101
|
Diermeier SD, Chang KC, Freier SM, Song J, El Demerdash O, Krasnitz A, Rigo F, Bennett CF, Spector DL. Mammary Tumor-Associated RNAs Impact Tumor Cell Proliferation, Invasion, and Migration. Cell Rep 2017; 17:261-274. [PMID: 27681436 DOI: 10.1016/j.celrep.2016.08.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent the largest and most diverse class of non-coding RNAs, comprising almost 16,000 currently annotated transcripts in human and 10,000 in mouse. Here, we investigated the role of lncRNAs in mammary tumors by performing RNA-seq on tumor sections and organoids derived from MMTV-PyMT and MMTV-Neu-NDL mice. We identified several hundred lncRNAs that were overexpressed compared to normal mammary epithelium. Among these potentially oncogenic lncRNAs we prioritized a subset as Mammary Tumor Associated RNAs (MaTARs) and determined their human counterparts, hMaTARs. To functionally validate the role of MaTARs, we performed antisense knockdown and observed reduced cell proliferation, invasion, and/or organoid branching in a cancer-specific context. Assessing the expression of hMaTARs in human breast tumors revealed that 19 hMaTARs are significantly upregulated and many of these correlate with breast cancer subtype and/or hormone receptor status, indicating potential clinical relevance.
Collapse
Affiliation(s)
| | - Kung-Chi Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Junyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Alexander Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
102
|
Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 2017; 13:657-669. [PMID: 28978995 DOI: 10.1038/nrrheum.2017.162] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key epigenetic regulators that govern gene expression and influence multiple biological processes. Accumulating evidence demonstrates that lncRNAs have critical roles in immune cell development and function. In this Review, the molecular mechanisms of gene expression regulation by lncRNAs are described and current knowledge of the role of lncRNAs in immune regulation and inflammation are presented, highlighting strategies for defining the roles of lncRNAs in the pathogenesis of multiple rheumatic diseases. Finally, research progress in understanding the role of lncRNAs in rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, 2200 Lane 25 Xietu Road, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| |
Collapse
|
103
|
Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 2017; 8:23650-23663. [PMID: 28423570 PMCID: PMC5410334 DOI: 10.18632/oncotarget.15569] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Despite increasing evidence that long non-coding RNAs (lncRNAs) widely take part in human diseases, the role of lncRNAs in systemic lupus erythematosus (SLE) is largely unknown. In this study, we performed a two-stage study to explore the plasma levels of five lncRNAs (GAS5, linc0949, linc0597, HOTAIRM1 and lnc-DC) and their potential as SLE biomarkers. Compared with healthy controls, plasma levels of GAS5 and lnc-DC were significantly decreased (P < 0.001 and P = 0.002, respectively) while linc0597 were overexpressed in SLE patients (P < 0.001). When SLE patients were divided into SLE without nephritis and lupus nephritis (LN), the levels of lnc-DC were significantly higher in LN compared with SLE without nephritis (P = 0.018), but no significant difference in levels of GAS5 and linc0597 were found between LN and SLE without nephritis; plasma linc0949 level showed no significant difference in all comparisons. Further evaluation on potential biomarkers showed that GAS5, linc0597 and lnc-DC may specifically identify patients with SLE, the combination of GAS5 and linc0597 provided better diagnostic accuracy; lnc-DC may discriminate LN from SLE without nephritis. In summary, GAS5, linc0597 and lnc-DC in plasma could be potential biomarkers for SLE.
Collapse
|
104
|
Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR, Aronow B, Lin C, Li W, Yang L, Barton MC. LncPRESS1 Is a p53-Regulated LncRNA that Safeguards Pluripotency by Disrupting SIRT6-Mediated De-acetylation of Histone H3K56. Mol Cell 2017; 64:967-981. [PMID: 27912097 DOI: 10.1016/j.molcel.2016.10.039] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/07/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that lncRNAs play an integral regulatory role in numerous functions, including determination of cellular identity. We determined global expression (RNA-seq) and genome-wide profiles (ChIP-seq) of histone post-translational modifications and p53 binding in human embryonic stem cells (hESCs) undergoing differentiation to define a high-confidence set of 40 lncRNAs, which are p53 transcriptional targets. We focused on lncRNAs highly expressed in pluripotent hESCs and repressed by p53 during differentiation to identify lncPRESS1 as a p53-regulated transcript that maintains hESC pluripotency in concert with core pluripotency factors. RNA-seq of hESCs depleted of lncPRESS1 revealed that lncPRESS1 controls a gene network that promotes pluripotency. Further, we found that lncPRESS1 physically interacts with SIRT6 and prevents SIRT6 chromatin localization, which maintains high levels of histone H3K56 and H3K9 acetylation at promoters of pluripotency genes. In summary, we describe a p53-regulated, pluripotency-specific lncRNA that safeguards the hESC state by disrupting SIRT6 activity.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yuanxin Xi
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendra Allton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C Akdemir
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lalit R Patel
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
105
|
A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes. Blood Adv 2017; 1:1505-1516. [PMID: 29296792 DOI: 10.1182/bloodadvances.2017008284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) not only participate in normal hematopoiesis but also contribute to the pathogenesis of acute leukemia. However, their clinical and prognostic relevance in myelodysplastic syndromes (MDSs) remains unclear to date. In this study, we profiled lncRNA expressions in 176 adult patients with primary MDS, and identified 4 lncRNAs whose expression levels were significantly associated with overall survival (OS). We then constructed a risk-scoring system with the weighted sum of these 4 lncRNAs. Higher lncRNA scores were associated with higher marrow blast percentages, higher-risk subtypes of MDSs (based on both the Revised International Prognostic Scoring System [IPSS-R] and World Health Organization classification), complex cytogenetic changes, and mutations in RUNX1, ASXL1, TP53, SRSF2, and ZRSR2, whereas they were inversely correlated with SF3B1 mutation. Patients with higher lncRNA scores had a significantly shorter OS and a higher 5-year leukemic transformation rate compared with those with lower scores. The prognostic significance of our 4-lncRNA risk score could be validated in an independent MDS cohort. In multivariate analysis, higher lncRNA scores remained an independent unfavorable risk factor for OS (relative risk, 4.783; P < .001) irrespective of age, cytogenetics, IPSS-R, and gene mutations. To our knowledge, this is the first report to provide a lncRNA platform for risk stratification of MDS patients. In conclusion, our integrated 4-lncRNA risk-scoring system is correlated with distinctive clinical and biological features in MDS patients, and serves as an independent prognostic factor for survival and leukemic transformation. This concise yet powerful lncRNA-based scoring system holds the potential to improve the current risk stratification of MDS patients.
Collapse
|
106
|
The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun 2017; 8:218. [PMID: 28794406 PMCID: PMC5550424 DOI: 10.1038/s41467-017-00212-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/13/2017] [Indexed: 01/05/2023] Open
Abstract
Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs—such as LINC00173 in granulocytes—and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy. While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.
Collapse
|
107
|
Wu F, Zhang C, Cai J, Yang F, Liang T, Yan X, Wang H, Wang W, Chen J, Jiang T. Upregulation of long noncoding RNA HOXA-AS3 promotes tumor progression and predicts poor prognosis in glioma. Oncotarget 2017; 8:53110-53123. [PMID: 28881797 PMCID: PMC5581096 DOI: 10.18632/oncotarget.18162] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently emerged as new potentially promising therapeutic targets in many cancers. However, their prognostic value and biological functions associated with glioma remain to be elucidated. Here, High-throughput RNAseq was performed to detect the expression profiles of lncRNAs in 325 human glioma tissues. It was shown that a novel lncRNA HOXA-AS3 was one of the most significantly upregulated lncRNAs in glioma tissues. Quantitative PCR further verified the increased expression of HOXA-AS3 in patient samples and glioma cell lines. Uni and Multivariate Cox regression analysis revealed that HOXA-AS3 was an independent prognostic factor in glioma patients. Gene set enrichment analysis indicated that the gene sets correlated with HOXA-AS3 expression were involved in cell cycle progression and E2F targets. Functionally, HOXA-AS3 silencing resulted in proliferation arrest by altering cell cycle progression and promoting cell apoptosis, and impaired cell migration in glioma cells. Furthermore, the growth-inhibiting effect of HOXA-AS3 knockdown was also demonstrated in Xenograft mouse model. Our results highlight the important role of HOXA-AS3 in glioma progression, and indicate that HOXA-AS3 may be served as a valuable prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Fan Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| | - Xiaoyan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beiijing, China
- China National Clinical Research Center for Neurological Diseases, Beiijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China
| |
Collapse
|
108
|
Sethuraman S, Gay LA, Jain V, Haecker I, Renne R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog 2017; 13:e1006508. [PMID: 28715488 PMCID: PMC5531683 DOI: 10.1371/journal.ppat.1006508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/27/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells. KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also common in males not affected by AIDS. KSHV manipulates human cells by targeting protein-coding genes and cell signaling. Here we show that KSHV alters the expression of hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regulatory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this mechanism might be a common theme during herpesvirus infections. Understanding lncRNA deregulation by KSHV will help decipher the important molecular mechanisms underlying viral pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Appleby Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
109
|
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res 2017; 77:3965-3981. [PMID: 28701486 DOI: 10.1158/0008-5472.can-16-2634] [Citation(s) in RCA: 2059] [Impact Index Per Article: 257.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
Collapse
Affiliation(s)
- Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Milad Soleimani
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas.
| |
Collapse
|
110
|
The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim Biophys Acta Gen Subj 2017; 1861:1661-1675. [DOI: 10.1016/j.bbagen.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
|
111
|
Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 2017; 9:49. [PMID: 28558813 PMCID: PMC5448149 DOI: 10.1186/s13073-017-0441-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.
Collapse
Affiliation(s)
- Charles A Steward
- Congenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK. .,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | - Berge A Minassian
- Department of Pediatrics (Neurology), University of Texas Southwestern, Dallas, TX, USA.,Program in Genetics and Genome Biology and Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Illumina Inc, Great Chesterford, Essex, CB10 1XL, UK
| |
Collapse
|
112
|
Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol 2017; 35:551-560. [PMID: 28459448 PMCID: PMC5569300 DOI: 10.1038/nbt.3854] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/20/2017] [Indexed: 12/29/2022]
Abstract
Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding of cell fate has been advanced by studying single-cell RNA-sequencing (RNA-seq) but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Unlike other methods, scTDA is a nonlinear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins, and long noncoding RNAs (lncRNAs). scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations.
Collapse
|
113
|
Chakravorty S, Hegde M. Gene and Variant Annotation for Mendelian Disorders in the Era of Advanced Sequencing Technologies. Annu Rev Genomics Hum Genet 2017; 18:229-256. [PMID: 28415856 DOI: 10.1146/annurev-genom-083115-022545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comprehensive annotations of genetic and noncoding regions and corresponding accurate variant classification for Mendelian diseases are the next big challenge in the new genomic era of personalized medicine. Progress in the development of faster and more accurate pipelines for genome annotation and variant classification will lead to the discovery of more novel disease associations and candidate therapeutic targets. This ultimately will facilitate better patient recruitment in clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics that aims to increase understanding of overall genomic complexity, complex inheritance patterns of disease, and patient-phenotype-specific genomic associations. We describe the emerging field of translational functional genomics, which integrates other functional "-omics" approaches that support next-generation sequencing genomic data in order to facilitate personalized diagnostics, disease management, biomarker discovery, and medicine. We also discuss the utility of this integrated approach for diagnostic clinics and medical databases and its role in the future of personalized medicine.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322;
| |
Collapse
|
114
|
Chen L, Zhang YH, Lu G, Huang T, Cai YD. Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artif Intell Med 2017; 76:27-36. [PMID: 28363286 DOI: 10.1016/j.artmed.2017.02.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer is a disease that involves abnormal cell growth and can invade or metastasize to other tissues. It is known that several factors are related to its initiation, proliferation, and invasiveness. Recently, it has been reported that long non-coding RNAs (lncRNAs) can participate in specific functional pathways and further regulate the biological function of cancer cells. Studies on lncRNAs are therefore helpful for uncovering the underlying mechanisms of cancer biological processes. METHODS We investigated cancer-related lncRNAs using gene ontology (GO) terms and KEGG pathway enrichment scores of neighboring genes that are co-expressed with the lncRNAs by extracting important GO terms and KEGG pathways that can help us identify cancer-related lncRNAs. The enrichment theory of GO terms and KEGG pathways was adopted to encode each lncRNA. Then, feature selection methods were employed to analyze these features and obtain the key GO terms and KEGG pathways. RESULTS The analysis indicated that the extracted GO terms and KEGG pathways are closely related to several cancer associated processes, such as hormone associated pathways, energy associated pathways, and ribosome associated pathways. And they can accurately predict cancer-related lncRNAs. CONCLUSIONS This study provided novel insight of how lncRNAs may affect tumorigenesis and which pathways may play important roles during it. These results could help understanding the biological mechanisms of lncRNAs and treating cancer.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China.
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
115
|
Riege K, Hölzer M, Klassert TE, Barth E, Bräuer J, Collatz M, Hufsky F, Mostajo N, Stock M, Vogel B, Slevogt H, Marz M. Massive Effect on LncRNAs in Human Monocytes During Fungal and Bacterial Infections and in Response to Vitamins A and D. Sci Rep 2017; 7:40598. [PMID: 28094339 PMCID: PMC5240112 DOI: 10.1038/srep40598] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023] Open
Abstract
Mycoses induced by C.albicans or A.fumigatus can cause important host damage either by deficient or exaggerated immune response. Regulation of chemokine and cytokine signaling plays a crucial role for an adequate inflammation, which can be modulated by vitamins A and D. Non-coding RNAs (ncRNAs) as transcription factors or cis-acting antisense RNAs are known to be involved in gene regulation. However, the processes during fungal infections and treatment with vitamins in terms of therapeutic impact are unknown. We show that in monocytes both vitamins regulate ncRNAs involved in amino acid metabolism and immune system processes using comprehensive RNA-Seq analyses. Compared to protein-coding genes, fungi and bacteria induced an expression change in relatively few ncRNAs, but with massive fold changes of up to 4000. We defined the landscape of long-ncRNAs (lncRNAs) in response to pathogens and observed variation in the isoforms composition for several lncRNA following infection and vitamin treatment. Most of the involved antisense RNAs are regulated and positively correlated with their sense protein-coding genes. We investigated lncRNAs with stimulus specific immunomodulatory activity as potential marker genes: LINC00595, SBF2-AS1 (A.fumigatus) and RP11-588G21.2, RP11-394l13.1 (C.albicans) might be detectable in the early phase of infection and serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Konstantin Riege
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany
| | - Martin Hölzer
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany
| | - Tilman E Klassert
- Jena University Hospital, Septomics Research Center, Jena, 07745, Germany
| | - Emanuel Barth
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany.,FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| | - Julia Bräuer
- Jena University Hospital, Septomics Research Center, Jena, 07745, Germany
| | - Maximilian Collatz
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany.,Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Franziska Hufsky
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany.,Chair of Bioinformatics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Nelly Mostajo
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany.,Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Magdalena Stock
- Jena University Hospital, Septomics Research Center, Jena, 07745, Germany
| | - Bertram Vogel
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany.,Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Hortense Slevogt
- Jena University Hospital, Septomics Research Center, Jena, 07745, Germany
| | - Manja Marz
- Friedrich Schiller University, Bioinformatics/High Throughput Analysis, Jena, 07743, Germany.,FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
116
|
Long noncoding RNA HULC promotes cell proliferation by regulating PI3K/AKT signaling pathway in chronic myeloid leukemia. Gene 2017; 607:41-46. [PMID: 28069548 DOI: 10.1016/j.gene.2017.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
Aberrant expression of long noncoding RNA (lncRNA) HULC is associated with various human cancers. However, the role of HULC in chronic myeloid leukemia (CML) is unknown. In this study, we found that HULC was remarkably overexpressed in both leukemia cell lines and primary hematopoietic cells derived from CML patients. The increase in HULC expression was positively correlated with clinical stages in CML. Moreover, the knockdown of HULC significantly inhibited CML cell proliferation and induced apoptosis by repressing c-Myc and Bcl-2. Furthermore, inhibition of HULC enhanced imatinib-induced apoptosis of CML cells. Further experiments demonstrated that HULC silencing markedly suppressed the phosphorylation of PI3K and AKT, indicating that enhancement of imatinib-induced apoptosis by HULC inhibition is related with the reduction of c-Myc expression and inhibition of PI3K/Akt pathway activity. Furthermore, HULC could modulate c-Myc and Bcl-2 by miR-200a as an endogenous sponge. Taken together, these results reveal that HULC promotes oncogenesis in CML and suggest a potential strategy for the CML treatment.
Collapse
|
117
|
Wei S, Wang K. Long noncoding RNAs: pivotal regulators in acute myeloid leukemia. Exp Hematol Oncol 2016; 5:30. [PMID: 27999732 PMCID: PMC5153810 DOI: 10.1186/s40164-016-0059-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/03/2016] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a class of pivotal regulators of gene expression. Recent studies have shown that lncRNAs contribute to the initiation, maintenance, and development of acute myeloid leukemia (AML). In this review, we summarize the current knowledge of the lncRNAs that play critical roles in AML. We first briefly describe the characteristics of lncRNAs, and then focus on their regulatory roles in AML, including the modulation of differentiation, proliferation, cell cycle, and apoptosis. We further emphasize the action of lncRNAs during leukemogenesis by describing how they interact with RNA, protein and chromatin DNA to exert their functions. We also highlight an urgent need to investigate the mechanisms by which lncRNAs contribute to the pathogenesis of AML. Finally, we discuss the prognostic value of lncRNAs in AML patients.
Collapse
Affiliation(s)
- Shuyong Wei
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025 China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025 China ; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
118
|
Wang XQD, Dostie J. Chromosome folding and its regulation in health and disease. Curr Opin Genet Dev 2016; 43:23-30. [PMID: 27940207 DOI: 10.1016/j.gde.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/23/2022]
Abstract
There are many ways in which cells may not adequately behave or respond to their environment, and the molecular mechanisms leading to these defects are as diverse as they are many. In this review, we report on how spatial chromatin organization contributes to the proper expression of genes, relating how CTCF-one of its main architects-contributes to gene regulation. We also touch on the emerging role of long noncoding RNAs in shaping chromatin organization and activity. The HOX gene clusters have been used as paradigm in the study of various biological pathways, and the overview we provide gives emphasis to what research on these loci has revealed about chromatin architecture and its regulation in the control of gene expression.
Collapse
Affiliation(s)
- Xue Qing David Wang
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6.
| |
Collapse
|
119
|
Shi X, Xu Y, Zhang C, Feng L, Sun Z, Han J, Su F, Zhang Y, Li C, Li X. Subpathway-LNCE: Identify dysfunctional subpathways competitively regulated by lncRNAs through integrating lncRNA-mRNA expression profile and pathway topologies. Oncotarget 2016; 7:69857-69870. [PMID: 27634882 PMCID: PMC5342520 DOI: 10.18632/oncotarget.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, studies have reported that long noncoding RNAs (lncRNAs) can act as modulators of mRNAs through competitively binding to microRNAs (miRNAs) and have relevance to tumorigenesis as well as other diseases. Identify lncRNA competitively regulated subpathway not only can gain insight into the initiation and progression of disease, but also help for understanding the functional roles of lncRNAs in the disease context. Here, we present an effective method, Subpathway-LNCE, which was specifically designed to identify lncRNAs competitively regulated functions and the functional roles of these competitive regulation lncRNAs have not be well characterized in diseases. Moreover, the method integrated lncRNA-mRNA expression profile and pathway topologies. Using prostate cancer datasets and LUAD data sets, we confirmed the effectiveness of our method in identifying disease associated dysfunctional subpathway that regulated by lncRNAs. By analyzing kidney renal clear cell carcinoma related lncRNA competitively regulated subpathway network, we show that Subpathway-LNCE can help uncover disease key lncRNAs. Furthermore, we demonstrated that our method is reproducible and robust. Subpathway-LNCE provide a flexible tool to identify lncRNA competitively regulated signal subpathways underlying certain condition, and help to expound the functional roles of lncRNAs in various status. Subpathway-LNCE has been developed as an R package freely available at https://cran.rstudio.com/web/packages/SubpathwayLNCE/.
Collapse
Affiliation(s)
- Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zeguo Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunquan Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
120
|
Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR, Luo XQ, Chen YQ. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ 2016; 24:212-224. [PMID: 27740626 PMCID: PMC5299705 DOI: 10.1038/cdd.2016.111] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which is associated with myeloid differentiation and has pivotal roles in the degradation of oncoprotein PML-RARA and in myeloid cell differentiation by regulating autophagy pathways. We first revealed that HOTAIRM1 has different variants that are expressed at different levels in cells and that the expression pattern of HOTAIRM1 is closely related to that of the PML-RARA oncoprotein in acute promyelocytic leukemia (APL) patients. We further revealed that the downregulation of HOTAIRM1 could inhibit all-trans retinoic acid (ATRA) -induced degradation of PML-RARA in APL cells and repress the process of differentiation from promyelocytic to granulocytic cells. More importantly, we found that HOTAIRM1 regulates autophagy and that autophagosome formation was inhibited when HOTAIRM1 expression was reduced in the cells. Finally, through the use of a dual luciferase activity assay, AGO2 RNA immunoprecipitation and RNA pull-down, HOTAIRM1 was revealed to act as a microRNA sponge in a pathway that included miR-20a/106b, miR-125b and their targets ULK1, E2F1 and DRAM2. We constructed a human APL-ascites SCID mouse model to validate the function of HOTAIRM1 and its regulatory pathway in vivo. This is the first report showing that a lncRNAs regulates autophagy and the degradation of the PML-RARA oncoprotein during the process of myeloid cell differentiation blockade, suggesting that lncRNAs may be the potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wen-Tao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Ke Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Meng Sun
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Shu-Rong Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xue-Qun Luo
- Department of Pediatric, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
121
|
Tian X, Tian J, Tang X, Ma J, Wang S. Long non-coding RNAs in the regulation of myeloid cells. J Hematol Oncol 2016; 9:99. [PMID: 27680332 PMCID: PMC5041333 DOI: 10.1186/s13045-016-0333-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been attracting immense research interests. The relevance of lncRNAs in biological and physiological as well as in pathological processes has increased along with the understanding of their various regulatory mechanisms. Abundant studies have indicated that lncRNAs are involved in the differentiation, proliferation, activation, and initiation of apoptosis in different cell types. However, most studies about the regulating biology of lncRNAs are currently focused on cancer cells. This review is focused on the widely unexplored role of lncRNAs in the cell fate of myeloid cells. In this review, we summarize recent studies that have confirmed lncRNAs to be essential in the development of myeloid cells under normal and pathological conditions.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China. .,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
122
|
Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaître JM, Boureux A, De Vos J. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 2016; 23:19-40. [PMID: 27655590 DOI: 10.1093/humupd/dmw035] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human long non-coding RNAs (lncRNAs) are an emerging category of transcripts with increasingly documented functional roles during development. LncRNAs and roles during human early embryo development have recently begun to be unravelled. OBJECTIVE AND RATIONALE This review summarizes the most recent knowledge on lncRNAs and focuses on their expression patterns and role during early human embryo development and in pluripotent stem cells (PSCs). Public mRNA sequencing (mRNA-seq) data were used to illustrate these expression signatures. SEARCH METHODS The PubMed and EMBASE databases were first interrogated using specific terms, such as 'lncRNAs', to get an extensive overview on lncRNAs up to February 2016, and then using 'human lncRNAs' and 'embryo', 'development', or 'PSCs' to focus on lncRNAs involved in human embryo development or in PSC.Recently published RNA-seq data from human oocytes and pre-implantation embryos (including single-cell data), PSC and a panel of normal and malignant adult tissues were used to describe the specific expression patterns of some lncRNAs in early human embryos. OUTCOMES The existence and the crucial role of lncRNAs in many important biological phenomena in each branch of the life tree are now well documented. The number of identified lncRNAs is rapidly increasing and has already outnumbered that of protein-coding genes. Unlike small non-coding RNAs, a variety of mechanisms of action have been proposed for lncRNAs. The functional role of lncRNAs has been demonstrated in many biological and developmental processes, including cell pluripotency induction, X-inactivation or gene imprinting. Analysis of RNA-seq data highlights that lncRNA abundance changes significantly during human early embryonic development. This suggests that lncRNAs could represent candidate biomarkers for developing non-invasive tests for oocyte or embryo quality. Finally, some of these lncRNAs are also expressed in human cancer tissues, suggesting that reactivation of an embryonic lncRNA program may contribute to human malignancies. WIDER IMPLICATIONS LncRNAs are emerging potential key players in gene expression regulation. Analysis of RNA-seq data from human pre-implantation embryos identified lncRNA signatures that are specific to this critical step. We anticipate that further studies will show that these new transcripts are major regulators of embryo development. These findings might also be used to develop new tests/treatments for improving the pregnancy success rate in IVF procedures or for regenerative medicine applications involving PSC.
Collapse
Affiliation(s)
- Julien Bouckenheimer
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Sébastien Riquier
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Cyrielle Hou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Nicolas Philippe
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Coretec, Montpellier, France
| | - Caroline Sansac
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | | | - Thérèse Commes
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France
| | - Jean-Marc Lemaître
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France
| | - Anthony Boureux
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France.,Department of Cell and Tissue Engineering, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France
| |
Collapse
|
123
|
The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature. Oncotarget 2016; 6:31613-27. [PMID: 26436590 PMCID: PMC4741628 DOI: 10.18632/oncotarget.5148] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/29/2015] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown. We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients. The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33- microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004). Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signature.
Collapse
|
124
|
Abstract
Mammalian development is under tight control to ensure precise gene expression. Recent studies reveal a new layer of regulation of gene expression mediated by long noncoding RNAs. These transcripts are longer than 200nt that do not have functional protein coding capacity. Interestingly, many of these long noncoding RNAs are expressed with high specificity in different types of cells, tissues, and developmental stages in mammals, suggesting that they may have functional roles in diverse biological processes. Here, we summarize recent findings of long noncoding RNAs in hematopoiesis, which is one of the best-characterized mammalian cell differentiation processes. Then we provide our own perspectives on future studies of long noncoding RNAs in this field.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
125
|
Bell CC, Amaral PP, Kalsbeek A, Magor GW, Gillinder KR, Tangermann P, di Lisio L, Cheetham SW, Gruhl F, Frith J, Tallack MR, Ru KL, Crawford J, Mattick JS, Dinger ME, Perkins AC. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Sci Rep 2016; 6:26657. [PMID: 27226347 PMCID: PMC4880930 DOI: 10.1038/srep26657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Paulo P Amaral
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anton Kalsbeek
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| | - Graham W Magor
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Kevin R Gillinder
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Pierre Tangermann
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Lorena di Lisio
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Seth W Cheetham
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Franziska Gruhl
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Jessica Frith
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Michael R Tallack
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Ke-Lin Ru
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Joanna Crawford
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Sydney, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Andrew C Perkins
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
126
|
Wei S, Zhao M, Wang X, Li Y, Wang K. PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol 2016; 9:44. [PMID: 27146823 PMCID: PMC4857283 DOI: 10.1186/s13045-016-0274-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Long noncoding RNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) has been characterized as a critical factor in all-trans retinoic acid (ATRA)-induced differentiation of acute promyelocytic leukemia (APL) cells. However, the essential transcription factor for gene expression of HOTAIRM1 is still unknown. FINDINGS Chromatin immunoprecipitation (ChIP) assays revealed that PU.1 constitutively bound to the regulatory region of HOTAIRM1. Co-expression of PU.1 led to the transactivation of the regulatory region of HOTAIRM1 in a reporter assay. Detailed analysis showed that two PU.1 motifs, which were located around +1100 bp downstream of the transcriptional start site of the HOTAIRM1 promoter, were responsible for the PU.1-dependent transactivation. The induction of HOTAIRM1 by ATRA was dependent on PU.1, and ectopic expression of PU.1 significantly up-regulated HOTAIRM1. Furthermore, low HOTAIRM1 expression was observed in APL cells, which was attributed to the reduced PU.1 expression rather than the repression by PML-RARα via the direct binding. CONCLUSION PU.1 directly activates the expression of HOTAIRM1 through binding to the regulatory region of HOTAIRM1 during granulocytic differentiation. The reduced PU.1 expression, rather than PML-RARα itself, results in the low expression of HOTAIRM1 in APL cells. Our findings enrich the knowledge on the regulation of lncRNAs and the underlying mechanisms of the abnormal expression of lncRNAs involved in APL.
Collapse
Affiliation(s)
- Shuyong Wei
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Ming Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Xiaoling Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Yizhen Li
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
127
|
Papavasiliou FN, Chung YC, Gagnidze K, Hajdarovic KH, Cole DC, Bulloch K. Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS. Front Immunol 2016; 6:661. [PMID: 26834738 PMCID: PMC4713841 DOI: 10.3389/fimmu.2015.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/24/2015] [Indexed: 01/03/2023] Open
Abstract
Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in the populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.
Collapse
Affiliation(s)
- F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University , New York, NY , USA
| | - Young Cheul Chung
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Khatuna Gagnidze
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Kaitlyn H Hajdarovic
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Dan C Cole
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Karen Bulloch
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
128
|
De Kumar B, Krumlauf R. HOXs and lincRNAs: Two sides of the same coin. SCIENCE ADVANCES 2016; 2:e1501402. [PMID: 27034976 PMCID: PMC4805430 DOI: 10.1126/sciadv.1501402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/28/2015] [Indexed: 05/13/2023]
Abstract
The clustered Hox genes play fundamental roles in regulation of axial patterning and elaboration of the basic body plan in animal development. There are common features in the organization and regulatory landscape of Hox clusters associated with their highly conserved functional roles. The presence of transcribed noncoding sequences embedded within the vertebrate Hox clusters is providing insight into a new layer of regulatory information associated with Hox genes.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
129
|
Li Y, Wang X. Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 2015; 13:1463-9. [PMID: 26708950 DOI: 10.3892/mmr.2015.4711] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/24/2015] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are endogenous transcribed RNA molecules without protein-coding potential, ranging between 200 and 100,000 nt in length. LncRNAs regulate the expression of specific genes in several ways, including guiding chromatin-remodeling, and affecting splicing, transcription or translation. The mutations and dysregulation of lncRNAs have been found to be important in various human diseases, but particularly in human cancer. Previous studies have demonstrated that changes to lncRNAs are closely associated with tumorigenesis, metastasis, prognosis and diagnosis. The current review aims to present a brief overview of the associated reports of lncRNAs in malignant neoplasms, including breast cancer, prostate cancer and hematological malignancies. LncRNAs may be evaluated as novel markers in disease diagnosis, and as prospective therapeutic targets for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
130
|
Zeng C, Yu X, Lai J, Yang L, Chen S, Li Y. Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia. J Hematol Oncol 2015; 8:126. [PMID: 26545364 PMCID: PMC4636781 DOI: 10.1186/s13045-015-0223-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is associated with chromosomal translocation t(15;17), which results in the proliferation of morphologically abnormal promyelocytes. Gain of supernumerary copies of the 8q24 chromosomal region, which harbors MYC and PVT1, has been shown to be the most common secondary alteration in human APL. Increased MYC can accelerate the development of myeloid leukemia in APL. However, the role that the expression of the long non-coding RNA (lncRNA) PVT1 plays in the pathogenesis of APL remains largely unknown. FINDINGS In this study, we first analyzed the lncRNA PVT1 expression level in peripheral blood cells from 28 patients with de novo APL, and significantly upregulated PVT1 was found in APL patients compared with healthy donors. We then observed significantly lower MYC and PVT1 expression during all-trans retinoic acid (ATRA)-induced differentiation and cell cycle arrest in the APL cell line. MYC knockdown in NB4 cells led to PVT1 downregulation. Moreover, PVT1 knockdown by RNA interference led to suppression of the MYC protein level, and cell proliferation was inhibited. CONCLUSION Our findings reveal that the lncRNA PVT1 may play an important role in the proliferation of APL cells and may be useful for future therapeutic management.
Collapse
Affiliation(s)
- Chengwu Zeng
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xibao Yu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Jing Lai
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lijiang Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
131
|
IDH1 mutation-associated long non-coding RNA expression profile changes in glioma. J Neurooncol 2015; 125:253-63. [PMID: 26337623 DOI: 10.1007/s11060-015-1916-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/29/2015] [Indexed: 12/24/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutation is an important prognostic marker in glioma. However, its downstream effect remains incompletely understood. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis in a number of human malignancies, including glioma. Here, we investigated whether and how lncRNA expression profiles would differ between gliomas with or without IDH1 mutation. By using our previously reported lncRNA mining approach, we performed lncRNA profiling in three public glioma microarray datasets. The differential lncRNA expression analysis was then conducted between mutant-type and wild-type IDH1 glioma samples. Comparison analysis identified 14 and 9 lncRNA probe sets that showed significantly altered expressions in astrocytic and oligodendroglial tumors, respectively (fold change ≥ 1.5, false discovery rate ≤ 0.1). Moreover, the differential expressions of these lncRNAs could be confirmed in the independent testing sets. Functional exploration of the lncRNAs by analyzing the lncRNA-protein interactions revealed that these IDH1 mutation-associated lncRNAs were involved in multiple tumor-associated cellular processes, including metabolism, cell growth and apoptosis. Our data suggest the potential roles of lncRNA in gliomagenesis, and may help to understand the pathogenesis of gliomas associated with IDH1 mutation.
Collapse
|
132
|
Ma XY, Wang JH, Wang JL, Ma CX, Wang XC, Liu FS. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics 2015; 16:676. [PMID: 26335021 PMCID: PMC4559210 DOI: 10.1186/s12864-015-1881-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities. However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation. Results In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20 species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung, heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation of EML cells. Mouse LRH (Lin-Rhodaminelow Hoechstlow) cells that represent the early-stage progenitor cells show a high level of Malat1 expression, while LRB (Lin − HoechstLow RhodamineBright) cells that represent the late-stage progenitor cells had no detectable expression of Malat1. Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation (ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1’s promoter. Furthermore, we testified that p53 over expression in EML cells causes down regulation of Malat1. Conclusions In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of early-stage hematopoietic cells. In addition to its biological function, the study also uncovers the regulation pattern of Malat1 expression mediated by p53 in hematopoietic differentiation. Our research shed a light on exploring the Malat1 biological role including therapeutic significance to inhibit the proliferation potential of malignant cells.
Collapse
Affiliation(s)
- Xian-Yong Ma
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| | - Jian-Hui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| | - Jing-Lan Wang
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| | - Charles X Ma
- University of Connecticut School of Medicine, Farmington, USA.
| | - Xiao-Chun Wang
- Department of Surgical Oncology, Affiliated Hospital of Hebei University, Baoding, China.
| | - Feng-Song Liu
- College of Life Sciences, Hebei University, Baoding, China.
| |
Collapse
|
133
|
Abstract
Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
134
|
Wu GC, Pan HF, Leng RX, Wang DG, Li XP, Li XM, Ye DQ. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 2015; 14:798-805. [PMID: 25989481 DOI: 10.1016/j.autrev.2015.05.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/07/2015] [Indexed: 12/17/2022]
Abstract
Long noncoding RNA (lncRNA), with size larger than 200 nucleotides, is a new class of noncoding RNA. Emerging evidence has revealed that lncRNAs play a key role in the regulation of immunological functions and autoimmunity. Herein, we review the recent findings of lncRNA regulation in immune functions and in the development of autoimmunity and autoimmune disease. In addition, we focus on the involvement of lncRNA regulation in innate and adaptive immune responses, immune cell development, and differential expression of lncRNAs in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes mellitus (T1DM), multiple sclerosis (MS), autoimmune thyroid disease (AITD), psoriasis, polymyositis/dermatomyositis (PM/DM) and Crohn's disease (CD).
Collapse
Affiliation(s)
- Guo-Cui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei 230001, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei 230001, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
135
|
Morlando M, Ballarino M, Fatica A. Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia. Front Med (Lausanne) 2015; 2:23. [PMID: 25927065 PMCID: PMC4396502 DOI: 10.3389/fmed.2015.00023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/27/2015] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of gene expression that influence almost every step in the life cycle of genes, from transcription to mRNA splicing, RNA decay, and translation. Besides their participation to normal physiology, lncRNA expression and function have been already associated to cancer development and progression. Here, we review the functional role and mechanisms of action of lncRNAs in normal hematopoiesis and how their misregulation may be implicated in the development of blood cell cancer, such as leukemia.
Collapse
Affiliation(s)
- Mariangela Morlando
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
136
|
Glover AR, Zhao JT, Ip JC, Lee JC, Robinson BG, Gill AJ, Soon PSH, Sidhu SB. Long noncoding RNA profiles of adrenocortical cancer can be used to predict recurrence. Endocr Relat Cancer 2015; 22:99-109. [PMID: 25595289 DOI: 10.1530/erc-14-0457] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive malignancy with high rates of recurrence following surgical resection. Long noncoding RNAs (lncRNAs) play an important role in cancer development. Pathogenesis of adrenal tumours have been characterised by mRNA, microRNA and methylation expression signatures, but it is unknown if this extends to lncRNAs. This study describes lncRNA expression signatures in ACC, adrenal cortical adenoma (ACA) and normal adrenal cortex (NAC) and presents lncRNAs associated with ACC recurrence to identify novel prognostic and therapeutic targets. RNA was extracted from freshly frozen tissue with confirmation of diagnosis by histopathology. Focused lncRNA and mRNA transcriptome analysis was performed using the ArrayStar Human LncRNA V3.0 microarray. Differentially expressed lncRNAs were validated using quantitative reverse transcriptase-PCR and correlated with clinical outcomes. Microarray of 21 samples (ten ACCs, five ACAs and six NACs) showed distinct patterns of lncRNA expression between each group. A total of 956 lncRNAs were differentially expressed between ACC and NAC, including known carcinogenesis-related lncRNAs such as H19, GAS5, MALAT1 and PRINS (P≤0.05); 85 lncRNAs were differentially expressed between ACC and ACA (P≤0.05). Hierarchical clustering and heat mapping showed ACC samples correctly grouped compared with NAC and ACA. Sixty-six differentially expressed lncRNAs were found to be associated with ACC recurrence (P≤0.05), one of which, PRINS, was validated in a group of 20 ACCs and also found to be associated with metastatic disease on presentation. The pathogenesis of adrenal tumours extends to lncRNA dysregulation and low expression of the lncRNA PRINS is associated with ACC recurrence.
Collapse
Affiliation(s)
- A R Glover
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - J T Zhao
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - J C Ip
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - J C Lee
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - B G Robinson
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - A J Gill
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - P S H Soon
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - S B Sidhu
- Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia Cancer Genetics LaboratoryKolling Institute of Medical ResearchDepartments of EndocrinologyAnatomical PathologyRoyal North Shore Hospital and University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of SurgeryBankstown Hospital and University of New South Wales, Bankstown, New South Wales 2065, AustraliaIngham Institute for Applied Medical ResearchLiverpool, New South Wales 2200, AustraliaUniversity of Sydney Endocrine Surgical UnitRoyal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
137
|
Cogill SB, Wang L. Co-expression Network Analysis of Human lncRNAs and Cancer Genes. Cancer Inform 2014; 13:49-59. [PMID: 25392693 PMCID: PMC4218681 DOI: 10.4137/cin.s14070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/30/2022] Open
Abstract
We used gene co-expression network analysis to functionally annotate long noncoding RNAs (lncRNAs) and identify their potential cancer associations. The integrated microarray data set from our previous study was used to extract the expression profiles of 1,865 lncRNAs. Known cancer genes were compiled from the Catalogue of Somatic Mutations in Cancer and UniProt databases. Co-expression analysis identified a list of previously uncharacterized lncRNAs that showed significant correlation in expression with core cancer genes. To further annotate the lncRNAs, we performed a weighted gene co-expression network analysis, which resulted in 37 co-expression modules. Three biologically interesting modules were analyzed in depth. Two of the modules showed relatively high expression in blood and brain tissues, whereas the third module was found to be downregulated in blood cells. Hub lncRNA genes and enriched functional annotation terms were identified within the modules. The results suggest the utility of this approach as well as potential roles of uncharacterized lncRNAs in leukemia and neuroblastoma.
Collapse
Affiliation(s)
- Steven B Cogill
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|