101
|
Siwawannapong K, Zhang R, Lei H, Jin Q, Tang W, Dong Z, Lai RY, Liu Z, Kamkaew A, Cheng L. Ultra -small Pyropheophorbide -a Nanodots for Near -infrared Fluorescence/Photoacoustic Imaging-guided Photodynamic Therapy. Am J Cancer Res 2020; 10:62-73. [PMID: 31903106 PMCID: PMC6929619 DOI: 10.7150/thno.35735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Nanoparticles (NPs) that are rapidly eliminated from the body offer great potential in clinical test. Renal excretion of small particles is preferable over other clearance pathways to minimize potential toxicity. Thus, there is a significant demand to prepare ultra-small theranostic agents with renal clearance behaviors. Method: In this work, we report a facile method to prepare NPs with ultra-small size that show renal clearable behavior for imaging-guided photodynamic therapy (PDT). Pyropheophorbide-a (Pa), a deep red photosensitizer was functionalized with polyethylene glycol (PEG) to obtain Pa-PEG. The prepared NPs formed ultra-small nanodots in aqueous solution and showed red-shifted absorbance that enabling efficient singlet oxygen generation upon light irradiation. Results: In vitro studies revealed good photodynamic therapy (PDT) effect of these Pa-PEG nanodots. Most of the cancer cells incubated with Pa-PEG nanodots were destroyed after being exposed to the irradiated light. Utilizing the optical properties of such Pa-PEG nanodots, in vivo photoacoustic (PA) and fluorescence (FL) imaging techniques were used to assess the optimal time for PDT treatment after intravenous (i.v.) injection of the nanodots. As monitored by the PA/FL dual-modal imaging, the nanodots could accumulate at the tumor site and reach the maximum concentration at 8 h post injection. Finally, the tumors on mice treated with Pa-PEG nanodots were effectively inhibited by PDT treatment. Moreover, Pa-PEG nanodots showed high PA/FL signals in kidneys implying these ultra-small nanodots could be excreted out of the body via renal clearance. Conclusion: We demonstrated the excellent properties of Pa-PEG nanodots that can be an in vivo imaging-guided PDT agent with renal clearable behavior for potential future clinical translation.
Collapse
|
102
|
Yu Q, Huang S, Wu Z, Zheng J, Chen X, Nie L. Label-Free Visualization of Early Cancer Hepatic Micrometastasis and Intraoperative Image-Guided Surgery by Photoacoustic Imaging. J Nucl Med 2019; 61:1079-1085. [PMID: 31806769 DOI: 10.2967/jnumed.119.233155] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
The detection of cancer micrometastasis for early diagnosis and treatment poses a great challenge for conventional imaging techniques. The aim of our study was to evaluate the performance of photoacoustic imaging (PAI) in detecting hepatic micrometastases from melanoma at a very early stage and in aiding tumor resection by intraoperative guidance. Methods: In vivo studies were performed by following protocols approved by the Ethical Committee for Animal Research at Xiamen University. First, a mouse model of B16 melanoma metastatic to the liver (n = 10) was established to study the development of micrometastases in vivo. Next, the mice were imaged by a scalable PAI instrument, ultrasound, 9.4-T high-resolution MRI, PET/CT, and bioluminescence imaging. PAI scans acquired with optical wavelengths of 680-850 nm were kept spectrally unmixed by using a linear least-squares method to differentiate various components. Differences in signal-to-background ratios among different modalities were determined with the 2-tailed paired t test. The diagnostic results were assessed with histologic examination. Excised liver samples from patients diagnosed with hepatic cancer were also examined to identify the tumor boundaries. Surgical removal of metastatic melanoma was precisely guided in vivo by the portable PAI system. Results: PAI was able to detect metastases as small as approximately 400 μm at a depth of up to 7 mm in vivo-a size that is smaller than can be detected with ultrasound and MRI. The tumor-to-liver ratio for PAI at 8 d (4.2 ± 0.2, n = 6) and 14 d (9.2 ± 0.4, n = 5) was significantly higher than for PET/CT (1.8 ± 0.1, n = 5, and 4.5 ± 0.2, n = 5, respectively; P < 0.001 for both). Functional PAI revealed dynamic oxygen saturation changes during tumor growth. The limit of detection was approximately 219 cells/μL in vitro. We successfully performed intraoperative PAI-guided surgery in vivo using the portable PAI system. Conclusion: Our findings offer a rapid and effective complementary clinical imaging application to noninvasively detect micrometastases and guide intraoperative resection.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Shanshan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Zhiyou Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jiadi Zheng
- Department of Neurosurgery, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen, China; and
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
103
|
Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904914. [PMID: 31696981 DOI: 10.1002/adma.201904914] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/04/2019] [Indexed: 05/06/2023]
Abstract
Immunogenic cell death (ICD) provides momentous theoretical principle for modern cancer immunotherapy. However, the currently available ICD inducers are still very limited and photosensitizer-based ones can hardly induce sufficient ICD to achieve satisfactory cancer immunotherapy by themselves. Herein, an organic photosensitizer (named TPE-DPA-TCyP) with a twisted molecular structure, strong aggregation-induced emission activity, and specific ability is reported for effectively inducing focused mitochondrial oxidative stress of cancer cells, which can serve as a much superior ICD inducer to the popularly used ones, including chlorin e6 (Ce6), pheophorbide A, and oxaliplatin. Furthermore, more effective in vivo ICD immunogenicity of TPE-DPA-TCyP than Ce6 is also demonstrated using a prophylactic tumor vaccination model. The underlying mechanism of the effectiveness and robustness of TPE-DPA-TCyP in inducing antitumor immunity and immune-memory effect in vivo is verified by immune cell analyses. This study thus reveals that inducing focused mitochondrial oxidative stress is a highly effective strategy to evoke abundant and large-scale ICD.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiang Ni
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Liang
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, 223002, Jiangsu, China
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| |
Collapse
|
104
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
105
|
Ferrauto G, Carniato F, Di Gregorio E, Botta M, Tei L. Photoacoustic ratiometric assessment of mitoxantrone release from theranostic ICG-conjugated mesoporous silica nanoparticles. NANOSCALE 2019; 11:18031-18036. [PMID: 31570915 DOI: 10.1039/c9nr06524e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A theranostic nanosystem based on indocyanine green (ICG) covalently conjugated to mesoporous silica nanoparticles (MSNs) loaded with the anticancer drug mitoxantrone (MTX) is proposed as an innovative photoacoustic probe. Taking advantage of the characteristic PA signal displayed by both ICG and MTX, a PA-ratiometric approach was applied to assess the drug release profile from the MSNs. After complete in vitro characterization of the nanoprobe, a proof-of-concept study has been carried out in tumour-bearing mice to evaluate in vivo its effectiveness for cancer imaging and chemotherapeutic agent delivery.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
106
|
Bouché M, Pühringer M, Iturmendi A, Amirshaghaghi A, Tsourkas A, Teasdale I, Cormode DP. Activatable Hybrid Polyphosphazene-AuNP Nanoprobe for ROS Detection by Bimodal PA/CT Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28648-28656. [PMID: 31321973 PMCID: PMC7039041 DOI: 10.1021/acsami.9b08386] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Overproduction of reactive oxygen species (ROS) is often related to inflammation or cancer and can cause tissue damage. Probes that have been previously reported to image ROS typically rely on imaging techniques that have low depth penetration in tissue, thus limiting their use to superficial disease sites. We report herein a novel formulation of hybrid nanogels loaded with gold nanoparticles (AuNP) to produce contrast for computed tomography (CT) and photoacoustics (PA), both being deep-tissue imaging techniques. The polyphosphazene polymer has been designed to selectively degrade upon ROS exposure, which triggers a switch-off of the PA signal by AuNP disassembly. This ROS-triggered degradation of the nanoprobes leads to a significant decrease in the PA contrast, thus allowing ratiometric ROS imaging by comparing the PA to CT signal. Furthermore, ROS imaging using these nanoprobes was applied to an in vitro model of inflammation, that is, LPS-stimulated macrophages, where ROS-triggered disassembly of the nanoprobe was confirmed via reduction of the PA signal. In summary, these hybrid nanoprobes are a novel responsive imaging agent that have the potential to image ROS overproduction by comparing PA to CT contrast.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, School of Engineering and
Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
| | - Manuel Pühringer
- Institute of Polymer Chemistry, Johannes Kepler
University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler
University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering
and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering
and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler
University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - David P. Cormode
- Department of Radiology, School of Engineering and
Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Department of Bioengineering, School of Engineering
and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Corresponding Author:. Phone: 215-615-4656. Fax:
240-368-8096
| |
Collapse
|
107
|
Higbee‐Dempsey E, Amirshaghaghi A, Case MJ, Miller J, Busch TM, Tsourkas A. Indocyanine Green–Coated Gold Nanoclusters for Photoacoustic Imaging and Photothermal Therapy. ADVANCED THERAPEUTICS 2019; 2. [DOI: 10.1002/adtp.201900088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elizabeth Higbee‐Dempsey
- Biochemistry and Molecular Biophysics Graduate GroupPerelman School of MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Ahmad Amirshaghaghi
- Department of BioengineeringUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Matthew J. Case
- College of MedicineMedical University of South Carolina Charleston SC 29425 USA
| | - Joann Miller
- Department of Radiation OncologyPerelman School of MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Theresa M. Busch
- Department of Radiation OncologyPerelman School of MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Andrew Tsourkas
- Department of BioengineeringUniversity of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
108
|
Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019; 20:E3490. [PMID: 31315232 PMCID: PMC6678689 DOI: 10.3390/ijms20143490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Biomedical imaging modalities in clinical practice have revolutionized oncology for several decades. State-of-the-art biomedical techniques allow visualizing both normal physiological and pathological architectures of the human body. The use of nanoparticles (NP) as contrast agents enabled visualization of refined contrast images with superior resolution, which assists clinicians in more accurate diagnoses and in planning appropriate therapy. These desirable features are due to the ability of NPs to carry high payloads (contrast agents or drugs), increased in vivo half-life, and disease-specific accumulation. We review the various NP-based interventions for treatments of deep-seated tumors, involving "seeing better" to precisely visualize early diagnosis and "going deeper" to activate selective therapeutics in situ.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Nai-Tzu Chen
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
109
|
Moore C, Chen F, Wang J, Jokerst JV. Listening for the therapeutic window: Advances in drug delivery utilizing photoacoustic imaging. Adv Drug Deliv Rev 2019; 144:78-89. [PMID: 31295522 PMCID: PMC6745251 DOI: 10.1016/j.addr.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The preclinical landscape of photoacoustic imaging has experienced tremendous growth in the past decade. This non-invasive imaging modality augments the spatiotemporal capabilities of ultrasound with optical contrast. While it has principally been investigated for diagnostic applications, many recent reports have described theranostic delivery systems and drug monitoring strategies using photoacoustics. Here, we provide an overview of the progress to date while highlighting work in three specific areas: theranostic nanoparticles, real-time drug monitoring, and stem cell ("living drug") tracking. Additionally, we discuss the challenges that remain to be addressed in this burgeoning field.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States
| | - Junxin Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|