101
|
Hybrid 2D/3D-quantitative structure-activity relationship and modeling studies perspectives of pepstatin A analogs as cathepsin D inhibitors. Future Med Chem 2017; 10:5-26. [PMID: 29235371 DOI: 10.4155/fmc-2017-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM Cathepsin D, one of the attractive targets in the treatment of breast cancer, has been implicated in HIV neuropathogenesis with potential proteolytic effects on chemokines. Methodology/result: Diverse modeling tools were used to reveal the key structural features affecting the inhibitory activities of 78 pepstatin A analogs. Analyses were performed to investigate the stability, rationality and fluctuation of the analogs. Results showed a clear correlation between the experimental and predicted activities of the analogs as well as the variation in their activities relative to structural modifications. CONCLUSION The insight gained from this study offers theoretical references for understanding the mechanism of action of cathepsin D and will aid in the design of more potent and clinically-relevant drugs. Graphical abstract [Formula: see text].
Collapse
|
102
|
Shi X, Huang C, Xiao F, Liu W, Zeng J, Li X. Pycnodysostosis with novel gene mutation and sporadic medullary thyroid carcinoma: A case report. Medicine (Baltimore) 2017; 96:e8730. [PMID: 29390266 PMCID: PMC5815678 DOI: 10.1097/md.0000000000008730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE Pycnodysostosis is a rare autosomal recessive skeletal dysplasia caused by a mutation in the cathepsin K encoded by cathepsin K gene (CTSK). Medullary thyroid carcinoma (MTC) is also a relatively rare type of primary thyroid carcinoma. PATIENT CONCERNS A 31-year-old woman presenting a short stature and a palpable nodule in the front of her neck that had gradually increased in size during the last 2 years was referred to our department. She has experienced multiple fractures at lower limbs in the last 2 decades. DIAGNOSES The patient's clinical examination revealed short stature, underweight, a prominent forehead, stubby fingers, and a fixed nodule in the right thyroid lobe. Intraoral examination revealed multiple clinically malposed and missing teeth, as well as chronic periodontitis with a narrow and grooved palate. Radiographic examination revealed typical widely separated cranial sutures and an open anterior/posterior fontanel with an obtuse gonial angle, acroosteolysis, and osteosclerosis with narrowed medullary cavities. Ultrasonography of the thyroid gland showed a marked hypoechoic solid nodule in the right lobe in which tumor cell clusters were confirmed by ultrasound-guided fine needle aspiration biopsy and was suspected to be MTC. Laboratory tests revealed dramatically elevated serum calcitonin >2000 pg/L (reference range: 0-5 pg/L) and carcinoembryonic antigen (CEA) 134.37 ng/mL (reference range: 0-5 ng/mL). Genotypic screening revealed compound heterozygous mutations in the CTSK gene (c.158delA, P.Asn53Thr/c.C830T, P.Ala277Val) but no mutation associated with the familial forms of MTC. INTERVENTIONS The patient underwent a total thyroidectomy with right-sided functional neck dissection. OUTCOMES CEA and serum calcitonin decreased significantly postthyroidectomy, and no further fracture has been reported by the patient so far. LESSONS The present study is the first to report a rare case of the coexistence of pycnodysostosis with a compound CTSK gene mutation and sporadic MTC. Radiological techniques and gene analysis play key roles in the definitive diagnosis.
Collapse
Affiliation(s)
- Xiulin Shi
- Department of Endocrinology and Diabetes
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | - Wei Liu
- Department of Endocrinology and Diabetes
| | | | - Xuejun Li
- Department of Endocrinology and Diabetes
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
103
|
Varol C, Sagi I. Phagocyte-extracellular matrix crosstalk empowers tumor development and dissemination. FEBS J 2017; 285:734-751. [DOI: 10.1111/febs.14317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/01/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Varol
- The Research Center for Digestive Tract and Liver Diseases; Tel-Aviv Sourasky Medical Center; Sackler Faculty of Medicine; Tel-Aviv University; Israel
- Department of Clinical Microbiology and Immunology; Sackler Faculty of Medicine; Tel Aviv University; Israel
| | - Irit Sagi
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
104
|
Satelur KP, Bopaiah S, Bavle RM, Ramachandra P. Role of Cathepsin B as a Marker of Malignant Transformation in Oral Lichen Planus: An Immunohistochemical Study. J Clin Diagn Res 2017; 11:ZC29-ZC32. [PMID: 28969269 DOI: 10.7860/jcdr/2017/30740.10274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Malignant transformation of Oral Lichen Planus (OLP) remains a much discussed but very less understood realm. Various hypotheses and theories have been put forward to explain the same. Malignant transformation is a complex interplay of epithelial mesenchymal factors acting in tandem. This study tries to identify and asses the stromal changes that pave the way for epithelial migration using Cathepsin B (CB) a cysteine protease belonging to the Cathepsin family. Various studies have been done to study its role in human cancers which have proven that CB helps mark and identify tissue digestion. AIM The purpose of this study was to evaluate the expression of CB, in OLP and examine its possible role in malignant transformation. MATERIALS AND METHODS Immunohistochemical analysis of CB expression was done in 50 OLP tissues along with 10 normal mucosa tissue and 10 Oral Squamous Cell Carcinoma (OSCC) cases (control groups). Evaluation was done on the basis of intensity of staining. The intensity was graded in all the cases by assigning values of 0 to 4 in ascending order. Two other observers evaluated the staining and intensity independently and the average of the observations was taken. RESULTS A variable staining pattern in both the stroma and the cytoplasm of the epithelial cells was noticed. The staining intensity was clearly increased in OLP tissues when compared to normal control tissue and OSCC which served as our positive control. The staining patterns in tissues of OLP and OSCC to Cathepsin B were similar. The staining intensity of Cathepsin B was observed to be increased in both these groups of tissues. CONCLUSION This study demonstrated a significantly increased expression of CB in OLP. This may be correlated to a possible indicator for its eventual malignant transformation. This overexpression of CB amounts to an array of stromal changes that take place and different mechanisms that get activated underneath the epithelium leading to the formation of what is known as a tumour microenvironment, a well proven entity. We hypothesize that it is this which felicitates the invasion of the overlying epithelial cells.
Collapse
Affiliation(s)
- Krishnanand Prakash Satelur
- Professor, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Shiny Bopaiah
- Postgraduate Student, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Radhika Manoj Bavle
- Professor and Head, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Prashant Ramachandra
- Reader, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
105
|
Scomparin A, Florindo HF, Tiram G, Ferguson EL, Satchi-Fainaro R. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv Drug Deliv Rev 2017; 118:52-64. [PMID: 28916497 DOI: 10.1016/j.addr.2017.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Polymer-directed enzyme prodrug therapy (PDEPT) and polymer enzyme liposome therapy (PELT) are two-step therapies developed to provide anticancer drugs site-selective intratumoral accumulation and release. Nanomedicines, such as polymer-drug conjugates and liposomal drugs, accumulate in the tumor site due to extravasation-dependent mechanism (enhanced permeability and retention - EPR - effect), and further need to cross the cellular membrane and release their payload in the intracellular compartment. The subsequent administration of a polymer-enzyme conjugate able to accumulate in the tumor tissue and to trigger the extracellular release of the active drug showed promising preclinical results. The development of polymer-enzyme, polymer-drug conjugates and liposomal drugs had undergone a vast advancement over the past decades. Several examples of enzyme mimics for in vivo therapy can be found in the literature. Moreover, polymer therapeutics often present an enzyme-sensitive mechanism of drug release. These nanomedicines can thus be optimal substrates for PDEPT and this review aims to provide new insights and stimuli toward the future perspectives of this promising combination.
Collapse
Affiliation(s)
- Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elaine L Ferguson
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
106
|
Asymmetric synthesis and evaluation of epoxy-α-acyloxycarboxamides as selective inhibitors of cathepsin L. Bioorg Med Chem 2017; 25:4620-4627. [DOI: 10.1016/j.bmc.2017.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
|
107
|
Endt K, Goepfert J, Omlin A, Athanasiou A, Tennstedt P, Guenther A, Rainisio M, Engeler DS, Steuber T, Gillessen S, Joos T, Schiess R. Development and clinical testing of individual immunoassays for the quantification of serum glycoproteins to diagnose prostate cancer. PLoS One 2017; 12:e0181557. [PMID: 28767721 PMCID: PMC5540289 DOI: 10.1371/journal.pone.0181557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022] Open
Abstract
Prostate Cancer (PCa) diagnosis is currently hampered by the high false-positive rate of PSA evaluations, which consequently may lead to overtreatment. Non-invasive methods with increased specificity and sensitivity are needed to improve diagnosis of significant PCa. We developed and technically validated four individual immunoassays for cathepsin D (CTSD), intercellular adhesion molecule 1 (ICAM1), olfactomedin 4 (OLFM4), and thrombospondin 1 (THBS1). These glycoproteins, previously identified by mass spectrometry using a Pten mouse model, were measured in clinical serum samples for testing the capability of discriminating PCa positive and negative samples. The development yielded 4 individual immunoassays with inter and intra-variability (CV) <15% and linearity on dilution of the analytes. In serum, ex vivo protein stability (<15% loss of analyte) was achieved for a duration of at least 24 hours at room temperature and 2 days at 4°C. The measurement of 359 serum samples from PCa positive (n = 167) and negative (n = 192) patients with elevated PSA (2-10 ng/ml) revealed a significantly improved accuracy (P <0.001) when two of the glycoproteins (CTSD and THBS1) were combined with %fPSA and age (AUC = 0.8109; P <0.0001; 95% CI = 0.7673-0.8545). Conclusively, the use of CTSD and THBS1 together with commonly used parameters for PCa diagnosis such as %fPSA and age has the potential to improve the diagnosis of PCa.
Collapse
|
108
|
Kim CW, Lee HM, Lee K, Kim B, Lee MY, Choi KC. Effects of cigarette smoke extracts on cell cycle, cell migration and endocrine activity in human placental cells. Reprod Toxicol 2017; 73:8-19. [PMID: 28736174 DOI: 10.1016/j.reprotox.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/02/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
Maternal smoking during pregnancy is known to be related to adverse pregnancy results associated with trophoblast proliferation and cell cycle progression. Moreover, many previous studies have shown that cigarette smoke is correlated with human chorionic gonadotropin beta (hCG-β) subunit produced from syncytiotrophoblasts during pregnancy. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell proliferation, migration and endocrine hormone activity of JEG-3 human placental cancer cells. JEG-3 cell proliferation was significantly reduced by all CSEs in a concentration-dependent manner. Moreover, CSEs decreased proliferating cell nuclear antigen (PCNA) levels in JEG-3 cells in Western blot. Increased migration or invasion ability of JEG-3 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. Additionally, protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers N-cadherin, snail and slug were up-regulated in a time-dependent manner. The metastasis marker, cathepsin D, was also down-regulated by CSE. Finally, CSEs significantly reduced the expression of hCG-β protein in JEG-3 cells. Overall, these results indicate that exposure of placental cells to CSE deregulates the cell cycle by altering the expression of cell cycle-related proteins and stimulates cell metastatic ability by altering EMT markers and cathepsin D expression. CSE exposure may also decrease hCG-β production as an endocrine marker, implying that cigarette smoke has adverse effects during pregnancy.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
109
|
Goldstein MR, Mascitelli L. Might tumor secreted cathepsin proteases leave specific molecular signals in skin, hair and nails years before a cancer becomes clinically apparent? Med Hypotheses 2017; 103:62-63. [PMID: 28571813 DOI: 10.1016/j.mehy.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
X-ray fiber diffraction analysis (FDA) of the fibrous macromolecules in hair, nails and skin has been shown to non-invasively diagnose various cancers, at sites remote from the cancer, years before the cancer becomes clinically apparent. The technology is not widely accepted because of reproducibility issues (that can be easily resolved) and lack of an explanation as to how a clinically unapparent tumor can leave molecular "signatures" at remote sites. However, there is evidence that tumor-specific cathepsins (lysosomal proteases) circulate systemically long before a cancer is clinically apparent. As such, we hypothesize that cathepsins, by virtue of their proteolytic activity, impart molecular changes in tissues remote from the primary tumor. These subtle molecular changes, which are specific for various tumors, can be readily detected by FDA of hair, nails and skin. We call for more research in the utility of FDA and tumor specific cathepsins for the early and non-invasive diagnosis of various malignancies.
Collapse
Affiliation(s)
- Mark R Goldstein
- NCH Physician Group, 1845 Veterans Park Drive, Suite 110, Naples, FL 34109, USA.
| | - Luca Mascitelli
- Comando Brigata Alpina "Julia"/Multinational Land Force, Medical Service, Via S. Agostino, Udine 33100, Italy.
| |
Collapse
|
110
|
Chmelař J, Kotál J, Langhansová H, Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front Cell Infect Microbiol 2017; 7:216. [PMID: 28611951 PMCID: PMC5447049 DOI: 10.3389/fcimb.2017.00216] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022] Open
Abstract
The publication of the first tick sialome (salivary gland transcriptome) heralded a new era of research of tick protease inhibitors, which represent important constituents of the proteins secreted via tick saliva into the host. Three major groups of protease inhibitors are secreted into saliva: Kunitz inhibitors, serpins, and cystatins. Kunitz inhibitors are anti-hemostatic agents and tens of proteins with one or more Kunitz domains are known to block host coagulation and/or platelet aggregation. Serpins and cystatins are also anti-hemostatic effectors, but intriguingly, from the translational perspective, also act as pluripotent modulators of the host immune system. Here we focus especially on this latter aspect of protease inhibition by ticks and describe the current knowledge and data on secreted salivary serpins and cystatins and their role in tick-host-pathogen interaction triad. We also discuss the potential therapeutic use of tick protease inhibitors.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České BudějoviceČeské Budějovice, Czechia
| | - Jan Kotál
- Faculty of Science, University of South Bohemia in České BudějoviceČeské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia in České BudějoviceČeské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| |
Collapse
|
111
|
Huang K, Gao L, Yang M, Wang J, Wang Z, Wang L, Wang G, Li H. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy. Int J Biochem Cell Biol 2017; 89:6-15. [PMID: 28522343 DOI: 10.1016/j.biocel.2017.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/29/2022]
Abstract
Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China.
| |
Collapse
|
112
|
Piper AK, Ross SE, Redpath GM, Lemckert FA, Woolger N, Bournazos A, Greer PA, Sutton RB, Cooper ST. Enzymatic cleavage of myoferlin releases a dual C2-domain module linked to ERK signalling. Cell Signal 2017; 33:30-40. [PMID: 28192161 PMCID: PMC5995151 DOI: 10.1016/j.cellsig.2017.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/07/2017] [Indexed: 01/17/2023]
Abstract
Myoferlin and dysferlin are closely related members of the ferlin family of Ca2+-regulated vesicle fusion proteins. Dysferlin is proposed to play a role in Ca2+-triggered vesicle fusion during membrane repair. Myoferlin regulates endocytosis, recycling of growth factor receptors and adhesion proteins, and is linked to the metastatic potential of cancer cells. Our previous studies establish that dysferlin is cleaved by calpains during membrane injury, with the cleavage motif encoded by alternately-spliced exon 40a. Herein we describe the cleavage of myoferlin, yielding a membrane-associated dual C2 domain 'mini-myoferlin'. Myoferlin bears two enzymatic cleavage sites: a canonical cleavage site encoded by exon 38 within the C2DE domain; and a second cleavage site in the linker adjacent to C2DE, encoded by alternately-spliced exon 38a, homologous to dysferlin exon 40a. Both myoferlin cleavage sites, when introduced into dysferlin, can functionally substitute for exon 40a to confer Ca2+-triggered calpain cleavage in response to membrane injury. However, enzymatic cleavage of myoferlin is complex, showing both constitutive or Ca2+-enhanced cleavage in different cell lines, that is not solely dependent on calpains-1 or -2. The functional impact of myoferlin cleavage was explored through signalling protein phospho-protein arrays revealing specific activation of ERK1/2 by ectopic expression of cleavable myoferlin, but not an uncleavable isoform. In summary, we molecularly define two enzymatic cleavage sites within myoferlin and demonstrate 'mini-myoferlin' can be detected in human breast cancer tumour samples and cell lines. These data further illustrate that enzymatic cleavage of ferlins is an evolutionarily preserved mechanism to release functionally specialized mini-modules.
Collapse
Affiliation(s)
- Ann-Katrin Piper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Samuel E Ross
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Gregory M Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Frances A Lemckert
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Natalie Woolger
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Adam Bournazos
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Roger B Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
113
|
Maheshwaran D, Nagendraraj T, Manimaran P, Ashokkumar B, Kumar M, Mayilmurugan R. A Highly Selective and Efficient Copper(II) - “Turn-On” Fluorescence Imaging Probe forl-Cysteine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Paramasivam Manimaran
- School of Biotechnology; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | | | - Mukesh Kumar
- Solid State Physics Division; Physics Group; Bhabha Atomic Research Center; Mumbai Maharashtra India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| |
Collapse
|
114
|
Kim CW, Go RE, Lee HM, Hwang KA, Lee K, Kim B, Lee MY, Choi KC. Cigarette smoke extracts induced the colon cancer migration via regulating epithelial mesenchymal transition and metastatic genes in human colon cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:690-704. [PMID: 27087172 DOI: 10.1002/tox.22271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
There was considerable evidence that exposure to cigarette smoke is associated with an increased risk for colon cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and colon cancer remains unclear. Moreover, there were only a few studies on effects of complexing substance contained in cigarette smoke on colon cancer. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell cycle, apoptosis and migration of human metastatic colon cancer cells, SW-620. MTT assay revealed that SW-620 cell proliferation was significantly inhibited following treatments with all CSEs, 3R4F, and two-domestic cigarettes, for 9 days in a concentration-dependent manner. Moreover, CSE treatments decreased cyclin D1 and E1, and increased p21 and p27 proteins by Western blot analysis in SW-620 cells. Additionally, the treatment of the cells with CSE contributed to these effects expressing by apoptosis-related proteins. An increased migration or invasion ability of SW-620 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. In addition, the protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers, N-cadherin, snail, and slug, were up-regulated in a time-dependent manner. A metastatic marker, cathepsin D, was also down-regulated by CSE treatment. Taken together, these results indicate that CSE exposure in colon cancer cells may deregulate the cell growth by altering the expression of cell cycle-related proteins and pro-apoptotic protein, and stimulate cell metastatic ability by altering epithelial-mesenchymal transition (EMT) markers and cathepsin D expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 690-704, 2017.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Non-Human Primate, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Moo-Yeol Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Dongguk University, Goyang, Gyeonggi-Do, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
115
|
Li X, Dai J, Tang Y, Li L, Jin G. Quantitative Proteomic Profiling of Tachyplesin I Targets in U251 Gliomaspheres. Mar Drugs 2017; 15:md15010020. [PMID: 28106765 PMCID: PMC5295240 DOI: 10.3390/md15010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 01/02/2023] Open
Abstract
Tachyplesin I is a cationic peptide isolated from hemocytes of the horseshoe crab and its anti-tumor activity has been demonstrated in several tumor cells. However, there is limited information providing the global effects and mechanisms of tachyplesin I on glioblastoma multiforme (GBM). Here, by using two complementary proteomic strategies (2D-DIGE and dimethyl isotope labeling-based shotgun proteomics), we explored the effect of tachyplesin I on the proteome of gliomaspheres, a three-dimensional growth model formed by a GBM cell line U251. In total, the expression levels of 192 proteins were found to be significantly altered by tachyplesin I treatment. Gene ontology (GO) analysis revealed that many of them were cytoskeleton proteins and lysosomal acid hydrolases, and the mostly altered biological process was related to cellular metabolism, especially glycolysis. Moreover, we built protein-protein interaction network of these proteins and suggested the important role of DNA topoisomerase 2-alpha (TOP2A) in the signal-transduction cascade of tachyplesin I. In conclusion, we propose that tachyplesin I might down-regulate cathepsins in lysosomes and up-regulate TOP2A to inhibit migration and promote apoptosis in glioma, thus contribute to its anti-tumor function. Our results suggest tachyplesin I is a potential candidate for treatment of glioma.
Collapse
Affiliation(s)
- Xuan Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, No. 2190 Liuxian Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| | - Jianguo Dai
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, No. 2190 Liuxian Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| | - Yongjun Tang
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, No. 2190 Liuxian Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| | - Lulu Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, No. 2190 Liuxian Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| | - Gang Jin
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, No. 2190 Liuxian Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
116
|
Maheshwaran D, Priyanga S, Mayilmurugan R. Copper(ii)-benzimidazole complexes as efficient fluorescent probes forl-cysteine in water. Dalton Trans 2017; 46:11408-11417. [DOI: 10.1039/c7dt01895a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper(ii)-benzimidazole complexes could detectl-cysteine over other natural amino acids at pH 7.34 by a ‘turn-on’ fluorescence mechanismviathe reduction of Cu(ii) to Cu(i) followed by displacement with excellent selectivity.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
117
|
Chan CHF, Liesenfeld LF, Ferreiro-Neira I, Cusack JC. Preclinical Evaluation of Cathepsin-Based Fluorescent Imaging System for Cytoreductive Surgery. Ann Surg Oncol 2016; 24:931-938. [PMID: 27913947 DOI: 10.1245/s10434-016-5690-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) is a treatment option for peritoneal surface malignancies. The ability to detect microscopic foci of peritoneal metastasis intraoperatively may ensure the completeness of cytoreduction. In this study, we evaluated the suitability of a hand-held cathepsin-based fluorescent imaging system for intraoperative detection of appendiceal and colorectal peritoneal metastasis. METHODS Peritoneal tumors and normal peritoneal tissues were collected from patients with appendiceal and colorectal peritoneal metastasis. Expression of different cathepsins (CTS-B, -D, -F, -G, -K, -L, -O, and -S) was determined by quantitative RT-PCR and immunohistochemistry. The hand-held cathepsin-based fluorescent imaging system was used to detect peritoneal xenografts derived from human colon cancer cells (HT29, LoVo and HCT116) in nu/nu mice. RESULTS While the expression levels of CTS-B, -D, -L, and -S could be higher in peritoneal tumors than normal peritoneum with a median (range) of 6.1 (2.9-25.8), 2.0 (1.0-15.8), 1.4 (0.8-7.0), and 2.1 (1.6-13.9) folds by quantitative RT-PCR, respectively, CTS-B was consistently the major contributor of the overall cathepsin expression in appendiceal and colonic peritoneal tumors, including adenocarcinomas and low-grade appendiceal mucinous neoplasms. Using peritoneal xenograft mouse models, small barely visible colonic peritoneal tumors (<2.5 mm in maximum diameter) could be detected by the hand-held cathepsin-based fluorescent imaging system. CONCLUSIONS Because cathepsin expression is higher in peritoneal tumors than underlying peritoneum, the hand-held cathepsin-based fluorescent imaging system could be useful for intraoperative detection of microscopic peritoneal metastasis during CRS-HIPEC and clinical trial is warranted.
Collapse
Affiliation(s)
- Carlos H F Chan
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA. .,Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | | - James C Cusack
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
118
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, et alKanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Show More Authors] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
119
|
Zhang G, Chen L, Sun K, Khan AA, Yan J, Liu H, Lu A, Gu N. Neuropilin-1 (NRP-1)/GIPC1 pathway mediates glioma progression. Tumour Biol 2016; 37:13777-13788. [PMID: 27481513 DOI: 10.1007/s13277-016-5138-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Glioma occurs due to multi-gene abnormalities. Neuropilin-1 (NRP-1), as a transmembrane protein, involves in glioma proliferation, invasion, and migration, as well as tumor angiogenesis. The cytoplasmic protein, GAIP/RGS19-interacting protein (GIPC1), could regulate the clathrin-vesicles trafficking and recycling. Here, we show that NRP-1 co-localizes and co-immunoprecipitates with GIPC1, and the C-terminal SEA-COOH motif of NRP-1 interacts specially with the named from three proteins: PSD-95 (a 95 kDa protein involved in signaling at the post-synaptic density), DLG (the Drosophila melanogaster Discs Large protein) and ZO-1 (the zonula occludens 1 protein involved in maintenance of epithelial polarity) (PDZ) domain of GIPC1 in glioma cells. Knockdown of GIPC1 by small interfering RNA (siRNA) significantly reduces the proliferation and invasion of glioma cells in vitro and increases its apoptosis. Furthermore, si-GIPC1 prevents the action of adaptor proteins adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) and p130Cas and inhibits the downstream kirsten rat sarcoma viral oncogene homolog (KRAS)-ERK signaling pathway. This study demonstrated that NRP-1/GIPC1 pathway plays a vital role in glioma progression, and it is a potential important target for multi-gene combined therapeutics.
Collapse
Affiliation(s)
- Guilong Zhang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Lukui Chen
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Kouhong Sun
- Nanjing Zoonbio Biotechnology, Nanjing, 210014, China
| | - Ahsan Ali Khan
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jianghua Yan
- Cancer Research Center, Xiamen University, Xiamen, 361000, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing, 210029, China
| | - Ailin Lu
- Department of Neurosurgery, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
120
|
Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016; 7:48753-48787. [PMID: 27145373 PMCID: PMC5217050 DOI: 10.18632/oncotarget.9066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Umberto Veronesi Foundation, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
121
|
Jeon SY, Go RE, Heo JR, Kim CW, Hwang KA, Choi KC. Effects of cigarette smoke extracts on the progression and metastasis of human ovarian cancer cells via regulating epithelial-mesenchymal transition. Reprod Toxicol 2016; 65:1-10. [PMID: 27327412 DOI: 10.1016/j.reprotox.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023]
Abstract
Cigarette smoke (CS) contains over 60 well-established carcinogens, and there are strong links between these carcinogens and smoking-induced cancers. In this study we investigated whether three types of cigarette smoke extracts (CSEs), 3R4F (standard cigarette), CSE1 and CSE2 (two commercial cigarettes), affect the proliferation, migration, and invasive activity of BG-1 human ovarian cancer cells. All three types of CSEs increased BG-1 cell proliferation at nicotine concentrations of 1.5μM-2.1μM in a cell viability assay. The protein expressions of cyclin D1 and cyclin E1 were increased, while p21 and p27 expression was decreased by Western blot assay. However, they did not show a consistent dose-dependent tendency. The protein expressions of Bax and p53, pro-apoptotic genes, were also decreased by CSEs. The expression of E-cadherin, an epithelial marker, was reduced in the treatment of CSEs while the expression of its reverse transition marker, N-cadherin, was slightly increased by CSEs containing 2.1μM of nicotine, but a statistical significance was not observed. Epithelial-mesenchymal transition (EMT)-associated transcriptional factors, Snail and Slug, were also up-regulated by treatment with CSEs, indicating that CSEs can increase the EMT process in BG-1 ovarian cancer cells. In addition, CSEs increased the migratory and invasive propensity of cancer cells. These functional alterations were associated with changes in metastasis-related gene expression. Upon exposure to CSEs, the expression of MMP-9 and cathepsin D was increased. Taken together, we confirmed that CSEs increased the growth, migration, and invasion of human ovarian cancer cells by regulating cell cycle, apoptosis, EMT, and metastasis related cellular markers and signaling proteins. Based on the results, cigarette smokers of women might be at a higher risk of ovarian cancer than non-smokers.
Collapse
Affiliation(s)
- So-Ye Jeon
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
122
|
Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes. Sci Rep 2016; 6:25362. [PMID: 27140831 PMCID: PMC4853721 DOI: 10.1038/srep25362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/13/2016] [Indexed: 01/17/2023] Open
Abstract
Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.
Collapse
|
123
|
Guan X. Metabolic Activation and Drug Targeting. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
124
|
Xue T, Liu P, Zhou Y, Liu K, Yang L, Moritz RL, Yan W, Xu LX. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics. Am J Cancer Res 2016; 6:773-94. [PMID: 27162549 PMCID: PMC4860887 DOI: 10.7150/thno.14394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an “acute” phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated “acute” phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86+MHCII+ dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such “acute” environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest “acute” response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated “acute” microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of “acute” and “danger” signals play a key role in determining the efficacy of anti-tumor activity.
Collapse
|
125
|
Tan G, Liu Q, Tang X, Kang T, Li Y, Lu J, Zhao X, Tang F. Diagnostic values of serum cathepsin B and D in patients with nasopharyngeal carcinoma. BMC Cancer 2016; 16:241. [PMID: 26995190 PMCID: PMC4799840 DOI: 10.1186/s12885-016-2283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
Background The diagnostic and prognostic significance of increased cathepsin B (CTSB) and cathepsin D (CTSD) concentration in the serum of cancer patients were evaluated for some tumor types. High expression of CTSD and CTSB was detected in biopsy tissues from nasopharyngeal carcinoma (NPC). However, whether CTSD and CTSB serve as diagnostic and prognostic markers of NPC remains unclear. Methods Serum samples were collected from 40 healthy volunteers and 80 NPC patients enrolled in the study. CTSB and CTSD in the serum samples were detected using enzyme-linked immunosorbent assay (ELISA). Concomitantly, the relationship between CTSB and CTSD concentrations and clinicopathological prognosis was assessed. The sensitivity and specificity of the two components in the diagnosis of NPC were evaluated in 80 NPC patients. Results ELISA analysis showed that in the sera obtained from NPC patients, the CTSB concentration was 12.5 ± 3.5 mg/L (median, 12.4 mg/L), and the CTSD concentration was 15.7 ± 8.7 mg/L (median, 14.7 mg/L). CTSB and CTSD levels were significantly higher in the NPC patient population compared to the healthy control population (p = 0.001; p = 0.001, respectively). The presence of CTSB and CTSD in the serum of the patients with NPC correlated with the tumor node metastasis (TNM) scores (p = 0.001). Other parameters were not identified to be of significance. Receiver operating characteristic (ROC) analysis showed that a cut off CTSB concentration of 12.4 mg/L had 61.9 % sensitivity and 63.2 % specificity in the prediction of progression-free survival (Area under the curve (AUC) = 0.525; 95 % CI, 39.7–65.2; p = 0.704); whereas a cut off CTSD concentration of 14.7 mg/L had 66.7 % sensitivity, and 58.5 % specificity (AUC = 0.552; 95 % CI, 42.3–68.1; p = 0.42). Conclusions Serum CTSB and CTSD concentrations were found to have a diagnostic value in NPC. However, the CTSB and CTSD serum levels had no prognostic role for the outcome in NPC patients.
Collapse
Affiliation(s)
- Gongjun Tan
- Department of Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Qianxu Liu
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Xiaowei Tang
- Metallurgical Science and Engineering, Central South University, 21 Lushan South Road, Changsha, 410083, China
| | - Ting Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuejin Li
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Jinping Lu
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Xiaoming Zhao
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Faqing Tang
- Department of Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
126
|
Felix K, Gaida MM. Neutrophil-Derived Proteases in the Microenvironment of Pancreatic Cancer -Active Players in Tumor Progression. Int J Biol Sci 2016; 12:302-13. [PMID: 26929737 PMCID: PMC4753159 DOI: 10.7150/ijbs.14996] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma.
Collapse
Affiliation(s)
- Klaus Felix
- 1. Department of General Surgery, University of Heidelberg, INF 110, Heidelberg, Germany
| | - Matthias M Gaida
- 2. Institute of Pathology, University of Heidelberg, INF 224, Heidelberg, Germany
| |
Collapse
|
127
|
Ruan H, Hao S, Young P, Zhang H. Targeting Cathepsin B for Cancer Therapies. HORIZONS IN CANCER RESEARCH 2015; 56:23-40. [PMID: 26623174 PMCID: PMC4662557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cathepsin B is a member of the papain family of cysteine proteases normally present in the lysosome, but it can translocate and function to degrade components of the extracellular matrix. It exhibits carboxyopeptidase, peptidyldipepidase, and endopeptidase activity. Aberrant overexpression of cathepsin B has been reported in invasive and metastatic cancers, including breast cancer, melanoma and colorectal cancer. It has been shown that oncogenic activation, such as the signaling of the ErbB pathways, can lead to cathepsin B overexpression. The degradation of the extracellular matrix is a key factor for cathepsin B to contribute to development and metastasis of tumors. An example of substrates for cathepsin B is E-cadherin, which is involved in adherens junctions, and the downregulation of E-cadherin in cancer is directly linked to invasion and metastasis. Recent studies also point to a role for cathepsin B in macrophages in the tumor microenvironment. The structure of cathepsin B is crystallographically solved, and several highly selective and potent inhibitors for cathepsin B have been developed. Yet it remains to be a challenge to demonstrate the clinical utility or benefit of any cathepsin B inhibitor. As cathepsin B is required for a cellular process called lysosomal membrane permeabilization (LMP), inhibition of cathepsin B would protect cancer cells from cell death induced by chemotherapeutic agents. It is expected that combining cathepsin B inhibitors with other approaches, such as nanoparticles, to direct the inhibition to the extracellular space may lead to better clinical approaches to treat cancers and metastasis.
Collapse
Affiliation(s)
| | | | | | - Hongtao Zhang
- Corresponding author: Hongtao Zhang, Ph.D., 252 John Morgan Building, 3620 Hamilton Walk, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, Phone: 215-573-9256, Fax: 215-898-2401,
| |
Collapse
|
128
|
Lysosomal cysteine peptidases – Molecules signaling tumor cell death and survival. Semin Cancer Biol 2015; 35:168-79. [DOI: 10.1016/j.semcancer.2015.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
129
|
Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Semin Cancer Biol 2015; 35:71-84. [DOI: 10.1016/j.semcancer.2015.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
|
130
|
Sun T, Jiang D, Zhang L, Su Q, Mao W, Jiang C. Expression profile of cathepsins indicates the potential of cathepsins B and D as prognostic factors in breast cancer patients. Oncol Lett 2015; 11:575-583. [PMID: 26870250 PMCID: PMC4727043 DOI: 10.3892/ol.2015.3960] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most prevalent types of cancer in women and contributes to 32% of all female cancer cases. Cathepsins, a family of proteins, are known to have a critical role in human cancers. However, previous studies on the systematic analysis of the role of cathepsin family members in breast cancer are limited. The aim of the present study was to identify biological markers to predict prognosis and treatment response of breast cancer patients, as well as to elucidate novel therapeutic targets. The present study analyzed the expression of six members of cathepsin family, including cathepsins B, G, D, K, L and V in 188 breast cancer tissue specimens using immunohistochemistry. The data showed that all members of the tested cathepsin families featured cytoplasmic staining. Notably, expression of cathepsin L was associated with advanced tumor stages, while cathepsins B and K expression levels were associated with positive estrogen receptor expression; in addition, cathepsin K expression was also demonstrated to be associated with progesterone receptor expression. Cathepsins V and D expression levels were found to be associated with breast cancer metastasis, while the expression levels of cathepsins B and D were associated with poor disease-free survival in breast cancer patients. In addition, univariate analysis demonstrated that breast cancer metastasis to the bone and the expression of cathepsin B protein were associated with poor disease-free survival. In conclusion, the results of the present study indicated that the altered expression of cathepsins, in particular cathepsins B and D, contributed to the progression of breast cancer and poor disease-free survival in breast cancer patients.
Collapse
Affiliation(s)
- Tao Sun
- Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110000, P.R. China
| | - Daqing Jiang
- Department of Breast Oncology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110000, P.R. China
| | - Liang Zhang
- Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110000, P.R. China
| | - Qinglong Su
- Department of Medical Oncology, Central Hospital of Chaoyang, Chaoyang, Liaoning 100000, P.R. China
| | - Wanli Mao
- Department of Medical Oncology, Yongchuan People's Hospital, Yongchuan, Chongqing 404000, P.R. China
| | - Cui Jiang
- Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
131
|
Rai S, Nejadhamzeeigilani Z, Gutowski NJ, Whatmore JL. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:105. [PMID: 26407999 PMCID: PMC4582832 DOI: 10.1186/s13046-015-0223-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Abstract
Background Arrest of metastasising lung cancer cells to the brain microvasculature maybe mediated by interactions between ligands on circulating tumour cells and endothelial E-selectin adhesion molecules; a process likely to be regulated by the endothelial glycocalyx. Using human cerebral microvascular endothelial cells and non-small cell lung cancer (NSCLC) cell lines, we describe how factors secreted by NSCLC cells i.e. cystatin C, cathepsin L, insulin-like growth factor-binding protein 7 (IGFBP7), vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-α), damage the glycocalyx and enhance initial contacts between lung tumour and cerebral endothelial cells. Methods Endothelial cells were treated with tumour secreted-proteins or lung tumour conditioned medium (CM). Surface levels of E-selectin were quantified by ELISA. Adhesion of A549 and SK-MES-1 cells was examined under flow conditions (1 dyne/cm2). Alterations in the endothelial glycocalyx were quantified by binding of fluorescein isothiocyanate-linked wheat germ agglutinin (WGA-FITC). Results A549 and SK-MES-1 CM and secreted-proteins significantly enhanced endothelial surface E-selectin levels after 30 min and 4 h and tumour cell adhesion after 30 min, 4 and 24 h. Both coincided with significant glycocalyx degradation; A549 and SK-MES-1 CM removing 55 ± 12 % and 58 ± 18.7 % of WGA-FITC binding, respectively. Inhibition of E-selectin binding by monoclonal anti-E-selectin antibody completely attenuated tumour cell adhesion. Conclusion These data suggest that metastasising lung cancer cells facilitate their own adhesion to the brain endothelium by secreting factors that damage the endothelial glycocalyx, resulting in exposure of the previously shielded adhesion molecules and engagement of the E-selectin-mediated adhesion axis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0223-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijana Rai
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's campus, Exeter, EX1 2LU, UK.
| | - Zaynab Nejadhamzeeigilani
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's campus, Exeter, EX1 2LU, UK.
| | - Nicholas J Gutowski
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's campus, Exeter, EX1 2LU, UK. .,Royal Devon and Exeter NHS Foundation Trust, Barrack road, Exeter, EX2 5DW, UK.
| | - Jacqueline L Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's campus, Exeter, EX1 2LU, UK.
| |
Collapse
|
132
|
Sudhan DR, Siemann DW. Cathepsin L targeting in cancer treatment. Pharmacol Ther 2015; 155:105-16. [PMID: 26299995 DOI: 10.1016/j.pharmthera.2015.08.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022]
Abstract
Proteolytic enzymes may serve as promising targets for novel therapeutic treatment strategies seeking to impede cancer progression and metastasis. One such enzyme is cathepsin L (CTSL), a lysosomal cysteine protease. CTSL upregulation, a common occurrence in a variety of human cancers, has been widely correlated with metastatic aggressiveness and poor patient prognosis. In addition, CTSL has been implicated to contribute to cancer-associated osteolysis, a debilitating morbidity affecting both life expectancy and the quality of life. In this review, we highlight the mechanisms by which CTSL contributes to tumor progression and dissemination and discuss the therapeutic utility of CTSL intervention strategies aimed at impeding metastatic progression and bone resorption.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
133
|
Kohli M, Young CY, Tindall DJ, Nandy D, McKenzie KM, Bevan GH, Donkena KV. Whole blood defensin mRNA expression is a predictive biomarker of docetaxel response in castration-resistant prostate cancer. Onco Targets Ther 2015; 8:1915-22. [PMID: 26261420 PMCID: PMC4527520 DOI: 10.2147/ott.s86637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study tested the potential of circulating RNA-based signals as predictive biomarkers for docetaxel response in patients with metastatic castration-resistant prostate cancer (CRPC). RNA was analyzed in blood from six CRPC patients by whole-transcriptome sequencing (total RNA-sequencing) before and after docetaxel treatment using the Illumina’s HiSeq platform. Targeted RNA capture and sequencing was performed in an independent cohort of ten patients with CRPC matching the discovery cohort to confirm differential expression of the genes. Response to docetaxel was defined on the basis of prostate-specific antigen levels and imaging criteria. Two-way analysis of variance was used to compare differential gene expression in patients classified as responders versus nonresponders before and after docetaxel treatment. Thirty-four genes with two-fold differentially expressed transcripts in responders versus nonresponders were selected from total RNA-sequencing for further validation. Targeted RNA capture and sequencing showed that 13/34 genes were differentially expressed in responders. Alpha defensin genes DEFA1, DEFA1B, and DEFA3 exhibited significantly higher expression in responder patients compared with nonresponder patients before administration of chemotherapy (fold change >2.5). In addition, post-docetaxel treatment significantly increased transcript levels of these defensin genes in responders (fold change >2.8). Our results reveal that patients with higher defensin RNA transcripts in blood respond well to docetaxel therapy. We suggest that monitoring DEFA1, DEFA1B, and DEFA3 RNA transcripts in blood prior to treatment will be helpful to determine which patients are better candidates to receive docetaxel chemotherapy.
Collapse
Affiliation(s)
- Manish Kohli
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kyle M McKenzie
- Department of Geriatric Medicine, Mayo Clinic, Rochester, MN, USA
| | - Graham H Bevan
- University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
134
|
Induction of a heparin-stimulated serine proteinase in sex accessory gland tumors of the Lobund-Wistar rat. Exp Mol Pathol 2015; 99:39-43. [DOI: 10.1016/j.yexmp.2015.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 11/22/2022]
|
135
|
Pereira H, Oliveira CSF, Castro L, Preto A, Chaves SR, Côrte-Real M. Yeast as a tool to explore cathepsin D function. MICROBIAL CELL 2015; 2:225-234. [PMID: 28357298 PMCID: PMC5349170 DOI: 10.15698/mic2015.07.212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cathepsin D has garnered increased attention in recent years, mainly since it has been associated with several human pathologies. In particular, cathepsin D is often overexpressed and hypersecreted in cancer cells, implying it may constitute a therapeutic target. However, cathepsin D can have both anti- and pro-survival functions depending on its proteolytic activity, cellular context and stress stimulus. Therefore, a more detailed understanding of cathepsin D regulation and how to modulate its apoptotic functions is clearly needed. In this review, we provide an overview of the role of cathepsin D in physiological and pathological scenarios. We then focus on the opposing functions of cathepsin D in apoptosis, particularly relevant in cancer research. Emphasis is given to the role of the yeast protease Pep4p, the vacuolar counterpart of cathepsin D, in life and death. Finally, we discuss how insights from yeast cathepsin D and its role in regulated cell death can unveil novel functions of mammalian cathepsin D in apoptosis and cancer.
Collapse
Affiliation(s)
- H Pereira
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - C S F Oliveira
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. ; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - L Castro
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - A Preto
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - S R Chaves
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Côrte-Real
- CBMA- Centre of Molecular and Environmental Biology. Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
136
|
Roda D, Castillo J, Telechea-Fernández M, Gil A, López-Rodas G, Franco L, González-Rodríguez P, Roselló S, Pérez-Fidalgo JA, García-Trevijano ER, Cervantes A, Zaragozá R. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS One 2015; 10:e0130543. [PMID: 26110767 PMCID: PMC4482484 DOI: 10.1371/journal.pone.0130543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022] Open
Abstract
KRAS mutational status is considered a negative predictive marker of the response to anti-EGFR therapies in colorectal cancer (CRC) patients. However, conflicting data exist regarding the variable response to EGFR-targeted therapy. The effects of oncogenic KRAS on downstream targets were studied in cell lines with different KRAS mutations. Cells harboring a single KRASG13D allele showed the most tumorigenic profile, with constitutive activation of the downstream pathway, rendering them EGF-unresponsive. Conversely, KRASA146T cells showed a full EGF-response in terms of signal transduction pathways, cell proliferation, migration or adhesion. Moreover, the global acetylome of CRC cells was also dependent on KRAS mutational status. Several hnRNP family members were identified within the 36 acetylated-proteins. Acetylation status is known to be involved in the modulation of EGF-response. In agreement with results presented herein, hnRNPA1 and L acetylation was induced in response to EGF in KRASA146T cells, whereas acetyl-hnRNPA1 and L levels remained unchanged after growth factor treatment in KRASG13D unresponsive cells. Our results showed that hnRNPs induced-acetylation is dependent on KRAS mutational status. Nevertheless hnRNPs acetylation might also be the point where different oncogenic pathways converge.
Collapse
Affiliation(s)
- Desamparados Roda
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Josefa Castillo
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Marcelino Telechea-Fernández
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Anabel Gil
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Luís Franco
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Patricia González-Rodríguez
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Susana Roselló
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - J. Alejandro Pérez-Fidalgo
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
- * E-mail:
| | - Rosa Zaragozá
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| |
Collapse
|
137
|
Mechanisms regulating glioma invasion. Cancer Lett 2015; 362:1-7. [PMID: 25796440 DOI: 10.1016/j.canlet.2015.03.015] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness.
Collapse
|
138
|
Blondelle J, Lange S, Greenberg BH, Cowling RT. Cathepsins in heart disease-chewing on the heartache? Am J Physiol Heart Circ Physiol 2015; 308:H974-6. [PMID: 25747750 DOI: 10.1152/ajpheart.00125.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Stephan Lange
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Barry H Greenberg
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| | - Randy T Cowling
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, California
| |
Collapse
|
139
|
Brennan-Fournet ME, Huerta M, Zhang Y, Malliaras G, Owens RM. Detection of fibronectin conformational changes in the extracellular matrix of live cells using plasmonic nanoplates. J Mater Chem B 2015; 3:9140-9147. [PMID: 32263128 DOI: 10.1039/c5tb02060c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoplates enable high sensitive spectral monitoring of fibronectin conformational transitions and fibril formation within the extracellular matrix of live cells.
Collapse
Affiliation(s)
| | - Miriam Huerta
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| | - Yi Zhang
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| | - George Malliaras
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| | - Roisin M. Owens
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| |
Collapse
|
140
|
Tanase C, Albulescu R, Codrici E, Calenic B, Popescu ID, Mihai S, Necula L, Cruceru ML, Hinescu ME. Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma. Onco Targets Ther 2014; 8:81-90. [PMID: 25565868 PMCID: PMC4278787 DOI: 10.2147/ott.s70886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Apoptotic protease-activating factor-1 (APAF-1) and cathepsin B are important functional proteins in apoptosis; the former is involved in the intrinsic (mitochondrial) pathway, while the latter is associated with both intrinsic and extrinsic pathways. Changes in the expression of apoptosome-related proteins could be useful indicators of tumor development since a priori defects in the mitochondrial pathway might facilitate the inception and progression of human neoplasms. Our aim was to evaluate the profiles of APAF-1 and cathepsin B in relation with other molecules involved in apoptosis/proliferation and to correlate them with the aggressive behavior of invasive pituitary adenomas. MATERIALS AND METHODS APAF-1 and cathepsin B were assessed in tissue samples from 30 patients with pituitary adenomas, of which 16 were functional adenomas and 22 were invasive adenomas. RESULTS A positive relationship between high proliferation and invasiveness was observed in invasive pituitary adenomas when compared to their noninvasive counterparts (Ki-67 labeling index - 4.72% versus 1.75%). Decreased expression of APAF-1 was recorded in most of the invasive adenomas with a high proliferation index, while the cathepsin B level was elevated in this group. We have noticed a negative correlation between the low level of APAF-1 and invasiveness (63.63%; P<0.01); at the same time, a positive correlation between cathepsin B expression and invasiveness (59.09%; P<0.01) was found. In all, 81.25% out of the total APAF-1-positive samples were cathepsin B negative (P<0.01); 76.92% out of the total cathepsin B-positive samples were APAF-1-negative (P<0.01). These results were reinforced by an apoptosis protein array examination, which showed inhibition of the extrinsic apoptotic pathway in an invasive pituitary adenoma. CONCLUSION A bidirectional-inverted relationship between APAF-1 and cathepsin B expressions was noticed. One might hypothesize that shifting the balance between mediators of cell death could result in changes in tumor behavior.
Collapse
Affiliation(s)
- Cristiana Tanase
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Radu Albulescu
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- National Institute for Chemical Pharmaceutical R&D, Department of Biochemistry, Bucharest, Romania
| | - Elena Codrici
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Bogdan Calenic
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Ionela Daniela Popescu
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Simona Mihai
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | - Laura Necula
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Cellular and Molecular Pathology, Cellular and Molecular Medicine Department, Bucharest, Romania
| | - Maria Linda Cruceru
- “Carol Davila” University of Medicine and Pharmacy, Cellular and Molecular Medicine Department, Bucharest, Romania
| | - Mihail Eugen Hinescu
- “Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Cellular and Molecular Medicine Department, Bucharest, Romania
| |
Collapse
|
141
|
D'Amico A, Ragusa R, Caruso R, Prescimone T, Nonini S, Cabiati M, Del Ry S, Trivella MG, Giannessi D, Caselli C. Uncovering the cathepsin system in heart failure patients submitted to Left Ventricular Assist Device (LVAD) implantation. J Transl Med 2014; 12:350. [PMID: 25496327 PMCID: PMC4274696 DOI: 10.1186/s12967-014-0350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background In end-stage heart failure (HF), the implantation of a left ventricular assist device (LVAD) is able to induce reverse remodeling. Cellular proteases, such as cathepsins, are involved in the progression of HF. The aim of this study was to evaluate the role of cathepsin system in HF patients supported by LVAD, in order to determine their involvement in cardiac remodeling. Methods The expression of cysteine (CatB, CatK, CatL, CatS) and serine cathepsin (CatG), and relative inhibitors (Cystatin B, C and SerpinA3, respectively) was determined in cardiac biopsies of 22 patients submitted to LVAD (pre-LVAD) and compared with: 1) control stable chronic HF patients on medical therapy at the moment of heart transplantation without prior LVAD (HT, n = 7); 2) patients supported by LVAD at the moment of transplantation (post-LVAD, n = 6). Results The expression of cathepsins and their inhibitors was significantly higher in pre-LVAD compared to the HT group and LVAD induced a further increase in the cathepsin system. Significant positive correlations were observed between cardiac expression of cathepsins and their inhibitors as well as inflammatory cytokines. In the pre-LVAD group, a relationship of cathepsins with dilatative etiology and length of hospitalization was found. Conclusions A parallel activation of cathepsins and their inhibitors was observed after LVAD support. The possible clinical importance of these modifications is confirmed by their relation with patients’ outcome. A better discovery of these pathways could add more insights into the cardiac remodeling during HF.
Collapse
Affiliation(s)
- Andrea D'Amico
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56100, Pisa, Italy.
| | - Rosetta Ragusa
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Raffaele Caruso
- Cardiovascular Department, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Niguarda Cà Granda Hospital, 20162, Milan, Italy.
| | - Tommaso Prescimone
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Sandra Nonini
- Cardiovascular Department, Niguarda Ca' Granda Hospital, 20162, Milan, Italy.
| | - Manuela Cabiati
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Silvia Del Ry
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Maria Giovanna Trivella
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Daniela Giannessi
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Chiara Caselli
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| |
Collapse
|
142
|
Shenoy AK, Lu J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett 2014; 380:534-544. [PMID: 25449784 DOI: 10.1016/j.canlet.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics.
Collapse
Affiliation(s)
- Anitha K Shenoy
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| |
Collapse
|
143
|
de la Torre C, Mondragón L, Coll C, Sancenón F, Marcos MD, Martínez-Máñez R, Amorós P, Pérez-Payá E, Orzáez M. Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry 2014; 20:15309-14. [DOI: 10.1002/chem.201404382] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Indexed: 01/22/2023]
|
144
|
Barve A, Jin W, Cheng K. Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release 2014; 187:118-32. [PMID: 24878184 DOI: 10.1016/j.jconrel.2014.05.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 12/26/2022]
Abstract
Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to poor specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-relevant antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency.
Collapse
Affiliation(s)
- Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA.
| |
Collapse
|