Hu D, Dextras C, Knotts Z, Bian Y, Norton J, Titus S, Lewandowska MA, Wen Y, Farley KI, Griner LM, Sultan J, Meng Z, Zhou M, Vilimas T, Powers AS, Kozlov S, Nagashima K, Quadri HS, Fang M, Long C, Khanolkar O, Chen W, Kang J, Huang H, Chow E, Goldberg E, Feldman C, Xi R, Kim HR, Sahagian G, Baserga SJ, Mazar A, Ferrer M, Zheng W, Shilatifard A, Aubé J, Rudloff U, Marugan JJ, Huang S. Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Sci Transl Med 2018; 10:eaap8307. [PMID: 29769289 PMCID: PMC6176865 DOI: 10.1126/scitranslmed.aap8307] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
Metastasis remains a leading cause of cancer mortality due to the lack of specific inhibitors against this complex process. To identify compounds selectively targeting the metastatic state, we used the perinucleolar compartment (PNC), a complex nuclear structure associated with metastatic behaviors of cancer cells, as a phenotypic marker for a high-content screen of over 140,000 structurally diverse compounds. Metarrestin, obtained through optimization of a screening hit, disassembles PNCs in multiple cancer cell lines, inhibits invasion in vitro, suppresses metastatic development in three mouse models of human cancer, and extends survival of mice in a metastatic pancreatic cancer xenograft model with no organ toxicity or discernable adverse effects. Metarrestin disrupts the nucleolar structure and inhibits RNA polymerase (Pol) I transcription, at least in part by interacting with the translation elongation factor eEF1A2. Thus, metarrestin represents a potential therapeutic approach for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Kevin J Frankowski
- Specialized Chemistry Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Chen Wang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Samarjit Patnaik
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Frank J Schoenen
- Specialized Chemistry Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Noel Southall
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Dandan Li
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yaroslav Teper
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Wei Sun
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Irawati Kandela
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| | - Deqing Hu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christopher Dextras
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Zachary Knotts
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yansong Bian
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - John Norton
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Steve Titus
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Marzena A Lewandowska
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Yiping Wen
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Katherine I Farley
- Departments of Molecular Biophysics and Biochemistry, Genetics, and Therapeutic Radiology, Yale University and Yale School of Medicine, New Haven, CT 06520, USA
| | - Lesley Mathews Griner
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Jamey Sultan
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Zhaojing Meng
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Ming Zhou
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Tomas Vilimas
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Fort Detrick, Frederick, MD 21702, USA
| | - Astin S Powers
- Laboratory of Pathology, Center for Cancer Research, NIH, Bethesda, MD 20892, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Fort Detrick, Frederick, MD 21702, USA
| | - Kunio Nagashima
- Electron Microscope Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Humair S Quadri
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Min Fang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charles Long
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Ojus Khanolkar
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Warren Chen
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Jinsol Kang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Helen Huang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Eric Chow
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Esthermanya Goldberg
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Coral Feldman
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Romi Xi
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Hye Rim Kim
- Department of Human Genetics, Cancer Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary Sahagian
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Susan J Baserga
- Departments of Molecular Biophysics and Biochemistry, Genetics, and Therapeutic Radiology, Yale University and Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Mazar
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| | - Marc Ferrer
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Wei Zheng
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey Aubé
- Specialized Chemistry Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Udo Rudloff
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Juan Jose Marugan
- NIH (National Institutes of Health) Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, 20850, USA.
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
120
|
Abstract
The nucleolus is a prominent subnuclear compartment, where ribosome biosynthesis takes place. Recently, the nucleolus has gained attention for its novel role in the regulation of cellular stress. Nucleolar stress is emerging as a new concept, which is characterized by diverse cellular insult-induced abnormalities in nucleolar structure and function, ultimately leading to activation of p53 or other stress signaling pathways and alterations in cell behavior. Despite a number of comprehensive reviews on this concept, straightforward and clear-cut way criteria for a nucleolar stress state, regarding the factors that elicit this state, the morphological and functional alterations as well as the rationale for p53 activation are still missing. Based on literature of the past two decades, we herein summarize the evolution of the concept and provide hallmarks of nucleolar stress. Along with updated information and thorough discussion of existing confusions in the field, we pay particular attention to the current understanding of the sensing mechanisms, i.e., how stress is integrated by p53. In addition, we propose our own emphasis regarding the role of nucleolar protein NPM1 in the hallmarks of nucleolar stress and sensing mechanisms. Finally, the links of nucleolar stress to human diseases are briefly and selectively introduced.
Collapse
Affiliation(s)
- Kai Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
121
|
Wu J, Jiang X, Li Y, Zhu T, Zhang J, Zhang Z, Zhang L, Zhang Y, Wang Y, Zou X, Liang B. PHA-4/FoxA senses nucleolar stress to regulate lipid accumulation in Caenorhabditis elegans. Nat Commun 2018; 9:1195. [PMID: 29567958 PMCID: PMC5864837 DOI: 10.1038/s41467-018-03531-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
The primary function of the nucleolus is ribosome biogenesis, which is an extremely energetically expensive process. Failures in ribosome biogenesis cause nucleolar stress with an altered energy status. However, little is known about the underlying mechanism linking nucleolar stress to energy metabolism. Here we show that nucleolar stress is triggered by inactivation of RSKS-1 (ribosomal protein S6 kinase), RRP-8 (ribosomal RNA processing 8), and PRO-2/3 (proximal proliferation), all of which are involved in ribosomal RNA processing or inhibition of rDNA transcription by actinomycin D (AD), leading to excessive lipid accumulation in Caenorhabditis elegans. The transcription factor PHA-4/FoxA acts as a sensor of nucleolar stress to bind to and transactivate the expression of the lipogenic genes pod-2 (acetyl-CoA carboxylase), fasn-1 (fatty acid synthase), and dgat-2 (diacylglycerol O-acyltransferase 2), consequently promoting lipid accumulation. Importantly, inactivation of pha-4 or dgat-2 is sufficient to abolish nucleolar stress-induced lipid accumulation and prolonged starvation survival. The results revealed a distinct PHA-4-mediated lipogenesis pathway that senses nucleolar stress and shifts excessive energy for storage as fat.
Collapse
Affiliation(s)
- Jieyu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- School of Life Science, University of Science and Technology of China, Hefei, 230027, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jingjing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yanli Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaoju Zou
- Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Department of Life Science and Biotechnology, Kunming University, Kunming, 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
122
|
Abstract
The processes involved in ribosome biogenesis, including synthesis of ribosomal proteins, ribosome biogenesis-related factors, and ribosomal RNAs (rRNAs), must be coordinately orchestrated in response to changes in energy supply. In animal cells, defects in ribosome biogenesis induce a nucleolar stress response through the p53-mediated pathway. Our recent finding that an essential, sugar-inducible Arabidopsis gene, APUM24, encoded a pre-rRNA processing factor allowed the relationships between rRNA biogenesis, nucleolar stress, sugar response, and growth regulation to be understood in plants. A knockdown mutant of APUM24 developed sugar-dependent phenotypes including pre-rRNA processing defects, reductions in nucleolar size, and limited promotion of leaf and root growth. Alongside the absence of plant p53 homologs and the synchronous sugar-induced expression of ribosome biogenesis-related genes, these findings suggest the following hypothesis. Sugar supply may enhance ribosome biogenesis defects, leading to p53-independent induction of nucleolar stress responses that include negative regulation of growth and development in plants.
Collapse
Affiliation(s)
- Shugo Maekawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
- CONTACT Shuichi Yanagisawa Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 - 8657, Japan
| |
Collapse
|
123
|
Chen H, Duo Y, Hu B, Wang Z, Zhang F, Tsai H, Zhang J, Zhou L, Wang L, Wang X, Huang L. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway. Oncotarget 2018; 7:78747-78763. [PMID: 27729611 PMCID: PMC5346674 DOI: 10.18632/oncotarget.12288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/16/2016] [Indexed: 01/05/2023] Open
Abstract
PICT-1 was originally identified as a tumor suppressor. Here, we found that PICT-1 overexpression triggered pro-death autophagy without nucleolar disruption or p53 accumulation in U251 and MCF7 cells. Truncated PICT-1 fragments 181-346 and 1-346, which partly or totally lack nucleolar localization, showed weaker autophagy-inducing effects than full-length PICT-1 and a well-defined nucleolar mutant (181-479). Furthermore, PICT-1 partly localizes to the nucleolar fibrillar center (FC) and directly binds to ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF). Overexpression of PICT-1 or the 181-479 mutant, but not the 1-346 or 181-346 mutants, markedly inhibited the phosphorylation of UBF and the recruitment of rRNA polymerase I (Pol I) to the rDNA promoter in response to serum stimulation, thereby suppressing rRNA transcription, suggesting that rRNA transcription inhibition might be an important contributor to PICT-1-induced autophagy. This is supported by the finding that CX-5461, a specific Pol I inhibitor, also induced autophagy. In addition, both CX-5461 and PICT-1, but not the 1-346 or 181-346 mutants, significantly suppressed the activation of the Akt/mTOR/p70S6K signaling pathway. Our data show that PICT-1 triggers pro-death autophagy through inhibition of rRNA transcription and the inactivation of AKT/mTOR/p70S6K pathway, independent of nucleolar disruption and p53 activation.
Collapse
Affiliation(s)
- Hongbo Chen
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanhong Duo
- Key Laboratory of Plant Cell Activities and Stress Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiwei Wang
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 511447, China
| | - Fang Zhang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hsiangi Tsai
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Zhang
- Department of Quality Inspection, Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen 518107, China
| | - Lanzhen Zhou
- Department of Quality Inspection, Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen 518107, China
| | - Lijun Wang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Plant Cell Activities and Stress Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Laiqiang Huang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
124
|
Bouffard S, Dambroise E, Brombin A, Lempereur S, Hatin I, Simion M, Corre R, Bourrat F, Joly JS, Jamen F. Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina. Dev Biol 2018; 437:1-16. [PMID: 29477341 DOI: 10.1016/j.ydbio.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
Fibrillarin (Fbl) is a highly conserved protein that plays an essential role in ribosome biogenesis and more particularly in the methylation of ribosomal RNAs and rDNA histones. In cellular models, FBL was shown to play an important role in tumorigenesis and stem cell differentiation. We used the zebrafish as an in vivo model to study Fbl function during embryonic development. We show here that the optic tectum and the eye are severely affected by Fbl depletion whereas ventral regions of the brain are less impacted. The morphogenesis defects are associated with impaired neural differentiation and massive apoptosis. Polysome gradient experiments show that fbl mutant larvae display defects in ribosome biogenesis and activity. Strikingly, flow cytometry analyses revealed different S-phase profiles between wild-type and mutant cells, suggesting a defect in S-phase progression.
Collapse
Affiliation(s)
- Stéphanie Bouffard
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Emilie Dambroise
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Alessandro Brombin
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Sylvain Lempereur
- Tefor Core Facility, TEFOR Infrastructure, NeuroPSI, CNRS, Gif-sur-Yvette, France; Université Paris-Est, LIGM, ESIEE, Noisy-le-Grand, France
| | - Isabelle Hatin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Matthieu Simion
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Raphaël Corre
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Franck Bourrat
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France
| | - Jean-Stéphane Joly
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France; Tefor Core Facility, TEFOR Infrastructure, NeuroPSI, CNRS, Gif-sur-Yvette, France
| | - Françoise Jamen
- INRA CASBAH Group, Neurosciences Paris-Saclay Institute, CNRS, Université Paris-Saclay, Université Paris-Sud, Gif-sur-Yvette, France.
| |
Collapse
|
125
|
Chen H, Han L, Tsai H, Wang Z, Wu Y, Duo Y, Cao W, Chen L, Tan Z, Xu N, Huang X, Zhuang J, Huang L. PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway. Oncotarget 2018; 7:83241-83257. [PMID: 27829214 PMCID: PMC5347766 DOI: 10.18632/oncotarget.13082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
PICT-1 is an essential ribosome biogenesis factor whose loss induces p53 accumulation and apoptosis. Here, we show that DNA damage changes PICT-1 localization and decreases PICT-1 protein levels via the proteasome pathway. Two important phosphatidylinositol 3-kinase-like kinases (PIKKs), ataxia-telangiectasia mutated (ATM) and the Ku70 subunit of DNA-dependent protein kinase (DNA-PK), co-localize and interact with PICT-1 in the nucleolus. Computational prediction of phosphorylation sites and detection using an anti-phospho-substrate antibody suggest that PICT-1 might be a substrate of PIKKs. PICT-1 S233 and T289 were identified as the key phosphorylation sites in this pathway, as mutating both to alanine abolished UVB-induced increase of PICT-1 phosporylation. Inhibition of PIKKs or ATM (with wortmannin and KU55933, respectively) prevented the agglomeration and degradation of PICT-1, suggesting that ATM is a key regulator of PICT-1. PICT-1(S233A, T289A) demonstrated marked resistance to DNA damage-induced agglomeration and loss of PICT-1. Phosphomimetic PICT-1 (S233D, T289D) showed a different nuclear distribution and was more rapidly degraded after DNA damage than wild-type PICT-1. Furthermore, both phosphorylation and degradation of PICT-1 released RPL11 from the nucleolus to the nucleoplasm, increased binding of RPL11 to MDM2, and promoted p53 accumulation and apoptosis in an ATM-dependent manner after DNA damage. These data indicate that PICT-1 is a major nucleolar sensor of the DNA damage repair response and an important upstream regulator of p53 via the RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Hongbo Chen
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Liqiao Han
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.,The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hsiangi Tsai
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiwei Wang
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 511447, China
| | - Yanping Wu
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanhong Duo
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Wei Cao
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijun Chen
- Technology Center of Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning 530021, China
| | - Zhirong Tan
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ning Xu
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xianzhang Huang
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junhua Zhuang
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Laiqiang Huang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
126
|
Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget 2018; 7:80450-80464. [PMID: 27741518 PMCID: PMC5348333 DOI: 10.18632/oncotarget.12608] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022] Open
Abstract
Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.
Collapse
|
127
|
Zhang M, Zhang J, Yan W, Chen X. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget 2018; 7:78255-78268. [PMID: 27825141 PMCID: PMC5346636 DOI: 10.18632/oncotarget.13126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
128
|
Westdorp KN, Terhune SS. Impact of RNA polymerase I inhibitor CX-5461 on viral kinase-dependent and -independent cytomegalovirus replication. Antiviral Res 2018; 153:33-38. [PMID: 29458130 DOI: 10.1016/j.antiviral.2018.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) infections cause congenital birth defects and disease in immunosuppressed individuals. Antiviral compounds can control infection yet their use is restricted due to concerns of toxicity and the emergence of drug resistant strains. We have evaluated the impact of an RNA Polymerase I (Pol I) inhibitor, CX-5461 on HCMV replication. CX-5461 inhibits Pol I-mediated ribosomal DNA transcription by binding G-quadruplex DNA structures and also activates cellular stress response pathways. The addition of CX-5461 at both early and late stages of the HCMV infection inhibited viral DNA synthesis and virus production. Interestingly, adding CX-5461 after the onset of viral DNA synthesis resulted in a greater reduction compared to continuous treatment starting early during infection. We observed an accompanying increase in cyclin-dependent kinase inhibitor p21 in infected cells treated late but not early which likely explains the differences. Our previous studies demonstrated the importance of p21 in the antiviral activity of the HCMV kinase inhibitor, maribavir. Addition of CX-5461 increased the anti-HCMV activity of maribavir. Our data demonstrate that CX-5461 inhibits HCMV replication and synergizes with maribavir to disrupt infection.
Collapse
Affiliation(s)
- Kristen N Westdorp
- Department of Microbiology and Immunology, Marquette University and the Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S Terhune
- Department of Microbiology and Immunology, Marquette University and the Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
129
|
Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018; 9:13822-13833. [PMID: 29568397 PMCID: PMC5862618 DOI: 10.18632/oncotarget.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Collapse
Affiliation(s)
- Anastasia Gelgor
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Chen Gam Ze Letova
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Yana Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
130
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
131
|
Langhendries JL, Nicolas E, Doumont G, Goldman S, Lafontaine DLJ. The human box C/D snoRNAs U3 and U8 are required for pre-rRNA processing and tumorigenesis. Oncotarget 2018; 7:59519-59534. [PMID: 27517747 PMCID: PMC5312328 DOI: 10.18632/oncotarget.11148] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are emerging as a novel class of proto-oncogenes and tumor suppressors; their involvement in tumorigenesis remains unclear. The box C/D snoRNAs U3 and U8 are upregulated in breast cancers. Here we characterize the function of human U3 and U8 in ribosome biogenesis, nucleolar structure, and tumorigenesis. We show in breast (MCF-7) and lung (H1944) cancer cells that U3 and U8 are required for pre-rRNA processing reactions leading, respectively, to synthesis of the small and large ribosomal subunits. U3 or U8 depletion triggers a remarkably potent p53-dependent anti-tumor stress response involving the ribosomal proteins uL5 (RPL11) and uL18 (RPL5). Interestingly, the nucleolar structure is more sensitive to perturbations in lung cancer than in breast cancer cells. We reveal in a mouse xenograft model that the tumorigenic potential of cancer cells is reduced in the case of U3 suppression and totally abolished upon U8 depletion. Tumors derived from U3-knockdown cells displayed markedly lower metabolic volume and activity than tumors derived from aggressive control cancer cells. Unexpectedly, metabolic tracer uptake by U3-suppressed tumors appeared more heterogeneous, indicating distinctive tumor growth properties that may reflect non-conventional regulatory functions of U3 (or fragments derived from it) in mRNA metabolism.
Collapse
Affiliation(s)
- Jean-Louis Langhendries
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies, Belgium
| | - Emilien Nicolas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), BioPark campus, Université Libre de Bruxelles, Belgium
| | - Serge Goldman
- Nuclear Medecine, Erasme Hospital, Université Libre de Bruxelles, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), BioPark campus, Université Libre de Bruxelles, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), BioPark campus, Université Libre de Bruxelles, Belgium
| |
Collapse
|
132
|
Ohbayashi I, Sugiyama M. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 8:2247. [PMID: 29375613 PMCID: PMC5767325 DOI: 10.3389/fpls.2017.02247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/21/2017] [Indexed: 05/24/2023]
Abstract
The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
133
|
Long PA, Theis JL, Shih YH, Maleszewski JJ, Abell Aleff PC, Evans JM, Xu X, Olson TM. Recessive TAF1A mutations reveal ribosomopathy in siblings with end-stage pediatric dilated cardiomyopathy. Hum Mol Genet 2018; 26:2874-2881. [PMID: 28472305 DOI: 10.1093/hmg/ddx169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) has been recognized as a heritable disorder for over 25 years, yet clinical genetic testing is non-diagnostic in >50% of patients, underscoring the ongoing need for DCM gene discovery. Here, whole exome sequencing uncovered a novel molecular basis for idiopathic end-stage heart failure in two sisters who underwent cardiac transplantation at three years of age. Compound heterozygous recessive mutations in TAF1A, encoding an RNA polymerase I complex protein, were associated with marked fibrosis of explanted hearts and gene-specific nucleolar segregation defects in cardiomyocytes, indicative of impaired ribosomal RNA synthesis. Knockout of the homologous gene in zebrafish recapitulated a heart failure phenotype with pericardial edema, decreased ventricular systolic function, and embryonic mortality. These findings expand the clinical spectrum of ribosomopathies to include pediatric DCM.
Collapse
Affiliation(s)
- Pamela A Long
- Mayo Graduate School of Biomedical Sciences, Molecular Pharmacology and Experimental Therapeutics Track.,Cardiovascular Genetics Research Laboratory
| | | | - Yu-Huan Shih
- Department of Biochemistry and Molecular Biology
| | - Joseph J Maleszewski
- Department of Cardiovascular Medicine.,Department of Laboratory Medicine and Pathology
| | | | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology.,Department of Cardiovascular Medicine
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory.,Department of Cardiovascular Medicine.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
134
|
Fernández-Ponce C, Durán-Ruiz MC, Narbona-Sánchez I, Muñoz-Miranda JP, Arbulo-Echevarria MM, Serna-Sanz A, Baumann C, Litrán R, Aguado E, Bloch W, García-Cozar F. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells. Front Microbiol 2018; 8:2595. [PMID: 29354102 PMCID: PMC5758585 DOI: 10.3389/fmicb.2017.02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Maria C Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | | | | | - Rocío Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Francisco García-Cozar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
135
|
The uL10 protein, a component of the ribosomal P-stalk, is released from the ribosome in nucleolar stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:34-47. [DOI: 10.1016/j.bbamcr.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
136
|
Maekawa S, Ishida T, Yanagisawa S. Reduced Expression of APUM24, Encoding a Novel rRNA Processing Factor, Induces Sugar-Dependent Nucleolar Stress and Altered Sugar Responses in Arabidopsis thaliana. THE PLANT CELL 2018; 30:209-227. [PMID: 29242314 PMCID: PMC5810573 DOI: 10.1105/tpc.17.00778] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 05/16/2023]
Abstract
Ribosome biogenesis is one of the most energy-consuming events in the cell and must therefore be coordinated with changes in cellular energy status. Here, we show that the sugar-inducible gene ARABIDOPSIS PUMILIO PROTEIN24 (APUM24) encodes a Pumilio homology domain-containing protein involved in pre-rRNA processing in Arabidopsis thaliana Null mutation of APUM24 resulted in aborted embryos due to abnormal gametogenesis and embryogenesis, whereas reduced expression of APUM24 caused several phenotypes characteristic of ribosome biogenesis or function-related mutants. APUM24 interacted with other pre-rRNA processing factors and a putative endonuclease for the removal of the internal transcribed spacer 2 (ITS2) of pre-rRNA in the nucleolus. The APUM24-containing complex also interacted with ITS2, and reduced APUM24 expression caused the overaccumulation of processing intermediates containing ITS2. Thus, APUM24 likely functions as an ITS2 removal-associated factor. Most importantly, the apum24 knockdown mutant was hypersensitive to highly concentrated sugar, and the mutant showed sugar-dependent overaccumulation of processing intermediates and nucleolar stress (changes in nucleolar size). Furthermore, reduced APUM24 expression diminished sugar-induced promotion of leaf and root growth. Hence, a breakdown in the coordinated expression of ribosome biogenesis-related genes with energy status may induce nucleolar stress and disturb proper sugar responses in Arabidopsis.
Collapse
Affiliation(s)
- Shugo Maekawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Ishida
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
137
|
Yan Y, Du Y, Wang G, Li K. Non-structural protein 1 of H3N2 influenza A virus induces nucleolar stress via interaction with nucleolin. Sci Rep 2017; 7:17761. [PMID: 29259342 PMCID: PMC5736645 DOI: 10.1038/s41598-017-18087-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
The nucleolus is a stress sensor associated with cell cycle progression and a central hub for the replication of pathogenic RNA viruses. However, the role of nucleolus in influenza A virus infection has not been well studied. Here we show that the interaction between NS1 protein of influenza A/Shantou/602/06 (H3N2) and nucleolin, a ubiquitous protein of nucleolus repressed RNA Pol I-dependent transcription via establishing hyper-methylation in the UCE of rRNA gene promoter. NS1 expressed cells showed significant association of ribosomal proteins with MDM2, and p53 accumulation, suggesting induced nucleolar stress. Disruption of the interaction of NS1 with nucleolin or overexpression of nucleolin in NS1 expressed cells revived RNA Pol I-dependent transcription, indicating nucleolin could be one target for NS1 to repress rRNA synthesis of host cells. Our present study suggests that NS1 protein of H3N2 could induce nucleolar stress based on epigenetic alteration of rRNA gene promoter via interaction with nucleolin.
Collapse
Affiliation(s)
- Yinxia Yan
- Key Laboratory of Infectious Diseases and Molecular Immunopathology of Guangdong Province, Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yongming Du
- Key Laboratory of Infectious Diseases and Molecular Immunopathology of Guangdong Province, Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Gefei Wang
- Key Laboratory of Infectious Diseases and Molecular Immunopathology of Guangdong Province, Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Kangsheng Li
- Key Laboratory of Infectious Diseases and Molecular Immunopathology of Guangdong Province, Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
138
|
Jayaraman S, Chittiboyina S, Bai Y, Abad PC, Vidi PA, Stauffacher CV, Lelièvre SA. The nuclear mitotic apparatus protein NuMA controls rDNA transcription and mediates the nucleolar stress response in a p53-independent manner. Nucleic Acids Res 2017; 45:11725-11742. [PMID: 28981686 PMCID: PMC5714241 DOI: 10.1093/nar/gkx782] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
The nuclear mitotic apparatus protein, NuMA, is involved in major cellular events such as DNA damage response, apoptosis and p53-mediated growth-arrest, all of which are under the control of the nucleolus upon stress. Proteomic investigation has identified NuMA among hundreds of nucleolar proteins. Yet, the precise link between NuMA and nucleolar function remains undetermined. We confirm that NuMA is present in the nucleolus and reveal redistribution of NuMA upon actinomycin D or doxorubicin-induced nucleolar stress. NuMA coimmunoprecipitates with RNA polymerase I, with ribosomal proteins RPL26 and RPL24, and with components of B-WICH, an ATP-dependent chromatin remodeling complex associated with rDNA transcription. NuMA also binds to 18S and 28S rRNAs and localizes to rDNA promoter regions. Downregulation of NuMA expression triggers nucleolar stress, as shown by decreased nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation and upregulation of p27kip1, but not p53. Physiologically relevant nucleolar stress induction with reactive oxygen species reaffirms a p53-independent p27kip1 response pathway and leads to nascent pre-rRNA reduction. It also promotes the decrease in the amount of NuMA. This previously uncharacterized function of NuMA in rDNA transcription and p53-independent nucleolar stress response supports a central role for this nuclear structural protein in cellular homeostasis.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Shirisha Chittiboyina
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Yunfeng Bai
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Patricia C Abad
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Pierre-Alexandre Vidi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN 47907-2026, USA
| |
Collapse
|
139
|
Turi Z, Senkyrikova M, Mistrik M, Bartek J, Moudry P. Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells. Cell Cycle 2017; 17:92-101. [PMID: 29143558 DOI: 10.1080/15384101.2017.1403685] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway - RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.
Collapse
Affiliation(s)
- Zsofia Turi
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| | - Marketa Senkyrikova
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| | - Martin Mistrik
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| | - Jiri Bartek
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic.,b Genome Integrity Unit , Danish Cancer Society Research Center , DK-2100 Copenhagen , Denmark.,c Department of Medical Biochemistry and Biophysics , Division of Genome Biology , Science for Life Laboratory , Karolinska Institute , 171 65 Stockholm , Sweden
| | - Pavel Moudry
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| |
Collapse
|
140
|
Chakraborty A, Uechi T, Nakajima Y, Gazda HT, O'Donohue MF, Gleizes PE, Kenmochi N. Cross talk between TP53 and c-Myc in the pathophysiology of Diamond-Blackfan anemia: Evidence from RPL11-deficient in vivo and in vitro models. Biochem Biophys Res Commun 2017; 495:1839-1845. [PMID: 29225165 DOI: 10.1016/j.bbrc.2017.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
Abstract
Mutations in genes encoding ribosomal proteins have been identified in Diamond-Blackfan anemia (DBA), a rare genetic disorder that presents with a prominent erythroid phenotype. TP53 has been implicated in the pathophysiology of DBA with ribosomal protein (RP) L11 playing a crucial role in the TP53 response. Interestingly, RPL11 also controls the transcriptional activity of c-Myc, an oncoprotein that positively regulates ribosome biogenesis. In the present study, we analyzed the consequences of rpl11 depletion on erythropoiesis and ribosome biogenesis in zebrafish. As expected, Rpl11-deficient zebrafish exhibited defects in ribosome biogenesis and an anemia phenotype. However, co-inhibition of Tp53 did not alleviate the erythroid aplasia in these fish. Next, we explored the role of c-Myc in RPL11-deficient cellular and animal models. c-Myc and its target nucleolar proteins showed upregulation and increased localization in the head region of Rpl11-deficient zebrafish, where the morphological abnormalities and tp53 expression were more pronounced. Interestingly, in blood cells derived from DBA patients with mutations in RPL11, the biogenesis of ribosomes was defective, but the expression level of c-Myc and its target nucleolar proteins was unchanged. The results suggest a model whereby RPL11 deficiency activates the synthesis of c-Myc target nucleolar proteins, which subsequently triggers a p53 response. These results further demonstrate that the induction of Tp53 mediates the morphological, but not erythroid, defects associated with RPL11 deficiency.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Division of Molecular Genetics and Cancer, NU Centre for Science Education & Research, Nitte University, Mangalore 18, India.
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| | - Yukari Nakajima
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| | - Hanna T Gazda
- Division of Genetics and Program in Genomics, The Manton Center for Orphan Diseases Research, Children's Hospital Boston, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, UPS, F-31000 Toulouse, France; CNRS, UMR 5099, F-31000 Toulouse, France.
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, UPS, F-31000 Toulouse, France; CNRS, UMR 5099, F-31000 Toulouse, France.
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
141
|
Scott DD, Trahan C, Zindy PJ, Aguilar LC, Delubac MY, Van Nostrand EL, Adivarahan S, Wei KE, Yeo GW, Zenklusen D, Oeffinger M. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res 2017; 45:12509-12528. [PMID: 29069457 PMCID: PMC5716212 DOI: 10.1093/nar/gkx963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
To counteract the breakdown of genome integrity, eukaryotic cells have developed a network of surveillance pathways to prevent and resolve DNA damage. Recent data has recognized the importance of RNA binding proteins (RBPs) in DNA damage repair (DDR) pathways. Here, we describe Nol12 as a multifunctional RBP with roles in RNA metabolism and genome maintenance. Nol12 is found in different subcellular compartments-nucleoli, where it associates with ribosomal RNA and is required for efficient separation of large and small subunit precursors at site 2; the nucleoplasm, where it co-localizes with the RNA/DNA helicase Dhx9 and paraspeckles; as well as GW/P-bodies in the cytoplasm. Loss of Nol12 results in the inability of cells to recover from DNA stress and a rapid p53-independent ATR-Chk1-mediated apoptotic response. Nol12 co-localizes with DNA repair proteins in vivo including Dhx9, as well as with TOPBP1 at sites of replication stalls, suggesting a role for Nol12 in the resolution of DNA stress and maintenance of genome integrity. Identification of a complex Nol12 interactome, which includes NONO, Dhx9, DNA-PK and Stau1, further supports the protein's diverse functions in RNA metabolism and DNA maintenance, establishing Nol12 as a multifunctional RBP essential for genome integrity.
Collapse
Affiliation(s)
- Daniel D. Scott
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pierre J. Zindy
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Lisbeth C. Aguilar
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Marc Y. Delubac
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Srivathsan Adivarahan
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Karen E. Wei
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Molecular Engineering Laboratory, A*STAR, Singapore
| | - Daniel Zenklusen
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
142
|
Simkins A, Bannon SA, Khoury JD, Kanagal-Shamanna R, Foglesong JS, Alvarado Y, Borthakur G, DiNardo CD. Diamond-Blackfan Anemia Predisposing to Myelodysplastic Syndrome in Early Adulthood. JCO Precis Oncol 2017; 1:1-5. [DOI: 10.1200/po.17.00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Aron Simkins
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah A. Bannon
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph D. Khoury
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Yesid Alvarado
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
143
|
Ribosome Biogenesis Modulates Ty1 Copy Number Control in Saccharomyces cerevisiae. Genetics 2017; 207:1441-1456. [PMID: 29046400 PMCID: PMC5714458 DOI: 10.1534/genetics.117.300388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022] Open
Abstract
Transposons can impact the host genome by altering gene expression and participating in chromosome rearrangements. Therefore, organisms evolved different ways to minimize the level of transposition. In Saccharomyces cerevisiae and its close relative S. paradoxus, Ty1 copy number control (CNC) is mediated by the self-encoded restriction factor p22, which is derived from the GAG capsid gene and inhibits virus-like particle (VLP) assembly and function. Based on secondary screens of Ty1 cofactors, we identified LOC1, a RNA localization/ribosome biogenesis gene that affects Ty1 mobility predominantly in strains harboring Ty1 elements. Ribosomal protein mutants rps0bΔ and rpl7aΔ displayed similar CNC-specific phenotypes as loc1Δ, suggesting that ribosome biogenesis is critical for CNC. The level of Ty1 mRNA and Ty1 internal (Ty1i) transcripts encoding p22 was altered in these mutants, and displayed a trend where the level of Ty1i RNA increased relative to full-length Ty1 mRNA. The level of p22 increased in these mutants, and the half-life of p22 also increased in a loc1Δ mutant. Transcriptomic analyses revealed small changes in the level of Ty1 transcripts or efficiency of translation initiation in a loc1Δ mutant. Importantly, a loc1Δ mutant had defects in assembly of Gag complexes and packaging Ty1 RNA. Our results indicate that defective ribosome biogenesis enhances CNC by increasing the level of p22, and raise the possibility for versatile links between VLP assembly, its cytoplasmic environment, and a novel stress response.
Collapse
|
144
|
Shamsuzzaman M, Bommakanti A, Zapinsky A, Rahman N, Pascual C, Lindahl L. Analysis of cell cycle parameters during the transition from unhindered growth to ribosomal and translational stress conditions. PLoS One 2017; 12:e0186494. [PMID: 29028845 PMCID: PMC5640253 DOI: 10.1371/journal.pone.0186494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Abrogation of ribosome synthesis (ribosomal stress) leads to cell cycle arrest. However, the immediate cell response to cessation of ribosome formation and the transition from normal cell proliferation to cell cycle arrest have not been characterized. Furthermore, there are conflicting conclusions about whether cells are arrested in G2/M or G1, and whether the cause is dismantling ribosomal assembly per se, or the ensuing decreased number of translating ribosomes. To address these questions, we have compared the time kinetics of key cell cycle parameters after inhibiting ribosome formation or function in Saccharomyces cerevisiae. Within one-to-two hours of repressing genes for individual ribosomal proteins or Translation Elongation factor 3, configurations of spindles, spindle pole bodies began changing. Actin began depolarizing within 4 hours. Thus the loss of ribosome formation and function is sensed immediately. After several hours no spindles or mitotic actin rings were visible, but membrane ingression was completed in most cells and Ace2 was localized to daughter cell nuclei demonstrating that the G1 stage was reached. Thus cell division was completed without the help of a contractile actin ring. Moreover, cell wall material held mother and daughter cells together resulting in delayed cell separation, suggesting that expression or function of daughter gluconases and chitinases is inhibited. Moreover, cell development changes in very similar ways in response to inhibition of ribosome formation and function, compatible with the notion that decreased translation capacity contributes to arresting the cell cycle after abrogation of ribosome biogenesis. Potential implications for the mechanisms of diseases caused by mutations in ribosomal genes (ribosomopathies) are discussed.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Aviva Zapinsky
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Clarence Pascual
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| |
Collapse
|
145
|
A brain-targeting lipidated peptide for neutralizing RNA-mediated toxicity in Polyglutamine Diseases. Sci Rep 2017; 7:12077. [PMID: 28935901 PMCID: PMC5608758 DOI: 10.1038/s41598-017-11695-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are progressive neurodegenerative disorders caused by both protein- and RNA-mediated toxicities. We previously showed that a peptidyl inhibitor, P3, which binds directly to expanded CAG RNA can inhibit RNA-induced nucleolar stress and suppress RNA-induced neurotoxicity. Here we report a N-acetylated and C-amidated derivative of P3, P3V8, that showed a more than 20-fold increase in its affinity for expanded CAG RNA. The P3V8 peptide also more potently alleviated expanded RNA-induced cytotoxicity in vitro, and suppressed polyQ neurodegeneration in Drosophila with no observed toxic effects. Further N-palmitoylation of P3V8 (L1P3V8) not only significantly improved its cellular uptake and stability, but also facilitated its systemic exposure and brain uptake in rats via intranasal administration. Our findings demonstrate that concomitant N-acetylation, C-amidation and palmitoylation of P3 significantly improve both its bioactivity and pharmacological profile. L1P3V8 possesses drug/lead-like properties that can be further developed into a lead inhibitor for the treatment of polyQ diseases.
Collapse
|
146
|
Wang M, Lemos B. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 2017; 13:e1006994. [PMID: 28880866 PMCID: PMC5605086 DOI: 10.1371/journal.pgen.1006994] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/19/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Ribosomal RNAs (rRNAs) are transcribed from two multicopy DNA arrays: the 5S ribosomal DNA (rDNA) array residing in a single human autosome and the 45S rDNA array residing in five human autosomes. The arrays are among the most variable segments of the genome, exhibit concerted copy number variation (cCNV), encode essential components of the ribosome, and modulate global gene expression. Here we combined whole genome data from >700 tumors and paired normal tissues to provide a portrait of rDNA variation in human tissues and cancers of diverse mutational signatures, including stomach and lung adenocarcinomas, ovarian cancers, and others of the TCGA panel. We show that cancers undergo coupled 5S rDNA array expansion and 45S rDNA loss that is accompanied by increased estimates of proliferation rate and nucleolar activity. These somatic changes in rDNA CN occur in a background of over 10-fold naturally occurring rDNA CN variation across individuals and cCNV of 5S-45S arrays in some but not all tissues. Analysis of genetic context revealed associations between cancer rDNA CN amplification or loss and the presence of specific somatic alterations, including somatic SNPs and copy number gain/losses in protein coding genes across the cancer genome. For instance, somatic inactivation of the tumor suppressor gene TP53 emerged with a strong association with coupled 5S expansion / 45S loss in several cancers. Our results uncover frequent and contrasting changes in the 5S and 45S rDNA along rapidly proliferating cell lineages with high nucleolar activity. We suggest that 5S rDNA amplification facilitates increased proliferation, nucleolar activity, and ribosomal synthesis in cancer, whereas 45S rDNA loss emerges as a byproduct of transcription-replication conflict in rapidly replicating tumor cells. The observations raise the prospects of using the rDNA arrays as re-emerging targets for the design of novel strategies in cancer therapy. The 45S and 5S ribosomal DNA (rDNA) arrays contain hundreds of rDNA copies, with substantial variability across individuals in human populations. Although physically unlinked, the arrays also exhibit joint variation across individual genotypes. However, whether this co-variation in copy number (CN) is universally observed across all tissues is unknown. It also remains unknown if rDNA CN might vary across tissues and in cancer lineages. Here we showed that most cancers undergo coupled 5S rDNA array amplification and 45S rDNA loss, and concerted 5S-45S CN variation in some but not all tissues. The coupled 5S amplification and 45S loss is associated with the presence of certain somatic genetic alterations, as well as increased estimates of cancerous cell proliferation rate and nucleolar activity. Our research uncovers frequent and contrasting changes in rDNA CN in cancers of diverse tissue origin and associated with diverse mutational contexts of tumor suppressors and oncogenes. The observations raise the prospects of using the rDNA arrays as re-emerging targets in novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Meng Wang
- Department of Environmental Health & Molecular and Integrative Physiological Sciences program, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences program, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
147
|
Shi H, O'Reilly VC, Moreau JLM, Bewes TR, Yam MX, Chapman BE, Grieve SM, Stocker R, Graham RM, Chapman G, Sparrow DB, Dunwoodie SL. Gestational stress induces the unfolded protein response, resulting in heart defects. Development 2017; 143:2561-72. [PMID: 27436040 DOI: 10.1242/dev.136820] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Congenital heart disease (CHD) is an enigma. It is the most common human birth defect and yet, even with the application of modern genetic and genomic technologies, only a minority of cases can be explained genetically. This is because environmental stressors also cause CHD. Here we propose a plausible non-genetic mechanism for induction of CHD by environmental stressors. We show that exposure of mouse embryos to short-term gestational hypoxia induces the most common types of heart defect. This is mediated by the rapid induction of the unfolded protein response (UPR), which profoundly reduces FGF signaling in cardiac progenitor cells of the second heart field. Thus, UPR activation during human pregnancy might be a common cause of CHD. Our findings have far-reaching consequences because the UPR is activated by a myriad of environmental or pathophysiological conditions. Ultimately, our discovery could lead to preventative strategies to reduce the incidence of human CHD.
Collapse
Affiliation(s)
- Hongjun Shi
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Victoria C O'Reilly
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Julie L M Moreau
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Therese R Bewes
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Michelle X Yam
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Bogdan E Chapman
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stuart M Grieve
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia Sydney Translational Imaging Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia Department of Radiology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Roland Stocker
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert M Graham
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gavin Chapman
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Duncan B Sparrow
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Sally L Dunwoodie
- The Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
148
|
Cytomegalovirus Late Protein pUL31 Alters Pre-rRNA Expression and Nuclear Organization during Infection. J Virol 2017; 91:JVI.00593-17. [PMID: 28659485 DOI: 10.1128/jvi.00593-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/24/2017] [Indexed: 02/01/2023] Open
Abstract
The replication cycle of human cytomegalovirus (CMV) leads to drastic reorganization of domains in the host cell nucleus. However, the mechanisms involved and how these domains contribute to infection are not well understood. Our recent studies defining the CMV-induced nuclear proteome identified several viral proteins of unknown functions, including a protein encoded by the UL31 gene. We set out to define the role of UL31 in CMV replication. UL31 is predicted to encode a 74-kDa protein, referred to as pUL31, containing a bipartite nuclear localization signal, an intrinsically disordered region overlapping arginine-rich motifs, and a C-terminal dUTPase-like structure. We observed that pUL31 is expressed with true late kinetics and is localized to nucleolin-containing nuclear domains. However, pUL31 is excluded from the viral nuclear replication center. Nucleolin is a marker of nucleoli, which are membrane-less regions involved in regulating ribosome biosynthesis and cellular stress responses. Other CMV proteins associate with nucleoli, and we demonstrate that pUL31 specifically interacts with the viral protein, pUL76. Coexpression of both proteins altered pUL31 localization and nucleolar organization. During infection, pUL31 colocalizes with nucleolin but not the transcriptional activator, UBF. In the absence of pUL31, CMV fails to reorganize nucleolin and UBF and exhibits a replication defect at a low multiplicity of infection. Finally, we observed that pUL31 is necessary and sufficient to reduce pre-rRNA levels, and this was dependent on the dUTPase-like motif in pUL31. Our studies demonstrate that CMV pUL31 functions in regulating nucleolar biology and contributes to the reorganization of nucleoli during infection.IMPORTANCE Nucleolar biology is important during CMV infection with the nucleolar protein, with nucleolin playing a role in maintaining the architecture of the viral nuclear replication center. However, the extent of CMV-mediated regulation of nucleolar biology is not well established. Proteins within nucleoli regulate ribosome biosynthesis and p53-dependent cellular stress responses that are capable of inducing cell cycle arrest and/or apoptosis, and they are proposed targets for cancer therapies. This study establishes that CMV protein pUL31 is necessary and sufficient to regulate nucleolar biology involving the reorganization of nucleolar proteins. Understanding these processes will help define approaches to stimulate cellular intrinsic stress responses that are capable of inhibiting CMV infection.
Collapse
|
149
|
Gonyo P, Bergom C, Brandt AC, Tsaih SW, Sun Y, Bigley TM, Lorimer EL, Terhune SS, Rui H, Flister MJ, Long RM, Williams CL. SmgGDS is a transient nucleolar protein that protects cells from nucleolar stress and promotes the cell cycle by regulating DREAM complex gene expression. Oncogene 2017; 36:6873-6883. [PMID: 28806394 PMCID: PMC5730474 DOI: 10.1038/onc.2017.280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
The chaperone protein and guanine nucleotide exchange factor SmgGDS (RAP1GDS1) is a key promoter of cancer cell proliferation and tumorigenesis. SmgGDS undergoes nucleocytoplasmic shuttling, suggesting that it has both cytoplasmic and nuclear functions that promote cancer. Previous studies indicate that SmgGDS binds cytoplasmic small GTPases and promotes their trafficking to the plasma membrane. In contrast, little is known about the functions of SmgGDS in the nucleus, or how these nuclear functions might benefit cancer cells. Here we show unique nuclear localization and regulation of gene transcription pathways by SmgGDS. Strikingly, SmgGDS depletion significantly reduces expression of over 600 gene products that are targets of the DREAM complex, which is a transcription factor complex that regulates expression of proteins controlling the cell cycle. The cell cycle regulators E2F1, MYC, MYBL2 (B-Myb) and FOXM1 are among the DREAM targets that are diminished by SmgGDS depletion. E2F1 is well known to promote G1 cell cycle progression, and the loss of E2F1 in SmgGDS-depleted cells provides an explanation for previous reports that SmgGDS depletion characteristically causes a G1 cell cycle arrest. We show that SmgGDS localizes in nucleoli, and that RNAi-mediated depletion of SmgGDS in cancer cells disrupts nucleolar morphology, signifying nucleolar stress. We show that nucleolar SmgGDS interacts with the RNA polymerase I transcription factor upstream binding factor (UBF). The RNAi-mediated depletion of UBF diminishes nucleolar localization of SmgGDS and promotes proteasome-mediated degradation of SmgGDS, indicating that nucleolar sequestration of SmgGDS by UBF stabilizes SmgGDS protein. The ability of SmgGDS to interact with UBF and localize in the nucleolus is diminished by expressing DiRas1 or DiRas2, which are small GTPases that bind SmgGDS and act as tumor suppressors. Taken together, our results support a novel nuclear role for SmgGDS in protecting malignant cells from nucleolar stress, thus promoting cell cycle progression and tumorigenesis.
Collapse
Affiliation(s)
- P Gonyo
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - C Bergom
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A C Brandt
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S-W Tsaih
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Y Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - T M Bigley
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - E L Lorimer
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S S Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H Rui
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M J Flister
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R M Long
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Medical College of Wisconsin Central Wisconsin Campus, Wausau, WI, USA
| | - C L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
150
|
Fu X, Xu L, Qi L, Tian H, Yi D, Yu Y, Liu S, Li S, Xu Y, Wang C. BMH-21 inhibits viability and induces apoptosis by p53-dependent nucleolar stress responses in SKOV3 ovarian cancer cells. Oncol Rep 2017; 38:859-865. [PMID: 28656213 PMCID: PMC5561869 DOI: 10.3892/or.2017.5750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
The nucleolus is a stress sensor associated with cell cycle progression and apoptosis. Studies have shown that nucleolar stress is positively correlated with apoptosis in breast, prostate and lung cancer cells. However, the role and function of nucleolar stress in ovarian cancer has not been reported. In this study, we found that the nucleolar stress inducer BMH-21 inhibited viability of SKOV3 ovarian cancer cells in a dose-dependent manner. Furthermore, BMH-21 induced the expression of nucleolar stress marker proteins (nucleolin, nucleophosmin and fibrillarin) and promoted the nuclear export of these proteins. BMH-21 also decreased MDM2 proto-oncogene expression and increased protein levels of the tumor suppressor p53 and p53 phosphorylated at serine 15 (p‑p53‑Ser15), which contributed to increased expression of the downstream apoptosis-related protein BCL2 associated X (BAX) and activation of caspase-3. Taken together, these data provide the first reported evidence that induction of p53-dependent nucleolar stress by BMH-21 induces apoptosis in ovarian cancer. Our data suggest that nucleolar stress might be a pathway suitable for targeting in ovarian cancer.
Collapse
Affiliation(s)
- Xinxu Fu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Lu Xu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Ling Qi
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Hongyan Tian
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Dan Yi
- Physical Examination Center, Jilin Integrated Traditional Chinese and Western Medicine Hospital, Jilin, Jilin 132013, P.R. China
| | - Yang Yu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Shibing Liu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Songyan Li
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Ye Xu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Chunyan Wang
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|