101
|
Khalaf WS, Garg M, Mohamed YS, Stover CM, Browning MJ. In vitro Generation of Cytotoxic T Cells With Potential for Adoptive Tumor Immunotherapy of Multiple Myeloma. Front Immunol 2019; 10:1792. [PMID: 31428094 PMCID: PMC6687956 DOI: 10.3389/fimmu.2019.01792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma is a life-threatening hematological malignancy, which is rarely curable by conventional therapies. Immunotherapy, using tumor antigen-specific, cytotoxic T-lymphocytes, may represent an alternative or additional treatment for multiple myeloma. In this study, we used hybrid cell lines, generated by fusion of an EBV B-lymphoblastoid cell line (B-LCL) and myeloma cells, to stimulate in vitro peripheral blood lymphocytes (PBLs) from patients with multiple myeloma. We investigated induction of antigen-specific, cytotoxic T-lymphocytes to the well-defined tumor associated antigens (TAAs) hTERT, MUC1, MAGE-C1 and CS1, which have been shown to be expressed in a high proportion of cases of multiple myeloma. HLA-A2-peptide pentamer staining, interferon-γ and perforin ELISpot assays, as well as cytotoxicity assays were used. Following several rounds of in vitro stimulation, the hybrid cell lines induced antigen-specific, cytotoxic T-lymphocytes to four candidate TAAs in PBLs from HLA-A2+ multiple myeloma patients, using known HLA-A2 restricted peptide epitopes of the TAAs. In contrast, the HLA-A2+ myeloma cell line U266 failed to induce antigen-specific, cytotoxic T-lymphocytes in vitro. Our data indicate that B-LCL/myeloma hybrid cell lines induce antigen-specific, cytotoxic T-lymphocytes in PBLs isolated from multiple myeloma patients in vitro and may represent a novel strategy for use in adoptive immunotherapy of multiple myeloma.
Collapse
Affiliation(s)
- Wafaa S Khalaf
- Department of Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom.,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mamta Garg
- Department of Haematology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Yehia S Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Microbiology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Cordula M Stover
- Department of Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom.,Department of Immunology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
102
|
Shastri S, Chatterjee B, Thakur SS. Achievements in Cancer Research and its Therapeutics in Hundred Years. Curr Top Med Chem 2019; 19:1545-1562. [PMID: 31362690 DOI: 10.2174/1568026619666190730093034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Cancer research has progressed leaps and bounds over the years. This review is a brief overview of the cancer research, milestone achievements and therapeutic studies on it over the one hundred ten years which would give us an insight into how far we have come to understand and combat this fatal disease leading to millions of deaths worldwide. Modern biology has proved that cancer is a very complex disease as still we do not know precisely how it triggers. It involves several factors such as protooncogene, oncogene, kinase, tumor suppressor gene, growth factor, signalling cascade, micro RNA, immunity, environmental factors and carcinogens. However, modern technology now helps the cancer patient on the basis of acquired and established knowledge in the last hundred years to save human lives.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Suman S Thakur
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
103
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
104
|
Feni L, Parente S, Robert C, Gazzola S, Arosio D, Piarulli U, Neundorf I. Kiss and Run: Promoting Effective and Targeted Cellular Uptake of a Drug Delivery Vehicle Composed of an Integrin-Targeting Diketopiperazine Peptidomimetic and a Cell-Penetrating Peptide. Bioconjug Chem 2019; 30:2011-2022. [PMID: 31243977 DOI: 10.1021/acs.bioconjchem.9b00292] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-penetrating peptides (CPPs) have emerged as powerful tools in terms of drug delivery. Those short, often cationic peptides are characterized by their usually low toxicity and their ability to transport diverse cargos inside almost any kinds of cells. Still, one major drawback is their nonselective uptake making their application in targeted cancer therapies questionable. In this work, we aimed to combine the power of a CPP (sC18) with an integrin-targeting unit (c[DKP-f3-RGD]). The latter is composed of the Arg-Gly-Asp peptide sequence cyclized via a diketopiperazine scaffold and is characterized by its high selectivity toward integrin αvβ3. The two parts were linked via copper-catalyzed alkyne-azide click reaction (CuAAC), while the CPP was additionally functionalized with either a fluorescent dye or the anticancer drug daunorubicin. Both functionalities allowed a careful biological evaluation of these novel peptide-conjugates regarding their cellular uptake mechanism, as well as cytotoxicity in αvβ3 integrin receptor expressing cells versus cells that do not express αvβ3. Our results show that the uptake follows a "kiss-and-run"-like model, in which the conjugates first target and recognize the receptor, but translocate mainly by CPP mediation. Thereby, we observed significantly more pronounced toxic effects in αvβ3 expressing U87 cells compared to HT-29 and MCF-7 cells, when the cells were exposed to the substances with only very short contact times (15 min). All in all, we present new concepts for the design of cancer selective peptide-drug conjugates.
Collapse
Affiliation(s)
- Lucia Feni
- University of Cologne , Department of Chemistry, Biochemistry , Zülpicher Strasse 47a , D-50674 Cologne , Germany
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Clémence Robert
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), National Research Council (CNR) , Via G.Golgi 19 , 20133 , Milan , Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Ines Neundorf
- University of Cologne , Department of Chemistry, Biochemistry , Zülpicher Strasse 47a , D-50674 Cologne , Germany
| |
Collapse
|
105
|
Owen DH, Giffin MJ, Bailis JM, Smit MAD, Carbone DP, He K. DLL3: an emerging target in small cell lung cancer. J Hematol Oncol 2019; 12:61. [PMID: 31215500 PMCID: PMC6582566 DOI: 10.1186/s13045-019-0745-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers. Despite high rates of response to first-line chemotherapy and radiotherapy, patients with extensive-stage disease eventually relapse, and very few patients survive more than 5 years from diagnosis. Treatment options for recurrent or refractory disease are limited, and the treatments that do exist are associated with significant treatment-related toxicities. Delta-like ligand 3 (DLL3) is an inhibitory Notch ligand that is highly expressed in SCLC and other neuroendocrine tumors but minimally expressed in normal tissues. It is therefore being explored as a potential therapeutic target in SCLC. Here, we review the preclinical and clinical evidence for targeting DLL3 in SCLC and discuss several DLL3-specific therapies being developed for the treatment of SCLC: the antibody-drug conjugate rovalpituzumab tesirine, the bispecific T cell engager immuno-oncology therapy AMG 757, and the chimeric antigen receptor T cell therapy AMG 119.
Collapse
Affiliation(s)
- Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Julie M Bailis
- Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | | | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
106
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
107
|
Pourjafar M, Samadi P, Khoshinani HM, Saidijam M. Are mimotope vaccines a good alternative to monoclonal antibodies? Immunotherapy 2019; 11:795-800. [PMID: 31094256 DOI: 10.2217/imt-2018-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Utilizing immunotherapy as a potential therapeutic approach to boost the body's immune system for the fight against various diseases such as cancers, autoimmune diseases and also infections, is increasing day by day. Monoclonal antibodies, as effective therapeutic agents are used in cancer targeted therapies. However, these biologics have some disadvantages such as high costs and side effects. Therefore, emerging alternative immunotherapy strategies with high efficiency and low costs seems necessary. Mimotope vaccines, as epitope-mimicking structures, have shown to be effective therapeutic options, but are they really a good alternative to monoclonal antibodies, or are they just effective adjuvants?
Collapse
Affiliation(s)
- Mona Pourjafar
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
108
|
Kuznetsova M, Lopatnikova J, Shevchenko J, Silkov A, Maksyutov A, Sennikov S. Cytotoxic Activity and Memory T Cell Subset Distribution of in vitro-Stimulated CD8 + T Cells Specific for HER2/neu Epitopes. Front Immunol 2019; 10:1017. [PMID: 31143180 PMCID: PMC6520647 DOI: 10.3389/fimmu.2019.01017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Minimal residual disease remaining after resection of primary tumors can lead to tumor recurrence and metastasis, increasing mortality and morbidity rates among cancer patients. Thus, there is a need for new technologies for recognition and elimination of single cancer cells remaining in a patient's body after radiation therapy, chemotherapy, or surgical resection. Effector CD8+ T cells, also commonly known as cytotoxic T lymphocytes (CTLs), play a key role in antitumor cellular immunity and, when properly activated, are able to effectively destroy tumor cells. The aims of this study were to obtain CD8+ CTLs specific for the HER2/neu epitopes E75 and E88 and to assess the cytotoxic activity and composition of these cells in terms of the distribution of memory T-cell subsets. We obtained HER2-specific CD8+ T cells and assessed T cell subset distribution among them including naive T cells (TN), central memory T cells (TCM), effector memory T cells (TEM), stem cell-like memory T cells (TSCM) and terminally-differentiated T cells (TEMRA) via eight-color flow cytometry. HER2-specific CTLs were largely (~40–50%) represented by TSCM cells, a population capable of mounting pronounced antitumor immune responses due to a combination of effector function and self-maintenance. In comparison with activated peripheral blood mononuclear cells (PBMCs) and bulk CD8+ T cells, HER2-specific CTLs exhibited greater cytotoxicity against the HER2-expressing human breast adenocarcinoma cell line MCF-7 and produced higher levels of IFN-γ in response to tumor cells. We also showed the presence of HER2-specific CTLs in healthy individuals and increase in them in HER2-positive breast cancer patients. Collectively, our results suggest that HER2-specific CD8+ T cells isolated using this approach could be used for adoptive T-cell transfer to eliminate tumor cells and prevent metastasis and relapse in patients with HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Maria Kuznetsova
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alexander Silkov
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Amir Maksyutov
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.,State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
109
|
Abstract
Introduction: Advanced cancers that did not respond to chemotherapy were once a death sentence, but now there are newer therapies utilizing the patient's own immune system to fight cancer that are proving effective in chemotherapy-refractory malignancies. However, this success against cancer cells may be accompanied by immune-related adverse events that can affect the kidneys. Areas covered: Using Medline and Scopus, we compiled all publications through February 2019 that pertained to immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor T-cells (CAR T-cells). The focus of this review is the discussion of these new cancer therapies, with attention to the reported kidney-related adverse effects.. Expert opinion: Autoimmunity is repressed by molecular pathways that inhibit T-cell activation against selected antigens. These self-protective mechanisms have been appropriated by tumor cells as a means of evading immune detection and destruction. New immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy incite an aggressive immune response directed against tumor cells. This unrestrained activation of the immune system may result in kidney injury via multiple mechanisms.
Collapse
Affiliation(s)
- Krishna Sury
- a Section of Nephrology, Department of Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Mark A Perazella
- a Section of Nephrology, Department of Medicine , Yale University School of Medicine , New Haven , CT , USA.,b Section of Nephrology , Veterans Affairs Medical Center , West Haven , CT , USA
| |
Collapse
|
110
|
PD-L1 Expression is Associated With Poor Prognosis in Renal Cell Carcinoma. Appl Immunohistochem Mol Morphol 2019; 28:213-220. [DOI: 10.1097/pai.0000000000000766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
111
|
Qin Y, Lee Y, Seo J, Kim T, Shin JH, Park SH. NIH3T3 Directs Memory-Fated CTL Programming and Represses High Expression of PD-1 on Antitumor CTLs. Front Immunol 2019; 10:761. [PMID: 31031760 PMCID: PMC6470252 DOI: 10.3389/fimmu.2019.00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Memory CD8+ T cells have long been considered a promising population for adoptive cell therapy (ACT) due to their long-term persistence and robust re-stimulatory response. NIH3T3 is an immortalized mouse embryonic fibroblast cell line. We report that NIH3T3-conditioned medium (CM) can augment effector functions of CTLs following antigen priming and confer phenotypic and transcriptional properties of central memory cells. After NIH3T3-CM-educated CTLs were infused into naïve mice, they predominantly developed to central memory cells. A large number of NIH3T3-CM-educated CTLs with high functionality persisted and infiltrated to tumor mass. In addition, NIH3T3-CM inhibited CTLs expression of PD-1 in vitro and repressed their high expression of PD-1 in tumor microenvironment after adoptive transfer. Consequently, established tumor models showed that infusion of NIH3T3-CM-educated CTLs dramatically improved CTL mediated-antitumor immunity. Furthermore, NIH3T3-CM also promoted human CD8+ T cells differentiation into memory cells. These results suggest that NIH3T3-CM-programmed CTLs are good candidates for adoptive transfer in tumor therapy.
Collapse
Affiliation(s)
- Yingyu Qin
- Department of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Yuna Lee
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Jaeho Seo
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Taehyun Kim
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Jung Hoon Shin
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Se-Ho Park
- Department of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
112
|
Yang X, Kang N, Toyofuku WM, Scott MD. Enhancing the pro-inflammatory anti-cancer T cell response via biomanufactured, secretome-based, immunotherapeutics. Immunobiology 2019; 224:270-284. [PMID: 30711357 DOI: 10.1016/j.imbio.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
T lymphocytes play a critical role in the pro-inflammatory anti-cancer response; hence, significant pharmacologic efforts have been made to enhance the endogenous T cell response. Unfortunately, significant toxicity arises consequent to pan T cell activation. In contrast, the less robust T cell alloresponse has also demonstrated an anti-cancer effect, but poses an inherent risk of GvHD. To overcome the GvHD risk, an acellular pro-inflammatory agent (IA1) has been biomanufactured from the secretome of the allorecognition response. To assess IA1's immunomodulatory activity, T cell proliferation and differentiation were determined in vitro. The pro-inflammatory properties of the IA1 therapeutic were mediated by the miRNA-enriched fractions. Moreover, cross-species efficacy was observed consequent to the evolutionary conservation of miRNA. IA1 exerted no toxicity to resting PBMC but induced significant proliferation of resting CD3+ (CD4+ and CD8+) T cells and skewed the response towards a pro-inflammatory state (i.e., increased Teff:Treg ratio). Crucially, IA1-activated PBMC demonstrated a potent inhibition of cancer cell (HeLa and SH-4 melanoma) proliferation relative to the resting PBMC. The anti-proliferation effect of IA1-activated PBMC was noted within ˜12 h versus 4-5 days for resting cells. A second biomanufactured therapeutic (IA2; produced using HeLa cells) surprisingly demonstrated direct toxicity to cancer cells but was less effective than IA1 in inducing a cell-mediated response. This study demonstrates that miRNA-enriched therapeutics can be biomanufactured from the secretome and can induce a potent pro-inflammatory, anti-cancer, effect on resting lymphocytes.
Collapse
Affiliation(s)
- Xining Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Canada
| | - Ning Kang
- University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada.
| |
Collapse
|
113
|
Kumar V, Varghese S. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment. Adv Healthc Mater 2019; 8:e1801198. [PMID: 30516355 PMCID: PMC6384151 DOI: 10.1002/adhm.201801198] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The emergence of immunotherapies and recent FDA approval of several of them makes them a promising therapeutic strategy for cancer. While these advancements underscore the potential of engaging the immune system to target tumors, this approach has so far been efficient only for certain cancers. Extending immunotherapy as a widely acceptable treatment for various cancers requires a deeper understanding of the interactions of tumor cells within the tumor microenvironment (TME). The immune cells are a key component of the TME, which also includes other stromal cells, soluble factors, and extracellular matrix-based cues. While in vivo studies function as a gold standard, tissue-engineered microphysiological tumor models can offer patient-specific insights into cancer-immune interactions. These platforms, which recapitulate cellular and non-cellular components of the TME, enable a systematic understanding of the contribution of each component toward disease progression in isolation and in concert. Microfluidic-based microphysiological platforms recreating these environments, also known as "tumor-on-a-chip," are increasingly being utilized to study the effect of various elements of TME on tumor development. Herein are reviewed advancements in tumor-on-a-chip technology that are developed and used to understand the interaction of tumor cells with other surrounding cells, including immune cells, in the TME.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA,
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine Durham, NC 27703, USA
| |
Collapse
|
114
|
Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. BREAST CANCER-TARGETS AND THERAPY 2019; 11:53-69. [PMID: 30697064 PMCID: PMC6340364 DOI: 10.2147/bctt.s175360] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy has evolved dramatically with improved understanding of immune microenvironment and immunosurveillance. The immunogenicity of breast cancer is rather heterogeneous. Specific subtypes of breast cancer such as estrogen receptor (ER)-negative, human EGF receptor 2 (HER2)-positive, and triple-negative breast cancer (TNBC) have shown evidence of immunogenicity based on tumor–immune interactions. Several preclinical and clinical studies have explored the potential for immunotherapy to improve the clinical outcomes for different subtypes of breast cancer. This review describes the immune microenvironment of HER2-positive breast cancer and summarizes recent clinical advances of immunotherapeutic treatments in this breast cancer subtype. The review provides rationale and ongoing clinical evidence to the use of immune checkpoint inhibitors, therapeutic vaccines, and adoptive T cell immunotherapy in breast cancer. In addition, the present paper describes the most relevant clinical progress of strategies for the combination of immunotherapy with standard treatment modalities in HER2-positive breast cancer including chemotherapy, targeted therapy, and radiotherapy.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan,
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rami J Yaghan
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
115
|
Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, Porter DL, Maloney DG, Grupp SA, Mackall CL, June CH, Bishop MR. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 2018; 6:137. [PMID: 30514386 PMCID: PMC6278156 DOI: 10.1186/s40425-018-0460-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapies - adoptive T cell therapies that have been genetically engineered for a new antigen-specificity - have displayed significant success in treating patients with hematologic malignancies, leading to three recent US Food and Drug Administration approvals. Based on the promise generated from these successes, the field is rapidly evolving to include new disease indications and CAR designs, while simultaneously reviewing and optimizing toxicity and management protocols. As such, this review provides expert perspective on the significance and clinical considerations of CAR T cell therapies in order to provide timely information to clinicians about this revolutionary new therapeutic class.
Collapse
Affiliation(s)
| | | | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcela V Maus
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - David L Porter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephan A Grupp
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Oncology, Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Crystal L Mackall
- Cancer Immunology and Immunotherapy Program, Stanford University, Stanford, CA, USA
| | - Carl H June
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Bishop
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA. .,The University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
116
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
117
|
García-Guerrero E, Sánchez-Abarca LI, Domingo E, Ramos TL, Bejarano-García JA, Gonzalez-Campos JA, Caballero-Velázquez T, Pérez-Simón JA. Selection of Tumor-Specific Cytotoxic T Lymphocytes in Acute Myeloid Leukemia Patients Through the Identification of T-Cells Capable to Establish Stable Interactions With the Leukemic Cells: "Doublet Technology". Front Immunol 2018; 9:1971. [PMID: 30233577 PMCID: PMC6129592 DOI: 10.3389/fimmu.2018.01971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023] Open
Abstract
The relevance of the immune system in cancer has long been studied. Autologous adoptive T cell therapies, based on the use of tumor infiltrating lymphocytes (TILs), have made great progress in recent years for the treatment of solid tumors, especially melanoma. However, further work is needed to isolate tumor-reactive T cells among patients diagnosed with hematologic malignancies. The dynamics of the interaction between T cells and antigen presenting cells (APC) dictate the quality of the immune responses. While stable joints between target cells and T lymphocytes lead to the induction of T cell activation and immune response, brief contacts contribute to the induction of immune-tolerance. Taking advantage of the strong interaction between target cell and activated T-cells, we show the feasibility to identify and isolate tumor-specific cytotoxic T lymphocytes (CTLs) from acute myeloid leukemia (AML) patients by flow cytometry. Using this technology, CTLs bound through T cell receptor (TCR) to tumor cells can be identified in peripheral blood and bone marrow and subsequently selected and isolated by FACS-based cell sorting. These CTLs display higher percentage of effector cells and marked cytotoxic activity against AML blasts. In conclusion, we have developed a new procedure to identify and select specific cytotoxic T cells in patients diagnosed with acute myeloid leukemia.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Luís I Sánchez-Abarca
- Servicio de Hematología, Instituto de Investigación Biomédica de Salamanca (IBSAL) - Hospital Universitario de Salamanca, Salamanca, Spain
| | - Esther Domingo
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Teresa L Ramos
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose A Bejarano-García
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose A Gonzalez-Campos
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose A Pérez-Simón
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
118
|
Eckert F, Schaedle P, Zips D, Schmid-Horch B, Rammensee HG, Gani C, Gouttefangeas C. Impact of curative radiotherapy on the immune status of patients with localized prostate cancer. Oncoimmunology 2018; 7:e1496881. [PMID: 30393582 PMCID: PMC6208674 DOI: 10.1080/2162402x.2018.1496881] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Combination of radiotherapy with immunotherapy has become an attractive concept for the treatment of cancer. The objective of this study was to assess the effect of curative, normofractionated radiotherapy on peripheral immune lymphocytes in prostate cancer patients, in order to propose a rationale for scheduling of normofractionated radiotherapy with T-cell based immunotherapy. In a prospective study (clinicaltrials.gov: NCT01376674), eighteen patients with localized prostate cancer were treated with radiotherapy with or without hormonal therapy. Irradiation volumes encompassed prostate and, in select cases, elective pelvic nodal regions. Blood samples were collected from all patients before, during, and after radiotherapy, as well as from 6 healthy individuals as control. Normofractionated radiotherapy of prostate cancer over eight weeks had a significant influence on the systemic immune status of patients compared to healthy controls. Absolute leukocyte and lymphocyte counts decreased during treatment as did peripheral blood immune subsets (T cells, CD8+ and naïve CD4+ T cells, B cells). Regulatory T cells and NK cells increased. Proliferation of all immune cells except regulatory T cells increased during RT. Most of these changes were transient. Importantly, the functionality of T lymphocytes and the frequency of antigen-specific CD8+ T cells were not affected during therapy. Our data indicate that combination of normofractionated radiotherapy with immunotherapy might be feasible for patients with prostate cancer. Conceptually, beginning with immunotherapy early during the course of radiotherapy could be beneficial, as the percentage of T cells is highest, the percentage of regulatory T cells is lowest, and as the effects of radiotherapy did not completely subside 3 months after end of radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Philipp Schaedle
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Department for Internal Medicine I, Marienhospital Stuttgart, Stuttgart, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Barbara Schmid-Horch
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tuebingen, Eberhard-Karls-University, Tuebingen, Germany
| | - Hans-Georg Rammensee
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Cécile Gouttefangeas
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
119
|
Marshall HT, Djamgoz MBA. Immuno-Oncology: Emerging Targets and Combination Therapies. Front Oncol 2018; 8:315. [PMID: 30191140 PMCID: PMC6115503 DOI: 10.3389/fonc.2018.00315] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Host immunity recognizes and eliminates most early tumor cells, yet immunological checkpoints, exemplified by CTLA-4, PD-1, and PD-L1, pose a significant obstacle to effective antitumor immune responses. T-lymphocyte co-inhibitory pathways influence intensity, inflammation and duration of antitumor immunity. However, tumors and their immunosuppressive microenvironments exploit them to evade immune destruction. Recent PD-1 checkpoint inhibitors yielded unprecedented efficacies and durable responses across advanced-stage melanoma, showcasing potential to replace conventional radiotherapy regimens. Neverthless, many clinical problems remain in terms of efficacy, patient-to-patient variability, and undesirable outcomes and side effects. In this review, we evaluate recent advances in the immuno-oncology field and discuss ways forward. First, we give an overview of current immunotherapy modalities, involving mainy single agents, including inhibitor monoclonal antibodies (mAbs) targeting T-cell checkpoints of PD-1 and CTLA-4. However, neoantigen recognition alone cannot eliminate tumors effectively in vivo given their inherent complex micro-environment, heterogeneous nature and stemness. Then, based mainly upon CTLA-4 and PD-1 checkpoint inhibitors as a "backbone," we cover a range of emerging ("second-generation") therapies incorporating other immunotherapies or non-immune based strategies in synergistic combination. These include targeted therapies such as tyrosine kinase inhibitors, co-stimulatory mAbs, bifunctional agents, epigenetic modulators (such as inhibitors of histone deacetylases or DNA methyltransferase), vaccines, adoptive-T-cell therapy, nanoparticles, oncolytic viruses, and even synthetic "gene circuits." A number of novel immunotherapy co-targets in pre-clinical development are also introduced. The latter include metabolic components, exosomes and ion channels. We discuss in some detail of the personalization of immunotherapy essential for ultimate maximization of clinical outcomes. Finally, we outline possible future technical and conceptual developments including realistic in vitro and in vivo models and inputs from physics, engineering, and artificial intelligence. We conclude that the breadth and quality of immunotherapeutic approaches and the types of cancers that can be treated will increase significantly in the foreseeable future.
Collapse
Affiliation(s)
- Henry T Marshall
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mustafa B A Djamgoz
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
120
|
Comiskey MC, Dallos MC, Drake CG. Immunotherapy in Prostate Cancer: Teaching an Old Dog New Tricks. Curr Oncol Rep 2018; 20:75. [DOI: 10.1007/s11912-018-0712-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
121
|
Wahid B, Ali A, Rafique S, Waqar M, Wasim M, Wahid K, Idrees M. An overview of cancer immunotherapeutic strategies. Immunotherapy 2018; 10:999-1010. [PMID: 30149763 DOI: 10.2217/imt-2018-0002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Artificially boosting body's immune response is one of the most exciting, effective and promising advancements in the treatment of cancers. Cancer immunotherapeutics consist of variety of treatment approaches such as cytokine therapy, adoptive T-cell transfer therapy, and antibodies that stimulate innate and adoptive immune responses. In addition to this, development of HPV vaccine has paved way toward the development of other cancer vaccines. Checkpoint blockade inhibitors, for example, anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte-associated antigen-4, chimeric antigen receptor T-cell therapy and monoclonal antibodies are emerging as other major breakthroughs that are highly effective against cancer. This review addresses the current status of immunotherapeutic strategies against cancer and provides baseline data for future research.
Collapse
Affiliation(s)
- Braira Wahid
- Genome Centre for Molecular Based Diagnostics & Research, Cl-25 Block B Al-Sudais Plaza, Abdalian Cooperative Society, Lahore, Pakistan
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Shazia Rafique
- Division of Molecular Virology & Diagnostics Center of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Waqar
- Genome Centre for Molecular Based Diagnostics & Research, Cl-25 Block B Al-Sudais Plaza, Abdalian Cooperative Society, Lahore, Pakistan
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Wasim
- Department of Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Khansa Wahid
- Department of Chemistry, Lahore College for Women University, Lahore Pakistan
| | - Muhammad Idrees
- Genome Centre for Molecular Based Diagnostics & Research, Cl-25 Block B Al-Sudais Plaza, Abdalian Cooperative Society, Lahore, Pakistan
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
- Division of Molecular Virology & Diagnostics Center of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
- Hazara University, Dhodial Campus, Mansehra, Khyber Pakhtoonkhwa Pakistan
| |
Collapse
|
122
|
Dong OM, Howard RM, Church R, Cottrell M, Forrest A, Innocenti F, Mosedale M, Kashuba A, Gonzalez D, Wiltshire T. Challenges and Solutions for Future Pharmacy Practice in the Era of Precision Medicine. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2018; 82:6652. [PMID: 30181675 PMCID: PMC6116878 DOI: 10.5688/ajpe6652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
As precision medicine research and its clinical applications continue to advance, it is critical for pharmacists to be involved in these developments to deliver optimal, tailored drug therapies for patients. To ensure pharmacists remain leaders in the field, the annual Pharmaceutical Sciences Conference convened by the University of North Carolina at Chapel Hill Eshelman School of Pharmacy focused on the role of pharmacy within precision medicine. This is a summary of the conference, highlighting the major challenges and solutions that will help advance individualized pharmacological methods within practice and research.
Collapse
Affiliation(s)
- Olivia M. Dong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel M. Howard
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel Church
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mackenzie Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan Forrest
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Angela Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
123
|
Evans ER, Bugga P, Asthana V, Drezek R. Metallic Nanoparticles for Cancer Immunotherapy. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:673-685. [PMID: 30197553 PMCID: PMC6124314 DOI: 10.1016/j.mattod.2017.11.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy, or the utilization of the body's immune system to attack tumor cells, has gained prominence over the past few decades as a viable cancer treatment strategy. Recently approved immunotherapeutics have conferred remission upon patients with previously bleak outcomes and have expanded the number of tools available to treat cancer. Nanoparticles -including polymeric, liposomal, and metallic formulations - naturally traffic to the spleen and lymph organs and the relevant immune cells therein, making them good candidates for delivery of immunotherapeutic agents. Metallic nanoparticle formulations in particular are advantageous because of their potential for dense surface functionalization and their capability for optical or heat based therapeutic methods. Many research groups have investigated the potential of nanoparticle-mediated delivery platforms to improve the efficacy of immunotherapies. Despite the significant preclinical successes demonstrated by many of these platforms over the last twenty years, few metallic nanoparticles have successfully entered clinical trials with none achieving FDA approval for cancer therapy. In this review, we will discuss preclinical research and clinical trials involving metallic nanoparticles (MNPs) for cancer immunotherapy applications and discuss the potential for clinical translation of MNPs.
Collapse
Affiliation(s)
- Emily Reiser Evans
- Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Pallavi Bugga
- Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Vishwaratn Asthana
- Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Rebekah Drezek
- Department of Bioengineering, Rice University, Houston, TX 77005, United States. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States
| |
Collapse
|
124
|
Truong DH, Tran TTP, Nguyen HT, Phung CD, Pham TT, Yong CS, Kim JO, Tran TH. Modulating T-cell-based cancer immunotherapy via particulate systems. J Drug Target 2018; 27:145-163. [PMID: 29741964 DOI: 10.1080/1061186x.2018.1474360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunotherapy holds tremendous promise for improving cancer treatment in which an appropriate stimulator may naturally trigger the immune system to control cancer. Up-to-date, adoptive T-cell therapy has received two new FDA approvals that provide great hope for some cancer patient groups. Nevertheless, expense and safety-related issues require further study to obtain insight into targets for efficient immunotherapy. The development of material science was largely responsible for providing a promising horizon to strengthen immunoengineering. In this review, we focus on T-cell characteristics in the context of the immune system against cancer and discuss several approaches of exploiting engineered particles to manipulate the responses of T cells and the tumour microenvironment.
Collapse
Affiliation(s)
- Duy Hieu Truong
- a Institute of Research and Development, Duy Tan University , Da Nang , Vietnam
| | - Thi Thu Phuong Tran
- b The Institute of Molecular Genetics of Montpellier, CNRS , Montpellier , France
| | - Hanh Thuy Nguyen
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Cao Dai Phung
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Tung Thanh Pham
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Chul Soon Yong
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Jong Oh Kim
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Tuan Hiep Tran
- d Department for Management of Science and Technology Development , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,e Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
125
|
Dehghanian F, Hojati Z, Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer. Comput Biol Med 2018; 99:76-84. [PMID: 29890510 DOI: 10.1016/j.compbiomed.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023]
Abstract
The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| | - Nazanin Hosseinkhan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zaynab Mousavian
- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
126
|
Immunotherapy in Non-Small Cell Lung Cancer Treatment: Current Status and the Role of Imaging. J Thorac Imaging 2018; 32:300-312. [PMID: 28786858 DOI: 10.1097/rti.0000000000000291] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer remains the leading cause of cancer-related mortality and is responsible for more deaths than breast, prostate, and colon cancer combined. Most patients are diagnosed with advanced disease at the time of presentation, and treatment options have traditionally included surgery, chemotherapy, and/or radiation. However, significant advances in the molecular characterization of lung cancer have led to the creation of effective immunotherapies that assist in the recognition of cancer as foreign by the host immune system, stimulate the immune system, and relieve the inhibition that allows tumor growth and spread. Extensive experience with the immunomodulatory monoclonal antibody ipilimumab has demonstrated that unique responses may be seen with immunotherapies that are not adequately captured by traditional response criteria such as the World Health Organization criteria and Response Evaluation Criteria in Solid Tumors (RECIST). Consequently, several modified criteria have been developed to evaluate patients treated with immunotherapy, including immune-related response criteria, immune-related RECIST, and immune RECIST. Finally, patients undergoing immunotherapy may develop a wide variety of immune-related adverse events with which the radiologist must be familiar. In this article, we present the fundamental concepts behind immunotherapy, specific agents currently approved for the treatment of lung cancer, and immune-related adverse events. The role of imaging in the evaluation of these patients will also be discussed, including the general principles of treatment response evaluation, specific response criteria adopted with these agents, including immune-related response criteria, immune-related RECIST, and immune RECIST, and the imaging of immune-related adverse events.
Collapse
|
127
|
Ma X, Bi E, Huang C, Lu Y, Xue G, Guo X, Wang A, Yang M, Qian J, Dong C, Yi Q. Cholesterol negatively regulates IL-9-producing CD8 + T cell differentiation and antitumor activity. J Exp Med 2018; 215:1555-1569. [PMID: 29743292 PMCID: PMC5987919 DOI: 10.1084/jem.20171576] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
CD8+ T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8+ or CD4+ T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function.
Collapse
Affiliation(s)
- Xingzhe Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Enguang Bi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Chunjian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yong Lu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Gang Xue
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Guo
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Aibo Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Maojie Yang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Jianfei Qian
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
128
|
Lowe KL, Mackall CL, Norry E, Amado R, Jakobsen BK, Binder G. Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Ther 2018; 25:176-191. [DOI: 10.1038/s41434-018-0019-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
|
129
|
Pushkin AA, Burda YE, Sevast’yanov AA, Kulikovskiy VF, Burda SY, Golubinskaya PA, Zvyagina AK, Kulyushina NV. Renal cell carcinoma drug and cell therapy: today and tomorrow. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.25251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Today, considerable progress in the renal cell carcinoma (RCC) treatment has been made due to development of targeted and immunotherapeutic approaches to the RCC treatment, especially in metastasising carcinoma. In the early stages of RCC, it is possible to use partial or total surgical nephrectomy, but in metastases development, the range of efficient treatment methods is dramatically limited. Appearance of targeted drugs like PD-1 and CTLA-4 receptors and their ligands’ inhibitors in clinical practice has significantly increased the total survival rate of patients with renal cell carcinoma. Emergence of adoptive cell therapy has opened new possibilities and prospects in RCC treatment. Previously activated in vitro cells are used there, which provides antineoplastic activity. For example, it could be antigen-specific cytotoxic T-lymphocytes (CTL), lymphokine-activated natural killers (LAK-NK-cells) and tumour-infiltrating lymphocytes (TILs). In this review, the authors specified the main molecular markers, associated with RCC; and signalling pathways (VEGFR- and EGFR-signalling pathway), which directly take part in carcinogenesis. The paper also looks at clinically applicable targeted immune drugs and the principle of their effect on tumorous cells. Besides, modern clinical studies of cell drugs have been considered. At the moment, there are a number of variants of targeted and immune drugs for the metastatic RCC treatment. Patients have no opportunity to use all the available agents because of their cost and toxicity level. For the most efficient treatment of patients with diagnosed metastatic RCC, it is necessarily to carry out risk stratification and prognostic factors for the response to treatment.
Collapse
|
130
|
Antunes DA, Devaurs D, Moll M, Lizée G, Kavraki LE. General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept. Sci Rep 2018. [PMID: 29531253 PMCID: PMC5847594 DOI: 10.1038/s41598-018-22173-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The class I major histocompatibility complex (MHC) is capable of binding peptides derived from intracellular proteins and displaying them at the cell surface. The recognition of these peptide-MHC (pMHC) complexes by T-cells is the cornerstone of cellular immunity, enabling the elimination of infected or tumoral cells. T-cell-based immunotherapies against cancer, which leverage this mechanism, can greatly benefit from structural analyses of pMHC complexes. Several attempts have been made to use molecular docking for such analyses, but pMHC structure remains too challenging for even state-of-the-art docking tools. To overcome these limitations, we describe the use of an incremental meta-docking approach for structural prediction of pMHC complexes. Previous methods applied in this context used specific constraints to reduce the complexity of this prediction problem, at the expense of generality. Our strategy makes no assumption and can potentially be used to predict binding modes for any pMHC complex. Our method has been tested in a re-docking experiment, reproducing the binding modes of 25 pMHC complexes whose crystal structures are available. This study is a proof of concept that incremental docking strategies can lead to general geometry prediction of pMHC complexes, with potential applications for immunotherapy against cancer or infectious diseases.
Collapse
Affiliation(s)
- Dinler A Antunes
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Didier Devaurs
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Mark Moll
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Gregory Lizée
- Department of Melanoma Medical Oncology - Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
131
|
Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018; 127:208-221. [PMID: 28939379 DOI: 10.1016/j.addr.2017.09.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
Melanoma derived from melanocytes is the most aggressive genre of skin cancer. Although the considerable advancement in the study of human cancer biology and drug discovery, most advanced melanoma patients are inevitably unable to be cured. With the emergence of nanotechnology, the use of nano-carriers is widely expected to alter the landscape of melanoma treatment. In this review, we will discuss melanoma biology, current treatment options, mechanisms behind drug resistance, and nano-based solutions for effective anti-cancer therapy, followed by challenges and perspectives in both pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
132
|
Son B, Lee S, Youn H, Kim E, Kim W, Youn B. The role of tumor microenvironment in therapeutic resistance. Oncotarget 2018; 8:3933-3945. [PMID: 27965469 PMCID: PMC5354804 DOI: 10.18632/oncotarget.13907] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer cells undergo unlimited progression and survival owing to activation of oncogenes. However, support of the tumor microenvironment is essential to the formation of clinically relevant tumors. Recent evidence indicates that the tumor microenvironment is a critical regulator of immune escape, progression, and distant metastasis of cancer. Moreover, the tumor microenvironment is known to be involved in acquired resistance of tumors to various therapies. Despite significant advances in chemotherapy and radiotherapy, occurrence of therapeutic resistance leads to reduced efficacy. This review highlights myeloid cells, cancer-associated fibroblasts, and mesenchymal stem cells consisting of the tumor microenvironment, as well as the relevant signaling pathways that eventually render cancer cells to be therapeutically resistant.
Collapse
Affiliation(s)
- Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - EunGi Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Wanyeon Kim
- Integrative Graduate Program of Ship and Offshore Plant Technology for Ocean Energy Resource, Pusan National University, Busan 46241, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
133
|
Oh SJ, Cho H, Kim S, Noh KH, Song KH, Lee HJ, Woo SR, Kim S, Choi CH, Chung JY, Hewitt SM, Kim JH, Baek S, Lee KM, Yee C, Park HC, Kim TW. Targeting Cyclin D-CDK4/6 Sensitizes Immune-Refractory Cancer by Blocking the SCP3-NANOG Axis. Cancer Res 2018; 78:2638-2653. [PMID: 29437706 DOI: 10.1158/0008-5472.can-17-2325] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Immunoediting caused by antitumor immunity drives tumor cells to acquire refractory phenotypes. We demonstrated previously that tumor antigen-specific T cells edit these cells such that they become resistant to CTL killing and enrich NANOGhigh cancer stem cell-like cells. In this study, we show that synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, is overexpressed in immunoedited cells and upregulates NANOG by hyperactivating the cyclin D1-CDK4/6 axis. The SCP3-cyclin D1-CDK4/6 axis was preserved across various types of human cancer and correlated negatively with progression-free survival of cervical cancer patients. Targeting CDK4/6 with the inhibitor palbociclib reversed multiaggressive phenotypes of SCP3high immunoedited tumor cells and led to long-term control of the disease. Collectively, our findings establish a firm molecular link of multiaggressiveness among SCP3, NANOG, cyclin D1, and CDK4/6 and identify CDK4/6 inhibitors as actionable drugs for controlling SCP3high immune-refractory cancer.Significance: These findings reveal cyclin D1-CDK4/6 inhibition as an effective strategy for controlling SCP3high immune-refractroy cancer. Cancer Res; 78(10); 2638-53. ©2018 AACR.
Collapse
Affiliation(s)
- Se Jin Oh
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hanbyoul Cho
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suhyun Kim
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwon-Ho Song
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyo-Jung Lee
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Seon Rang Woo
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Suyeon Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungki Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Tae Woo Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
134
|
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9:115. [PMID: 29371595 PMCID: PMC5833710 DOI: 10.1038/s41419-017-0061-0] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell’s permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
135
|
Zych AO, Bajor M, Zagozdzon R. Application of Genome Editing Techniques in Immunology. Arch Immunol Ther Exp (Warsz) 2018; 66:289-298. [PMID: 29344676 PMCID: PMC6061149 DOI: 10.1007/s00005-018-0504-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/06/2018] [Indexed: 12/23/2022]
Abstract
The idea of using the effector immune cells to specifically fight cancer has recently evolved into an exciting concept of adoptive cell therapies. Indeed, genetically engineered T cells expressing on their surface recombinant, cancer-targeted receptors have been shown to induce promising response in oncological patients. However, in addition to exogenous expression of such receptors, there is also a need for disruption of certain genes in the immune cells to achieve more potent disease-targeted actions, to produce universal chimeric antigen receptor-based therapies or to study the signaling pathways in detail. In this review, we present novel genetic engineering methods, mainly TALEN and CRISPR/Cas9 systems, that can be used for such purposes. These unique techniques may contribute to creating more successful immune therapies against cancer or prospectively other diseases as well.
Collapse
Affiliation(s)
- Agata O Zych
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Bajor
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Radoslaw Zagozdzon
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006, Warsaw, Poland.
| |
Collapse
|
136
|
Karagiannis P, Nakauchi A, Yamanaka S. Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA J 2018; 1:6-14. [PMID: 33748517 PMCID: PMC7969850 DOI: 10.31662/jmaj.2018-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) describe somatic cells that have been reprogrammed to the pluripotent state. From a scientific perspective, their discovery has provided a molecular roadmap for turning on and off cell identities, effectively allowing any cell type to have its identity changed into any other cell type. They also act as a human model for understanding the development of every cell and organ in the body. In addition, because they can be prepared from patients, iPSCs offer a unique human model for studying disease development, including many diseases that are generally diagnosed at a late stage of their development. These models have provided new insights on the pathogenesis and new targets to prevent or reverse the disease development process. Indeed, clinical studies on compounds based on drug screening hits in human iPSC disease models have begun. Because of their proliferation and differentiation capacity, iPSCs can also be used to prepare cells for transplantations, and related clinical studies using iPSC-based cell therapies are ongoing. The combination of iPSCs with other technologies or therapeutic strategies is expected to expand their medical benefits. In this review, we consider medical accomplishments based on iPSC research and future ones that can be anticipated.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ayaka Nakauchi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
137
|
Immunotherapeutics for the treatment of prostate cancer: a patent landscape based on key therapeutic mechanisms of actions. Pharm Pat Anal 2017; 7:47-57. [PMID: 29227196 DOI: 10.4155/ppa-2017-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The area of immunotherapeutics for the treatment of metastatic castrate-resistant prostate cancer has made significant progress since the autologous cell-based vaccine sipuleucel T became the first and to date only immunotherapy for its treatment. This review focuses on a broad patent landscaping exercise of this therapeutic area and considers if basing this landscaping on key mechanisms of action is appropriate to elicit the main patenting trends.
Collapse
|
138
|
Shen H, Sun T, Hoang HH, Burchfield JS, Hamilton GF, Mittendorf EA, Ferrari M. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Semin Immunol 2017; 34:114-122. [PMID: 28947107 PMCID: PMC5705528 DOI: 10.1016/j.smim.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies.
Collapse
Affiliation(s)
- Haifa Shen
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tong Sun
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Hanh H Hoang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Jana S Burchfield
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Gillian F Hamilton
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mauro Ferrari
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
139
|
Chiaravalli M, Reni M, O'Reilly EM. Pancreatic ductal adenocarcinoma: State-of-the-art 2017 and new therapeutic strategies. Cancer Treat Rev 2017; 60:32-43. [DOI: 10.1016/j.ctrv.2017.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
|
140
|
Antunes DA, Rigo MM, Freitas MV, Mendes MFA, Sinigaglia M, Lizée G, Kavraki LE, Selin LK, Cornberg M, Vieira GF. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Front Immunol 2017; 8:1210. [PMID: 29046675 PMCID: PMC5632759 DOI: 10.3389/fimmu.2017.01210] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.
Collapse
Affiliation(s)
- Dinler A Antunes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M Rigo
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratório de Imunologia Celular e Molecular, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Martiela V Freitas
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcus F A Mendes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marialva Sinigaglia
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gregory Lizée
- Lizée Lab, Department of Melanoma Medical Oncology - Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - Lydia E Kavraki
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Liisa K Selin
- Selin Lab, Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Markus Cornberg
- Cornberg Lab, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Gustavo F Vieira
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Porto Alegre, Brazil
| |
Collapse
|
141
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
142
|
Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol 2017; 13:1001-1015. [PMID: 28795649 DOI: 10.1080/1744666x.2017.1366315] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Cancer immunotherapy has evolved and is aimed at generating the efficacious therapeutic modality to enhance the specificity and power of the immune system to combat tumors. Areas covered: Current efforts in cancer immunotherapy fall into three main approaches. One approach is through the blockade of immune checkpoints, another approach is through adoptive cellular therapy, and the last approach is through vaccination. The goal of this review is to summarize the current understanding and status of cancer immunotherapy in these three categories. Expert commentary: We foresee the development of therapeutic protocols combining these approaches with each other or conventional therapies to achieve the most appropriate guideline for management of cancer.
Collapse
Affiliation(s)
- Hila Yousefi
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Endodontics, Dental Branch , Tehran Azad University , Tehran , Iran
| | - Jianda Yuan
- c Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Mahsa Keshavarz-Fathi
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,e Students' Scientific Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | | | - Nima Rezaei
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,h Network of Immunity in Infection , Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN) , Boston , MA , USA
| |
Collapse
|
143
|
Felgner S, Pawar V, Kocijancic D, Erhardt M, Weiss S. Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb Biotechnol 2017; 10:1074-1078. [PMID: 28771926 PMCID: PMC5609243 DOI: 10.1111/1751-7915.12787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023] Open
Abstract
‘You have cancer’ – a devastating diagnosis that still strikes patients hard. Despite substantial improvements of standard therapies over the years, there is still no general cure available. Here, we review the revival of an old concept – the use of bacteria as cancer therapeutics. Bacteria‐mediated tumor therapy has great potential to evolve into a powerful tool against malignant solid tumors.
Collapse
Affiliation(s)
- Sebastian Felgner
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Dino Kocijancic
- Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marc Erhardt
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
144
|
Mato AR, Thompson MC, Nabhan C, Svoboda J, Schuster SJ. Chimeric Antigen Receptor T-Cell Therapy for Chronic Lymphocytic Leukemia: A Narrative Review. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:852-856. [PMID: 28826693 DOI: 10.1016/j.clml.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
The treatment landscape for chronic lymphocytic leukemia (CLL) is changing rapidly. Novel targeted agents such as ibrutinib, venetoclax, and idelalisib have had a significant effect on first-line, relapsed/refractory, and high-risk disease. Despite these advances, there are continuous needs for new treatment options, especially for patients in whom these novel therapies fail or those who cannot tolerate these novel therapies. In 2011, Porter et al reported the first successful use of autologous chimeric antigen receptor T cells (CARTs) directed against cluster of differentiation (CD)19 in 3 refractory CLL patients. Several groups have since shown success with similar approaches in various settings of CLL, including failure of ibrutinib treatment and in patients who relapse after allogeneic stem cell transplantation. Although CD19-directed CART therapy holds great promise in CLL and other diseases, many challenges and questions remain including: optimization of the lymphodepletion regimen before CART infusion, optimal dosing of CART, a determination of the most effective CART product (T-cell subset[s]) as well as the optimal combinations and therapeutic sequences, and managing treatment-associated adverse events. Clinical trials addressing these challenges are in process. In this timely review, we analyze current state of CART therapy in CLL and attempt answering remaining questions.
Collapse
MESH Headings
- Antigens, CD19/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Remission Induction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Treatment Outcome
Collapse
Affiliation(s)
- Anthony R Mato
- Center for Chronic Lymphocytic Leukemia, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA.
| | - Meghan C Thompson
- Center for Chronic Lymphocytic Leukemia, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Jakub Svoboda
- Center for Chronic Lymphocytic Leukemia, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen J Schuster
- Center for Chronic Lymphocytic Leukemia, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
145
|
Cho YH, Kim MS, Chung HS, Hwang EC. Novel immunotherapy in metastatic renal cell carcinoma. Investig Clin Urol 2017; 58:220-227. [PMID: 28681030 PMCID: PMC5494344 DOI: 10.4111/icu.2017.58.4.220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite the rapid development of therapeutic modalities for metastatic renal cell carcinoma (mRCC) over the past decade to include a number of targeted antiangiogenic therapies and traditional immunotherapy, such as high-dose interleukin-2 and interferon-α, mRCC continues to be associated with poor prognosis. Currently, several novel immunotherapy agents, such as cancer vaccines, adoptive cell therapy, and checkpoint inhibitors, such as programmed cell death-1 (PD-1 present on T cells), one of its ligands (PD-L1 present on antigen-presenting cells and tumor cells), and cytotoxic T-lymphocyte-associated protein-4 pathways, are being studied in mRCC and are showing promise as important steps in the management of this disease. This review summarizes the current landscape of standard and emerging immune therapeutics and other modalities for mRCC.
Collapse
Affiliation(s)
- Yang Hyun Cho
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Soo Kim
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
| | - Ho Seok Chung
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
146
|
|
147
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|
148
|
WEI SM, PAN HL, WANG L, YIN GL, ZHONG K, ZHOU Y, YANG SJ, XIN ZL. Combination therapy with dendritic cell-based vaccine and anti-CD69 antibody enhances antitumor efficacy in renal cell carcinoma-bearing mice. Turk J Med Sci 2017; 47:658-667. [DOI: 10.3906/sag-1601-198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 08/31/2016] [Indexed: 11/03/2022] Open
|
149
|
Sweis RF, Galsky MD. Emerging role of immunotherapy in urothelial carcinoma-Immunobiology/biomarkers. Urol Oncol 2016; 34:556-565. [PMID: 27836246 PMCID: PMC5709811 DOI: 10.1016/j.urolonc.2016.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
Urothelial bladder cancer is one of the first cancers recognized to be immunogenic since 40 years ago when the use of bacillus Calmette-Guerin was shown to prevent recurrence. Since that time, our knowledge of immune biology of cancer has expanded tremendously, and patients with bladder cancer finally have new active immunotherapeutic drugs on the horizon. Anti-programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) therapy has shown impressively durable responses in urothelial bladder cancer (UBC), but the reported response rates warrant improvement. To outline potential strategies to overcome tumor immune resistance, herein, we summarize current models of tumor immunology with a specific focus on bladder cancer. Recognition of tumor-specific antigens through cross-presentation, T-cell priming and activation, and trafficking of immune cells to the tumor microenvironment are some of the critical steps we now understand to be necessary for an effective antitumor immune response. Many of the involved steps are important targets for therapeutic interventions. As new immunotherapies are developed, predictive biomarkers would also be important to select patients most likely to respond and to better understand tumor biology. Several potential biomarkers are reviewed including PD-L1 expression, identification of T-cell-inflamed/non-T-cell-inflamed tumors based on immune gene expression, intrinsic molecular subtyping based on luminal/basal or the cancer genome atlas (TCGA) groups, T-cell receptor sequencing, and somatic mutational density. Even within the past few years, our current knowledge of immune biology has exploded, and we are highly optimistic about the future of UBC therapy that will be available to patients.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antigen-Presenting Cells/immunology
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Carcinoma, Transitional Cell/chemistry
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/immunology
- Carcinoma, Transitional Cell/therapy
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Humans
- Immunotherapy
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Molecular Targeted Therapy
- Mutation
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/immunology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Therapies, Investigational
- Tumor Escape/immunology
- Tumor Microenvironment/immunology
- Urinary Bladder Neoplasms/chemistry
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/therapy
Collapse
Affiliation(s)
- Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Matthew D Galsky
- Division of Hematology & Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
150
|
Shevtsov M, Multhoff G. Immunological and Translational Aspects of NK Cell-Based Antitumor Immunotherapies. Front Immunol 2016; 7:492. [PMID: 27891129 PMCID: PMC5104957 DOI: 10.3389/fimmu.2016.00492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells play a pivotal role in the first line of defense against cancer. NK cells that are deficient in CD3 and a clonal T cell receptor (TCR) can be subdivided into two major subtypes, CD56dimCD16+ cytotoxic and CD56brightCD16− immunoregulatory NK cells. Cytotoxic NK cells not only directly kill tumor cells without previous stimulation by cytotoxic effector molecules, such as perforin and granzymes or via death receptor interactions, but also act as regulatory cells for the immune system by secreting cytokines and chemokines. The aim of this review is to highlight therapeutic strategies utilizing autologous and allogenic NK cells, combinations of NK cells with monoclonal antibodies to induce antibody-dependent cellular cytotoxicity, or immune checkpoint inhibitors. Additionally, we discuss the use of chimeric antigen receptor-engineered NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Gabriele Multhoff
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Experimental Immune Biology, Institute for innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|