101
|
De Sarno F, Ponsiglione AM, Russo M, Grimaldi AM, Forte E, Netti PA, Torino E. Water-Mediated Nanostructures for Enhanced MRI: Impact of Water Dynamics on Relaxometric Properties of Gd-DTPA. Theranostics 2019; 9:1809-1824. [PMID: 31037140 PMCID: PMC6485182 DOI: 10.7150/thno.27313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, rational design of a new class of contrast agents (CAs), based on biopolymers (hydrogels), have received considerable attention in Magnetic Resonance Imaging (MRI) diagnostic field. Several strategies have been adopted to improve relaxivity without chemical modification of the commercial CAs, however, understanding the MRI enhancement mechanism remains a challenge. Methods: A multidisciplinary approach is used to highlight the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA. Changes in polymer conformation and thermodynamic interactions of CAs and polymers in aqueous solutions are detected by isothermal titration calorimetric (ITC) measurements and later, these interactions are investigated at the molecular level using NMR to better understand the involved phenomena. Water molecular dynamics of these systems is also studied using Differential Scanning Calorimetry (DSC). To observe relaxometric properties variations, we have monitored the MRI enhancement of the examined structures over all the experiments. The study of polymer-CA solutions reveals that thermodynamic interactions between biopolymers and CAs could be used to improve MRI Gd-based CA efficiency. High-Pressure Homogenization is used to obtain nanoparticles. Results: The effect of the hydration of the hydrogel structure on the relaxometric properties, called Hydrodenticity and its application to the nanomedicine field, is exploited. The explanation of this concept takes place through several key aspects underlying biopolymer-CA's interactions mediated by the water. In addition, Hydrodenticity is applied to develop Gadolinium-based polymer nanovectors with size around 200 nm with improved MRI relaxation time (10-times). Conclusions: The experimental results indicate that the entrapment of metal chelates in hydrogel nanostructures offers a versatile platform for developing different high performing CAs for disease diagnosis.
Collapse
Affiliation(s)
- Franca De Sarno
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Maria Russo
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | | | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
102
|
Svyatova AI, Kovtunov KV, Koptyug IV. Magnetic resonance imaging of catalytically relevant processes. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The main aim of this article is to provide a state-of-the-art review of the magnetic resonance imaging (MRI) utilization in heterogeneous catalysis. MRI is capable to provide very useful information about both living and nonliving objects in a noninvasive way. The studies of an internal heterogeneous reactor structure by MRI help to understand the mass transport and chemical processes inside the working catalytic reactor that can significantly improve its efficiency. However, one of the serious disadvantages of MRI is low sensitivity, and this obstacle dramatically limits possible MRI application. Fortunately, there are hyperpolarization methods that eliminate this problem. Parahydrogen-induced polarization approach, for instance, can increase the nuclear magnetic resonance signal intensity by four to five orders of magnitude; moreover, the obtained polarization can be stored in long-lived spin states and then transferred into an observable signal in MRI. An in-depth account of the studies on both thermal and hyperpolarized MRI for the investigation of heterogeneous catalytic processes is provided in this review as part of the special issue emphasizing the research performed to date in Russia/USSR.
Collapse
Affiliation(s)
- Alexandra I. Svyatova
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, Siberian Branch of the Russian Academy of Sciences (SB RAS) , Institutskaya St. 3A , Novosibirsk 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk 630090 , Russia
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, Siberian Branch of the Russian Academy of Sciences (SB RAS) , Institutskaya St. 3A , Novosibirsk 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk 630090 , Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, Siberian Branch of the Russian Academy of Sciences (SB RAS) , Institutskaya St. 3A , Novosibirsk 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk 630090 , Russia
| |
Collapse
|
103
|
Qiu Q, Wen Y, Dong H, Shen A, Zheng X, Li Y, Feng F. A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosis. Biomater Sci 2019; 7:5211-5220. [PMID: 31593202 DOI: 10.1039/c9bm01083a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thiol activated, imaging agents loaded BSA nanoparticles were remodeled onto thiol-containing neutrophil surface through disulfide–thiol exchange for potential diagnosis applications.
Collapse
Affiliation(s)
- Qiansai Qiu
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| | - Ya Wen
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- China
| | - Haiqing Dong
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- China
| | - Aijun Shen
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| | - Xingxing Zheng
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| | - Yongyong Li
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO)
- Tongji University School of Medicine
- Shanghai 200092
- China
| | - Feng Feng
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong 226361
- China
| |
Collapse
|
104
|
Alphandéry E. Iron oxide nanoparticles as multimodal imaging tools. RSC Adv 2019; 9:40577-40587. [PMID: 35542631 PMCID: PMC9076245 DOI: 10.1039/c9ra08612a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/10/2023] Open
Abstract
In medicine, obtaining simply a resolute and accurate image of an organ of interest is a real challenge.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Paris Sorbonne Université
- Muséum National d'Histoire Naturelle
- UMR CNRS7590
- IRD
- Institut de Minéralogie, de Physique des Matériaux et deCosmochimie
| |
Collapse
|
105
|
Pellico J, Ellis CM, Miller J, Davis JJ. Water gated contrast switching with polymer–silica hybrid nanoparticles. Chem Commun (Camb) 2019; 55:8540-8543. [DOI: 10.1039/c9cc03312b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The polymeric capping of a paramagnetically doped MSN enables the generation of high T1 MRI contrast which is highly pH responsive through a fully reversible change in polymer conformation.
Collapse
Affiliation(s)
- Juan Pellico
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | | | - Jack Miller
- Department of Physiology
- Anatomy & Genetics
- University of Oxford
- Oxford
- UK
| | | |
Collapse
|
106
|
Zheng XY, Pellico J, Khrapitchev AA, Sibson NR, Davis JJ. Dy-DOTA integrated mesoporous silica nanoparticles as promising ultrahigh field magnetic resonance imaging contrast agents. NANOSCALE 2018; 10:21041-21045. [PMID: 30427363 DOI: 10.1039/c8nr07198e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Integrating Dy-DOTA motifs into mesoporous silica nanoparticle scaffolds generates remarkable ultrahigh field T2 relaxivities for a well-defined and tailorable contrast agent, attributed to enhanced Curie outer-sphere contributions as supported by simulation.
Collapse
Affiliation(s)
- Xiao-Yu Zheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | | | | | |
Collapse
|