1451
|
Bonadies N, Foster SD, Chan WI, Kvinlaug BT, Spensberger D, Dawson MA, Spooncer E, Whetton AD, Bannister AJ, Huntly BJ, Göttgens B. Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia. PLoS One 2011; 6:e16330. [PMID: 21297973 PMCID: PMC3030562 DOI: 10.1371/journal.pone.0016330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/12/2010] [Indexed: 11/27/2022] Open
Abstract
Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer.
Collapse
Affiliation(s)
- Nicolas Bonadies
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Samuel D. Foster
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Wai-In Chan
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Brynn T. Kvinlaug
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Dominik Spensberger
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Mark A. Dawson
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Elaine Spooncer
- School of Cancer and Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Anthony D. Whetton
- School of Cancer and Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew J. Bannister
- Gurdon Institute and Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Brian J. Huntly
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
1452
|
Abstract
Epigenetics is one of the most rapidly expanding fields in biology. The recent characterization of a human DNA methylome at single nucleotide resolution, the discovery of the CpG island shores, the finding of new histone variants and modifications, and the unveiling of genome-wide nucleosome positioning maps highlight the accelerating speed of discovery over the past two years. Increasing interest in epigenetics has been accompanied by technological breakthroughs that now make it possible to undertake large-scale epigenomic studies. These allow the mapping of epigenetic marks, such as DNA methylation, histone modifications and nucleosome positioning, which are critical for regulating gene and noncoding RNA expression. In turn, we are learning how aberrant placement of these epigenetic marks and mutations in the epigenetic machinery is involved in disease. Thus, a comprehensive understanding of epigenetic mechanisms, their interactions and alterations in health and disease, has become a priority in biomedical research.
Collapse
Affiliation(s)
- Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | | |
Collapse
|
1453
|
Ucar D, Hu Q, Tan K. Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering. Nucleic Acids Res 2011; 39:4063-75. [PMID: 21266477 PMCID: PMC3105409 DOI: 10.1093/nar/gkr016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chromatin modifications, such as post-translational modification of histone proteins and incorporation of histone variants, play an important role in regulating gene expression. Joint analyses of multiple histone modification maps are starting to reveal combinatorial patterns of modifications that are associated with functional DNA elements, providing support to the ‘histone code’ hypothesis. However, due to the lack of analytical methods, only a small number of chromatin modification patterns have been discovered so far. Here, we introduce a scalable subspace clustering algorithm, coherent and shifted bicluster identification (CoSBI), to exhaustively identify the set of combinatorial modification patterns across a given epigenome. Performance comparisons demonstrate that CoSBI can generate biclusters with higher intra-cluster coherency and biological relevance. We apply our algorithm to a compendium of 39 genome-wide chromatin modification maps in human CD4+ T cells. We identify 843 combinatorial patterns that recur at >0.1% of the genome. A total of 19 chromatin modifications are observed in the combinatorial patterns, 10 of which occur in more than half of the patterns. We also identify combinatorial modification signatures for eight classes of functional DNA elements. Application of CoSBI to epigenome maps of different cells and developmental stages will aid in understanding how chromatin structure helps regulate gene expression.
Collapse
Affiliation(s)
- Duygu Ucar
- Department of Internal Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | | | | |
Collapse
|
1454
|
Gardner KE, Allis CD, Strahl BD. Operating on chromatin, a colorful language where context matters. J Mol Biol 2011; 409:36-46. [PMID: 21272588 DOI: 10.1016/j.jmb.2011.01.040] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/07/2011] [Accepted: 01/16/2011] [Indexed: 11/24/2022]
Abstract
Histones, the fundamental packaging elements of eukaryotic DNA, are highly decorated with a diverse set of post-translational modifications (PTMs) that are recognized to govern the structure and function of chromatin. Ten years ago, we put forward the histone code hypothesis, which provided a model to explain how single and/or combinatorial PTMs on histones regulate the diverse activities associated with chromatin (e.g., gene transcription). At that time, there was a limited understanding of both the number of PTMs that occur on histones and the proteins that place, remove, and interpret them. Since the conception of this hypothesis, the field has witnessed an unprecedented advance in our understanding of the enzymes that contribute to the establishment of histone PTMs, as well as the diverse effector proteins that bind them. While debate continues as to whether histone PTMs truly constitute a strict "code," it is becoming clear that PTMs on histone proteins function in elaborate combinations to regulate the many activities associated with chromatin. In this special issue, we celebrate the 50th anniversary of the landmark publication of the lac operon with a review that provides a current view of the histone code hypothesis, the lessons we have learned over the last decade, and the technologies that will drive our understanding of histone PTMs forward in the future.
Collapse
Affiliation(s)
- Kathryn E Gardner
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
1455
|
Soshnikova N, Montavon T, Leleu M, Galjart N, Duboule D. Functional analysis of CTCF during mammalian limb development. Dev Cell 2011; 19:819-30. [PMID: 21145498 DOI: 10.1016/j.devcel.2010.11.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/17/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
CCCTC-binding factor (CTCF) is a nuclear zinc-finger protein that displays insulating activity in a variety of biological assays. For example, CTCF-binding sites have been suggested to isolate Hox gene clusters from neighboring transcriptional interference. We investigated this issue during limb development, where Hoxd genes must remain isolated from long-range effects to allow essential regulation within independent sub-groups. We used conditional Ctcf inactivation in incipient forelimbs and show that the overall pattern of Hoxd gene expression remains unchanged. Transcriptome analysis using tiling arrays covering chromosomes 2 and X confirmed the weak effect of CTCF depletion on global gene regulation. However, Ctcf deletion caused massive apoptosis, leading to a nearly complete loss of limb structure at a later stage. We conclude that, at least in this physiological context, rather than being an insulator, CTCF is required for cell survival via the direct transcriptional regulation of target genes critical for cellular homeostasis.
Collapse
Affiliation(s)
- Natalia Soshnikova
- Department of Zoology and Animal Biology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
1456
|
Voigt P, Reinberg D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 2011; 12:236-52. [PMID: 21243712 PMCID: PMC3760146 DOI: 10.1002/cbic.201000493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Indexed: 01/19/2023]
Abstract
Post-translational modifications (PTMs) on histone proteins have emerged as a central theme in the regulation of gene expression and other chromatin-associated processes. The discovery that certain protein domains can recognize acetylated and methylated lysine residues of histones has spurred efforts to uncover and characterize histone PTM-binding proteins. In this task, chromatin biology has strongly benefited from synthetic approaches stemming from chemical biology. Peptide-based techniques have been instrumental in identifying histone mark-binding proteins and analyzing their binding specificities. To explore how histone PTMs carry out their function in the context of chromatin, reconstituted systems based on recombinant histones carrying defined modifications are increasingly being used. They constitute promising tools to analyze mechanistic aspects of histone PTMs, including their role in transcription and their transmission in replication. In this review, we present strategies that have been used successfully to investigate the role of histone modifications, concepts that have emerged from their application, and their potential to contribute to current developments in the field.
Collapse
Affiliation(s)
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, Department of Biochemistry, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
1457
|
Levenstien MA, Klein RJ. Predicting functionally important SNP classes based on negative selection. BMC Bioinformatics 2011; 12:26. [PMID: 21247465 PMCID: PMC3033802 DOI: 10.1186/1471-2105-12-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 01/19/2011] [Indexed: 01/20/2023] Open
Abstract
Background With the advent of cost-effective genotyping technologies, genome-wide association studies allow researchers to examine hundreds of thousands of single nucleotide polymorphisms (SNPs) for association with human disease. Recently, many researchers applying this strategy have detected strong associations to disease with SNP markers that are either not in linkage disequilibrium with any nonsynonymous SNP or large distances from any annotated gene. In such cases, no well-established standard practice for effective SNP selection for follow-up studies exists. We aim to identify and prioritize groups of SNPs that are more likely to affect phenotypes in order to facilitate efficient SNP selection for follow-up studies. Results Based on the annotations available in the Ensembl database, we categorized SNPs in the human genome into classes related to regulatory attributes, such as epigenetic modifications and transcription factor binding sites, in addition to classes related to gene structure and cross-species conservation. Using the distribution of derived allele frequencies (DAF) within each class, we assessed the strength of natural selection for each class relative to the genome as a whole. We applied this DAF analysis to Perlegen resequenced SNPs genome-wide. Regulatory elements annotated by Ensembl such as specific histone methylation sites as well as classes defined by cross-species conservation showed negative selection in comparison to the genome as a whole. Conclusions These results highlight which annotated classes are under purifying selection, have putative functional importance, and contain SNPs that are strong candidates for follow-up studies after genome-wide association. Such SNP annotation may also be useful in interpreting results of whole-genome sequencing studies.
Collapse
Affiliation(s)
- Mark A Levenstien
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
1458
|
Singh NP, Madabhushi SR, Srivastava S, Senthilkumar R, Neeraja C, Khosla S, Mishra RK. Epigenetic profile of the euchromatic region of human Y chromosome. Nucleic Acids Res 2011; 39:3594-606. [PMID: 21252296 PMCID: PMC3089472 DOI: 10.1093/nar/gkq1342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genome of a multi-cellular organism acquires various functional capabilities in different cell types by means of distinct chromatin modifications and packaging states. Acquired during early development, the cell type-specific epigenotype is maintained by cellular memory mechanisms that involve epigenetic modifications. Here we present the epigenetic status of the euchromatic region of the human Y chromosome that has mostly been ignored in earlier whole genome epigenetic mapping studies. Using ChIP-on-chip approach, we mapped H3K9ac, H3K9me3, H3K27me3 modifications and CTCF binding sites while DNA methylation analysis of selected CpG islands was done using bisulfite sequencing. The global pattern of histone modifications observed on the Y chromosome reflects the functional state and evolutionary history of the sequences that constitute it. The combination of histone and DNA modifications, along with CTCF association in some cases, reveals the transcriptional potential of all protein coding genes including the sex-determining gene SRY and the oncogene TSPY. We also observe preferential association of histone marks with different tandem repeats, suggesting their importance in genome organization and gene regulation. Our results present the first large scale epigenetic analysis of the human Y chromosome and link a number of cis-elements to epigenetic regulatory mechanisms, enabling an understanding of such mechanisms in Y chromosome linked disorders.
Collapse
Affiliation(s)
- Narendra Pratap Singh
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | | | | | | | | | | | | |
Collapse
|
1459
|
Lee BK, Bhinge AA, Iyer VR. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res 2011; 39:3558-73. [PMID: 21247883 PMCID: PMC3089461 DOI: 10.1093/nar/gkq1313] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E2F family of transcription factors has important roles in cell cycle progression. E2F4 is an E2F family member that has been proposed to be primarily a repressor of transcription, but the scope of its binding activity and functions in transcriptional regulation is not fully known. We used ChIP sequencing (ChIP-seq) to identify around 16 000 E2F4 binding sites which potentially regulate 7346 downstream target genes with wide-ranging functions in DNA repair, cell cycle regulation, apoptosis, and other processes. While half of all E2F4 binding sites (56%) occurred near transcription start sites (TSSs), ∼20% of sites occurred more than 20 kb away from any annotated TSS. These distal sites showed histone modifications suggesting that E2F4 may function as a long-range regulator, which we confirmed by functional experimental assays on a subset. Overexpression of E2F4 and its transcriptional cofactors of the retinoblastoma (Rb) family and its binding partner DP-1 revealed that E2F4 acts as an activator as well as a repressor. E2F4 binding sites also occurred near regulatory elements for miRNAs such as let-7a and mir-17, suggestive of regulation of miRNAs by E2F4. Taken together, our genome-wide analysis provided evidence of versatile roles of E2F4 and insights into its functions.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
1460
|
Balakrishnan L, Milavetz B. Decoding the histone H4 lysine 20 methylation mark. Crit Rev Biochem Mol Biol 2011; 45:440-52. [PMID: 20735237 DOI: 10.3109/10409238.2010.504700] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular biology of histone H4 lysine 20 (H4K20) methylation, like many other post-translational modifications of histones, has been the subject of intensive interest in recent years. While there is an emerging consensus linking H4K20me1, H4K20me2, and H4K20me3 to transcription, repair, and constitutive heterochromatin, respectively, the specific details of these associations and the biological mechanisms by which the methylated histones are introduced and function are now the subject of active investigation. Although a large number of methylases capable of methylating H4K20 have been identified and characterized; there is no known demethylase of H4K20, though the search is ongoing. Additionally, many recent studies have been directed at understanding the role of methylated H4K20 and other histone modifications associated with different biological processes in the context of a combinatorial histone code. It seems likely that continued study of the methylation of H4K20 will yield extremely valuable insights concerning the regulation of histone modifications before and during cell division and the impact of these modifications on subsequent gene expression.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
1461
|
Gardner KE, Zhou L, Parra MA, Chen X, Strahl BD. Identification of lysine 37 of histone H2B as a novel site of methylation. PLoS One 2011; 6:e16244. [PMID: 21249157 PMCID: PMC3020972 DOI: 10.1371/journal.pone.0016244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022] Open
Abstract
Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function.
Collapse
Affiliation(s)
- Kathryn E. Gardner
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Li Zhou
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Parra
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xian Chen
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
1462
|
Rach EA, Winter DR, Benjamin AM, Corcoran DL, Ni T, Zhu J, Ohler U. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet 2011; 7:e1001274. [PMID: 21249180 PMCID: PMC3020932 DOI: 10.1371/journal.pgen.1001274] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 12/13/2010] [Indexed: 11/18/2022] Open
Abstract
The application of deep sequencing to map 5' capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: "focused" promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and "dispersed" promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5' capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.
Collapse
Affiliation(s)
- Elizabeth A. Rach
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Deborah R. Winter
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Ashlee M. Benjamin
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - David L. Corcoran
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ting Ni
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Jun Zhu
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Uwe Ohler
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Computer Science, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
1463
|
The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 2011; 117:3113-22. [PMID: 21228324 DOI: 10.1182/blood-2010-10-312926] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) persists by driving clonal proliferation of infected T lymphocytes. A high proviral load predisposes to HTLV-1-associated diseases. Yet the reasons for the variation within and between persons in the abundance of HTLV-1-infected clones remain unknown. We devised a high-throughput protocol to map the genomic location and quantify the abundance of > 91,000 unique insertion sites of the provirus from 61 HTLV-1(+) persons and > 2100 sites from in vitro infection. We show that a typical HTLV-1-infected host carries between 500 and 5000 unique insertion sites. We demonstrate that negative selection dominates during chronic infection, favoring establishment of proviruses integrated in transcriptionally silenced DNA: this selection is significantly stronger in asymptomatic carriers. We define a parameter, the oligoclonality index, to quantify clonality. The high proviral load characteristic of HTLV-1-associated inflammatory disease results from a larger number of unique insertion sites than in asymptomatic carriers and not, as previously thought, from a difference in clonality. The abundance of established HTLV-1 clones is determined by genomic features of the host DNA flanking the provirus. HTLV-1 clonal expansion in vivo is favored by orientation of the provirus in the same sense as the nearest host gene.
Collapse
|
1464
|
Kim YW, Kim A. Characterization of histone H3K27 modifications in the β-globin locus. Biochem Biophys Res Commun 2011; 405:210-5. [PMID: 21219849 DOI: 10.1016/j.bbrc.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 11/19/2022]
Abstract
Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human β-globin locus using the ChIP assay. The LCR of the human β-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the β-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, South Korea
| | | |
Collapse
|
1465
|
Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human gene promoters. Gene 2011; 475:39-48. [PMID: 21215797 DOI: 10.1016/j.gene.2010.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.
Collapse
Affiliation(s)
- Ahsan Huda
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
1466
|
Taberlay PC, Jones PA. DNA methylation and cancer. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:1-23. [PMID: 21141722 DOI: 10.1007/978-3-7643-8989-5_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA methylation acts in concert with other epigenetic mechanisms to regulate normal gene expression and facilitate chromatin organization within cells. Aberrant DNA methylation patterns are acquired during carcinogenic transformation; such events are often accompanied by alterations in chromatin structure at gene regulatory regions. The expression pattern of any given gene is achieved by interacting epigenetic mechanisms. First, the insertion of nucleosomes at transcriptional start sites prevents the binding of the transcriptional machinery and additional cofactors that initiate gene expression. Second, nucleosomes anchor all of the DNMT3A and DNMT3B methyltransferase proteins in the cell, which suggests a role for histone octamers in the establishment of DNA methylation patterns. During carcinogenesis, epigenetic switching and 5-methylcytosine reprogramming result in the aberrant hypermethylation of CpG islands, reducing epigenetic plasticity of critical developmental and tumor suppressor genes, rendering them unresponsive to normal stimuli. Here, we will discuss the importance of both established and novel molecular concepts that may underlie the role of DNA methylation in cancer.
Collapse
Affiliation(s)
- Phillippa C Taberlay
- Department of Urology, Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
1467
|
Abstract
T-cell development endows cells with a flexible range of effector differentiation options, superimposed on a stable core of lineage-specific gene expression that is maintained while access to alternative hematopoietic lineages is permanently renounced. This combination of features could be explained by environmentally responsive transcription factor mobilization overlaying an epigenetically stabilized base gene expression state. For example, "poising" of promoters could offer preferential access to T-cell genes, while repressive histone modifications and DNA methylation of non-T regulatory genes could be responsible for keeping non-T developmental options closed. Here, we critically review the evidence for the actual deployment of epigenetic marking to support the stable aspects of T-cell identity. Much of epigenetic marking is dynamically maintained or subject to rapid modification by local action of transcription factors. Repressive histone marks are used in gene-specific ways that do not fit a simple, developmental lineage-exclusion hierarchy. We argue that epigenetic analysis may achieve its greatest impact for illuminating regulatory biology when it is used to locate cis-regulatory elements by catching them in the act of mediating regulatory change.
Collapse
|
1468
|
Abstract
The nucleus is organized and compartmentalized into a highly ordered structure that contains DNA, RNA, chromosomal and histone proteins. The dynamics associated with these various components are responsible for making sure that the DNA is properly duplicated, genes are properly transcribed, and the genome is stabilized. It is no surprise that alterations in these various components are directly associated with pathologies like cancer. This Point of View focuses on the role the chromatin modification landscape, especially histone 3 lysine 9 methylation (H3K9me), and heterochromatin proteins (HP1) play in regulating DNA-templated processes, with a particular focus on their role at non-genic regions and effects on chromatin structure. These observations will be further extended to the role that alterations in chromatin landscape will contribute to diseases. This Point of View emphasizes that alterations in histone modification landscapes are not only relevant to transcription but have broad range implications in chromatin structure, nuclear architecture, cell cycle, genome stability and disease progression.
Collapse
Affiliation(s)
- Joshua C Black
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | |
Collapse
|
1469
|
Medvedovic J, Ebert A, Tagoh H, Busslinger M. Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol 2011; 111:179-206. [PMID: 21970955 DOI: 10.1016/b978-0-12-385991-4.00005-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The B cell lineage of the hematopoietic system is responsible for the generation of high-affinity antibodies, which provide humoral immunity for protection against foreign pathogens. B cell commitment and development depend on many transcription factors including Pax5. Here, we review the different functions of Pax5 in regulating various aspects of B lymphopoiesis. At B cell commitment, Pax5 restricts the developmental potential of lymphoid progenitors to the B cell pathway by repressing B-lineage-inappropriate genes, while it simultaneously promotes B cell development by activating B-lymphoid-specific genes. Pax5 thereby controls gene transcription by recruiting chromatin-remodeling, histone-modifying, and basal transcription factor complexes to its target genes. Moreover, Pax5 contributes to the diversity of the antibody repertoire by controlling V(H)-DJ(H) recombination by inducing contraction of the immunoglobulin heavy-chain locus in pro-B cells, which is likely mediated by PAIR elements in the 5' region of the V(H) gene cluster. Importantly, all mature B cell types depend on Pax5 for their differentiation and function. Pax5 thus controls the identity of B lymphocytes throughout B cell development. Consequently, conditional loss of Pax5 allows mature B cells from peripheral lymphoid organs to develop into functional T cells in the thymus via dedifferentiation to uncommitted progenitors in the bone marrow. Pax5 has also been implicated in human B cell malignancies because it can function as a haploinsufficient tumor suppressor or oncogenic translocation fusion protein in B cell precursor acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Jasna Medvedovic
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | | | | |
Collapse
|
1470
|
Abstract
Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.
Collapse
|
1471
|
Chromatin mechanisms regulating gene expression in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:12-25. [PMID: 21627039 DOI: 10.1007/978-1-4419-8216-2_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well established that the interplay of sequence-specific DNA binding proteins with chromatin components and the subsequent expression of differential genetic programs is the major determinant of developmental decisions. The last years have seen an explosion of basic research that has significantly enhanced our understanding of the basic principles of gene expression control. While many questions are still open, we are now at the stage where we can exploit this knowledge to address questions of how deregulated gene expression and aberrant chromatin programming contributes to disease processes. This chapter will give a basic introduction into the principles of epigenetics and the determinants of chromatin structure and will discuss the molecular mechanisms of aberrant gene regulation in blood cell diseases, such as inflammation and leukemia.
Collapse
|
1472
|
Abstract
Epigenetic mechanisms alter the structure of local chromosome domains to dynamically regulate gene expression by signalling and propagating transcriptional states. Nuclear receptors, a stimulus-inducible class of transcription factors, interact with chromatin to regulate transcription. To promote transcription, nuclear receptors interact with genomic regulatory elements that are epigenetically marked by modified histone tails, DNA methylation status, histone variants, chromatin accessibility and long-range interactions. Advances in throughput have allowed the profiling of regulatory factor activity on a genome-wide scale, with recent evidence from genomic analyses highlighting novel aspects of DNA-binding factor actions on chromatin. In the present review, the current knowledge of the mechanisms regulating nuclear receptor occupancy at cis-regulatory elements is discussed, with particular emphasis on the glucocorticoid, oestrogen and androgen receptors. Epigenetic regulation of genomic elements direct cell-specific regulatory factor binding and contribute to human variation in factor occupancy. Through regulating nuclear receptor activity, the epigenome is a critical checkpoint in nuclear receptor induced gene expression in health and disease.
Collapse
Affiliation(s)
- S C Biddie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| |
Collapse
|
1473
|
Cowper-Sal lari R, Cole MD, Karagas MR, Lupien M, Moore JH. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:513-26. [PMID: 21197657 DOI: 10.1002/wsbm.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The conceptual foundation of the genome-wide association study (GWAS) has advanced unchecked since its conception. A revision might seem premature as the potential of GWAS has not been fully realized. Multiple technical and practical limitations need to be overcome before GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper understanding of the genetic architecture of disease, warnings are being raised. The results compiled to date indicate that risk-associated variants lie predominantly in noncoding regions of the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets of rare variants underlying disease. The fear is that, even in its fulfillment, the current GWAS paradigm might be incapable of dissecting all kinds of phenotypes. In the following text, we review several initiatives that aim to overcome these limitations. The overarching theme of these studies is the inclusion of biological knowledge to both the analysis and interpretation of genotyping data. GWAS is uninformed of biology by design and although there is some virtue in its simplicity, it is also its most conspicuous deficiency. We propose a framework in which to integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide regulatory network (GWRN). By processing experimental data into networks, emerging data types based on chromatin immunoprecipitation are made computationally tractable. This will give GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our knowledge of human disease.
Collapse
Affiliation(s)
- Richard Cowper-Sal lari
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH, USA
| | | | | | | | | |
Collapse
|
1474
|
Sakabe NJ, Nobrega MA. Genome-wide maps of transcription regulatory elements. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:422-437. [PMID: 20836039 DOI: 10.1002/wsbm.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of eukaryotic genes with complex spatial-temporal regulation during development requires finer regulation than that of genes with simpler expression patterns. Given the high degree of conservation of the developmental gene set across distantly related phylogenetic taxa, it is argued that evolutionary variation has occurred by tweaking regulation of expression of developmental genes, rather than by changes in genes themselves. Complex regulation is often achieved through the coordinated action of transcription regulatory elements spread across the genome up to tens of kilobases from the promoters of their target genes. Disruption of regulatory elements has been implicated in several diseases and studies showing associations between disease traits and nonprotein coding variation hint for a role of regulatory elements as cause of diseases. Therefore, the identification and mapping of regulatory elements in genome scale is crucial to understand how gene expression is regulated, how organisms evolve, and to identify sequence variation causing diseases. Previously developed experimental techniques have been adapted to identify regulatory elements in genome scale and high-throughput, allowing a global view of their biological roles. We review methods as chromatin immunoprecipitation, DNase I hypersensitivity, and computational approaches and how they have been employed to generate maps of histone modifications, open chromatin, nucleosome positioning, and transcription factor binding regions in whole mammalian genomes. Given the importance of non-promoter elements in gene regulation and the recent explosion in the number of studies devoted to them, we focus on these elements and discuss the insights on gene regulation being obtained by these studies.
Collapse
Affiliation(s)
- Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
1475
|
Lai WKM, Buck MJ. ArchAlign: coordinate-free chromatin alignment reveals novel architectures. Genome Biol 2010; 11:R126. [PMID: 21182771 PMCID: PMC3046486 DOI: 10.1186/gb-2010-11-12-r126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/07/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022] Open
Abstract
To facilitate identification and characterization of genomic functional elements, we have developed a chromatin architecture alignment algorithm (ArchAlign). ArchAlign identifies shared chromatin structural patterns from high-resolution chromatin structural datasets derived from next-generation sequencing or tiled microarray approaches for user defined regions of interest. We validated ArchAlign using well characterized functional elements, and used it to explore the chromatin structural architecture at CTCF binding sites in the human genome. ArchAlign is freely available at http://www.acsu.buffalo.edu/~mjbuck/ArchAlign.html.
Collapse
Affiliation(s)
- William K M Lai
- Department of Biochemistry and the Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, 701 Ellicott St, Buffalo, New York 14203, USA.
| | | |
Collapse
|
1476
|
Sandve GK, Gundersen S, Rydbeck H, Glad IK, Holden L, Holden M, Liestøl K, Clancy T, Ferkingstad E, Johansen M, Nygaard V, Tøstesen E, Frigessi A, Hovig E. The Genomic HyperBrowser: inferential genomics at the sequence level. Genome Biol 2010; 11:R121. [PMID: 21182759 PMCID: PMC3046481 DOI: 10.1186/gb-2010-11-12-r121] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 11/16/2022] Open
Abstract
The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.
Collapse
Affiliation(s)
- Geir K Sandve
- Department of Informatics, University of Oslo, Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1477
|
Cattoglio C, Maruggi G, Bartholomae C, Malani N, Pellin D, Cocchiarella F, Magnani Z, Ciceri F, Ambrosi A, von Kalle C, Bushman FD, Bonini C, Schmidt M, Mavilio F, Recchia A. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion. PLoS One 2010; 5:e15688. [PMID: 21203516 PMCID: PMC3008730 DOI: 10.1371/journal.pone.0015688] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/22/2010] [Indexed: 01/20/2023] Open
Abstract
The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34+ hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.
Collapse
Affiliation(s)
- Claudia Cattoglio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Giulietta Maruggi
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Cynthia Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Danilo Pellin
- Center for Statistics in Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabienne Cocchiarella
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Zulma Magnani
- Experimental Hematology Unit, PIBIC, Division of Regenerative Medicine, Gene Therapy and Stem Cells, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Hematology Unit, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Alessandro Ambrosi
- Center for Statistics in Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chiara Bonini
- Experimental Hematology Unit, PIBIC, Division of Regenerative Medicine, Gene Therapy and Stem Cells, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fulvio Mavilio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Recchia
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| |
Collapse
|
1478
|
Liu T, Rechtsteiner A, Egelhofer TA, Vielle A, Latorre I, Cheung MS, Ercan S, Ikegami K, Jensen M, Kolasinska-Zwierz P, Rosenbaum H, Shin H, Taing S, Takasaki T, Iniguez AL, Desai A, Dernburg AF, Kimura H, Lieb JD, Ahringer J, Strome S, Liu XS. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res 2010; 21:227-36. [PMID: 21177964 DOI: 10.1101/gr.115519.110] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development.
Collapse
Affiliation(s)
- Tao Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1479
|
Ye T, Krebs AR, Choukrallah MA, Keime C, Plewniak F, Davidson I, Tora L. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res 2010; 39:e35. [PMID: 21177645 PMCID: PMC3064796 DOI: 10.1093/nar/gkq1287] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In a single experiment, chromatin immunoprecipitation combined with high throughput sequencing (ChIP-seq) provides genome-wide information about a given covalent histone modification or transcription factor occupancy. However, time efficient bioinformatics resources for extracting biological meaning out of these gigabyte-scale datasets are often a limiting factor for data interpretation by biologists. We created an integrated portable ChIP-seq data interpretation platform called seqMINER, with optimized performances for efficient handling of multiple genome-wide datasets. seqMINER allows comparison and integration of multiple ChIP-seq datasets and extraction of qualitative as well as quantitative information. seqMINER can handle the biological complexity of most experimental situations and proposes methods to the user for data classification according to the analysed features. In addition, through multiple graphical representations, seqMINER allows visualization and modelling of general as well as specific patterns in a given dataset. To demonstrate the efficiency of seqMINER, we have carried out a comprehensive analysis of genome-wide chromatin modification data in mouse embryonic stem cells to understand the global epigenetic landscape and its change through cellular differentiation.
Collapse
Affiliation(s)
- Tao Ye
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 596, Université de Strasbourg, BP 10142-67404 ILLKIRCH Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
1480
|
Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions. Mol Cell Biol 2010; 31:700-9. [PMID: 21173166 DOI: 10.1128/mcb.00740-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The interaction of architectural proteins such as the linker histone H1 and high-mobility-group (HMG) proteins with nucleosomes leads to changes in chromatin structure and histone modifications and alters the cellular transcription profile. The interaction of HMG proteins with chromatin is dynamic. However, it is not clear whether the proteins are constantly and randomly redistributed among all the nucleosomes or whether they preferentially associate with, and turn over at, specific regions in chromatin. To address this question, we examined the genome-wide distribution of the nucleosome binding protein HMGN1 and compared it to that of regulatory chromatin marks. We find that HMGN1 is not randomly distributed throughout the genome. Instead, the protein preferentially localizes to DNase I hypersensitive (HS) sites, promoters, functional enhancers, and transcription factor binding sites. Our results suggest that HMGN1 is part of the cellular machinery that modulates transcriptional fidelity by generating, maintaining, or preferentially interacting with specific sites in chromatin.
Collapse
|
1481
|
Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J 2010; 30:263-76. [PMID: 21169989 DOI: 10.1038/emboj.2010.314] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/11/2010] [Indexed: 11/08/2022] Open
Abstract
Naive T cells encountering their cognate antigen become activated and acquire the ability to proliferate in response to cytokines. Stat5 is an essential component in this response. We demonstrate that Stat5 cannot access DNA in naive T cells and acquires this ability only after T-cell receptor (TCR) engagement. The transition is not associated with changes in DNA methylation or global histone modification but rather chromatin decondensation. Condensation occurs during thymocyte development and proper condensation is dependent on kleisin-β of the condensin II complex. Our findings suggest that this unique chromatin condensation, which can affect interpretations of chromatin accessibility assays, is required for proper T-cell development and maintenance of the quiescent state. This mechanism ensures that cytokine driven proliferation can only occur in the context of TCR stimulation.
Collapse
|
1482
|
Markowetz F, Mulder KW, Airoldi EM, Lemischka IR, Troyanskaya OG. Mapping dynamic histone acetylation patterns to gene expression in nanog-depleted murine embryonic stem cells. PLoS Comput Biol 2010; 6:e1001034. [PMID: 21187909 PMCID: PMC3002996 DOI: 10.1371/journal.pcbi.1001034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/12/2010] [Indexed: 01/21/2023] Open
Abstract
Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate. Stem cell differentiation and the maintenance of self-renewal are intrinsically complex processes that require coordinated regulation on many different cellular levels. Here we focus on the relationship between two important layers and follow it over the first five days of differentiation. The first layer – measured by acetylation of one of the histone proteins – describes which parts of the DNA are tightly wrapped up and which lie open. The second layer describes the activity of genes measured by their mRNA expression. Using a wide array of statistical approaches we show that changes in histone acetylation are very predictive for gene expression and that the concordance between the two levels increases over time. Concentrating on genes central to the regulatory networks in embryonic stem cells we find that key genes show very high acetylation signal in the beginning that decreases quickly over time, indicating that they lie in initially open regions that are rapidly closing down. These results are a step forward to a better understanding of the complexities of the relationship between histone acetylation and gene expression, which will help to dissect the multilayer regulatory mechanisms that determine stem cell fate.
Collapse
Affiliation(s)
- Florian Markowetz
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (FM); (OGT)
| | - Klaas W. Mulder
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Edoardo M. Airoldi
- Department of Statistics and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ihor R. Lemischka
- Department of Gene and Cell Medicine and The Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (FM); (OGT)
| |
Collapse
|
1483
|
Sandgren J, Andersson R, Rada-Iglesias A, Enroth S, Akerstrom G, Dumanski JP, Komorowski J, Westin G, Wadelius C. Integrative epigenomic and genomic analysis of malignant pheochromocytoma. Exp Mol Med 2010; 42:484-502. [PMID: 20534969 DOI: 10.3858/emm.2010.42.7.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenomic and genomic changes affect gene expression and contribute to tumor development. The histone modifications trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) are epigenetic regulators associated to active and silenced genes, respectively and alterations of these modifications have been observed in cancer. Furthermore, genomic aberrations such as DNA copy number changes are common events in tumors. Pheochromocytoma is a rare endocrine tumor of the adrenal gland that mostly occurs sporadic with unknown epigenetic/genetic cause. The majority of cases are benign. Here we aimed to combine the genome-wide profiling of H3K4me3 and H3K27me3, obtained by the ChIP-chip methodology, and DNA copy number data with global gene expression examination in a malignant pheochromocytoma sample. The integrated analysis of the tumor expression levels, in relation to normal adrenal medulla, indicated that either histone modifications or chromosomal alterations, or both, have great impact on the expression of a substantial fraction of the genes in the investigated sample. Candidate tumor suppressor genes identified with decreased expression, a H3K27me3 mark and/or in regions of deletion were for instance TGIF1, DSC3, TNFRSF10B, RASSF2, HOXA9, PTPRE and CDH11. More genes were found with increased expression, a H3K4me3 mark, and/or in regions of gain. Potential oncogenes detected among those were GNAS, INSM1, DOK5, ETV1, RET, NTRK1, IGF2, and the H3K27 trimethylase gene EZH2. Our approach to associate histone methylations and DNA copy number changes to gene expression revealed apparent impact on global gene transcription, and enabled the identification of candidate tumor genes for further exploration.
Collapse
Affiliation(s)
- Johanna Sandgren
- Department of Surgical Sciences, Uppsala University, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
1484
|
Kim KC, Kim HG, Roh TY, Park J, Jung KM, Lee JS, Choi SY, Kim SS, Choi BS. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency. Biochem Biophys Res Commun 2010; 404:646-51. [PMID: 21146497 DOI: 10.1016/j.bbrc.2010.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/05/2010] [Indexed: 12/17/2022]
Abstract
HIV-1 can establish a latent infection in memory CD4+T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56(Lck), ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56(Lck), ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.
Collapse
|
1485
|
Discovering cooperative relationships of chromatin modifications in human T cells based on a proposed closeness measure. PLoS One 2010; 5:e14219. [PMID: 21151929 PMCID: PMC2997069 DOI: 10.1371/journal.pone.0014219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/08/2010] [Indexed: 12/03/2022] Open
Abstract
Background Eukaryotic transcription is accompanied by combinatorial chromatin modifications that serve as functional epigenetic markers. Composition of chromatin modifications specifies histone codes that regulate the associated gene. Discovering novel chromatin regulatory relationships are of general interest. Methodology/Principal Findings Based on the premise that the interaction of chromatin modifications is hypothesized to influence CpG methylation, we present a closeness measure to characterize the regulatory interactions of epigenomic features. The closeness measure is applied to genome-wide CpG methylation and histone modification datasets in human CD4+T cells to select a subset of potential features. To uncover epigenomic and genomic patterns, CpG loci are clustered into nine modules associated with distinct chromatin and genomic signatures based on terms of biological function. We then performed Bayesian network inference to uncover inherent regulatory relationships from the feature selected closeness measure profile and all nine module-specific profiles respectively. The global and module-specific network exhibits topological proximity and modularity. We found that the regulatory patterns of chromatin modifications differ significantly across modules and that distinct patterns are related to specific transcriptional levels and biological function. DNA methylation and genomic features are found to have little regulatory function. The regulatory relationships were partly validated by literature reviews. We also used partial correlation analysis in other cells to verify novel regulatory relationships. Conclusions/Significance The interactions among chromatin modifications and genomic elements characterized by a closeness measure help elucidate cooperative patterns of chromatin modification in transcriptional regulation and help decipher complex histone codes.
Collapse
|
1486
|
Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SYR, Ge K. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2010; 30:249-62. [PMID: 21131905 DOI: 10.1038/emboj.2010.318] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/05/2010] [Indexed: 01/11/2023] Open
Abstract
Histone acetyltransferases (HATs) GCN5 and PCAF (GCN5/PCAF) and CBP and p300 (CBP/p300) are transcription co-activators. However, how these two distinct families of HATs regulate gene activation remains unclear. Here, we show deletion of GCN5/PCAF in cells specifically and dramatically reduces acetylation on histone H3K9 (H3K9ac) while deletion of CBP/p300 specifically and dramatically reduces acetylations on H3K18 and H3K27 (H3K18/27ac). A ligand for nuclear receptor (NR) PPARδ induces sequential enrichment of H3K18/27ac, RNA polymerase II (Pol II) and H3K9ac on PPARδ target gene Angptl4 promoter, which correlates with a robust Angptl4 expression. Inhibiting transcription elongation blocks ligand-induced H3K9ac, but not H3K18/27ac, on the Angptl4 promoter. Finally, we show GCN5/PCAF and GCN5/PCAF-mediated H3K9ac correlate with, but are surprisingly dispensable for, NR target gene activation. In contrast, CBP/p300 and their HAT activities are essential for ligand-induced Pol II recruitment on, and activation of, NR target genes. These results highlight the substrate and site specificities of HATs in cells, demonstrate the distinct roles of GCN5/PCAF- and CBP/p300-mediated histone acetylations in gene activation, and suggest an important role of CBP/p300-mediated H3K18/27ac in NR-dependent transcription.
Collapse
Affiliation(s)
- Qihuang Jin
- Nuclear Receptor Biology Section, CEB, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1487
|
Hebenstreit D, Gu M, Haider S, Turner DJ, Liò P, Teichmann SA. EpiChIP: gene-by-gene quantification of epigenetic modification levels. Nucleic Acids Res 2010; 39:e27. [PMID: 21131282 PMCID: PMC3061070 DOI: 10.1093/nar/gkq1226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The combination of chromatin immunoprecipitation with next-generation sequencing technology (ChIP-seq) is a powerful and increasingly popular method for mapping protein-DNA interactions in a genome-wide fashion. The conventional way of analyzing this data is to identify sequencing peaks along the chromosomes that are significantly higher than the read background. For histone modifications and other epigenetic marks, it is often preferable to find a characteristic region of enrichment in sequencing reads relative to gene annotations. For instance, many histone modifications are typically enriched around transcription start sites. Calculating the optimal window that describes this enrichment allows one to quantify modification levels for each individual gene. Using data sets for the H3K9/14ac histone modification in Th cells and an accompanying IgG control, we present an analysis strategy that alternates between single gene and global data distribution levels and allows a clear distinction between experimental background and signal. Curve fitting permits false discovery rate-based classification of genes as modified versus unmodified. We have developed a software package called EpiChIP that carries out this type of analysis, including integration with and visualization of gene expression data.
Collapse
|
1488
|
Abstract
PURPOSE OF REVIEW The purpose of review is to describe the recent advances in the field of human epigenetics. RECENT FINDINGS With the completion of the genome project in 2003, high expectations existed for the DNA sequence information to provide answers about the causative mutations for common diseases. However, this was not completely the case. Another interesting finding that resulted from the genome project was that the perceived level of complexity of humans was not accompanied with a relative increase in the number of genes when compared to 'lower species'. Epigenetics is able to provide answers to previously unanswered health-related questions and can explain differences in level of complexity between organisms. Epigenetic studies accomplished in the last few years have exposed a very complex multilayered regulatory mechanism that is able to answer previously puzzling questions in biology. SUMMARY Understanding and interpretation of the role for epigenetic modifications in the human genome has progressed rapidly over the past decade with the advancement of microarray-based and sequence-based technologies. The complex interaction between DNA methylation, histone modifications, protein complexes and microRNAs has become better appreciated in the context of both local and long range epigenetic control of transcription in both normal cellular differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.
| | | |
Collapse
|
1489
|
Young NL, Dimaggio PA, Garcia BA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 2010; 67:3983-4000. [PMID: 20683756 PMCID: PMC11115713 DOI: 10.1007/s00018-010-0475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
The physiological state of eukaryotic DNA is chromatin. Nucleosomes, which consist of DNA in complex with histones, are the fundamental unit of chromatin. The post-translational modifications (PTMs) of histones play a critical role in the control of gene transcription, epigenetics and other DNA-templated processes. It has been known for several years that these PTMs function in concert to allow for the storage and transduction of highly specific signals through combinations of modifications. This code, the combinatorial histone code, functions much like a bar code or combination lock providing the potential for massive information content. The capacity to directly measure these combinatorial histone codes has mostly been laborious and challenging, thus limiting efforts often to one or two samples. Recently, progress has been made in determining such information quickly, quantitatively and sensitively. Here we review both the historical and recent progress toward routine and rapid combinatorial histone code analysis.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, 415 Schultz Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
1490
|
Osipovich O, Oltz EM. Regulation of antigen receptor gene assembly by genetic-epigenetic crosstalk. Semin Immunol 2010; 22:313-22. [PMID: 20829065 PMCID: PMC2981692 DOI: 10.1016/j.smim.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/08/2010] [Indexed: 02/05/2023]
Abstract
Many aspects of gene function are coordinated by changes in the epigenome, which include dynamic revisions of chromatin modifications, genome packaging, subnuclear localization, and chromosome conformation. All of these mechanisms are used by developing lymphocytes to regulate the assembly of functional antigen receptor genes by V(D)J recombination. This somatic rearrangement of the genome must be tightly regulated to ensure proper B and T cell development and to avoid chromosomal translocations that cause lymphoid tumors. V(D)J recombination is controlled by a complex interplay between cis-acting regulatory elements that use transcription factors as liaisons to communicate with epigenetic pathways. Genetic-epigenetic crosstalk is a key strategy employed by precursor lymphocytes to modulate chromatin configurations at Ig and Tcr loci and thereby permit or deny access to a single V(D)J recombinase complex. This article describes our current knowledge of how genetic elements orchestrate crosstalk with epigenetic mechanisms to regulate recombinase accessibility via localized, regional, or long-range changes in chromatin.
Collapse
Affiliation(s)
- Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M. Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
1491
|
Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2010; 12:7-18. [PMID: 21116306 DOI: 10.1038/nrg2905] [Citation(s) in RCA: 833] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A succession of technological advances over the past decade have enabled researchers to chart maps of histone modifications and related chromatin structures with increasing accuracy, comprehensiveness and throughput. The resulting data sets highlight the interplay between chromatin and genome function, dynamic variations in chromatin structure across cellular conditions, and emerging roles for large-scale domains and higher-ordered chromatin organization. Here we review a selection of recent studies that have probed histone modifications and successive layers of chromatin structure in mammalian genomes, the patterns that have been identified and future directions for research.
Collapse
Affiliation(s)
- Vicky W Zhou
- Howard Hughes Medical Institute and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
1492
|
Santoni FA, Hartley O, Luban J. Deciphering the code for retroviral integration target site selection. PLoS Comput Biol 2010; 6:e1001008. [PMID: 21124862 PMCID: PMC2991247 DOI: 10.1371/journal.pcbi.1001008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/25/2010] [Indexed: 01/17/2023] Open
Abstract
Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses. When HIV-1, murine leukemia virus (MLV), or other retroviruses infect a cell, the virus generates a DNA copy of the viral RNA genome and ligates the cDNA within host chromosomal DNA. This integration reaction occurs at sites throughout the host cell genome, but little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by comparing the genome-wide binding sites for more than 60 factors with 14 retroviral integration datasets. We borrowed Precision-Recall methods from the Information Retrieval field for extracting information from highly skewed datasets such as these. For MLV and other gammaretroviruses, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. We generated a supermarker by combining high scoring markers. The supermarker localized within 2 kB of 75% of MLV proviruses and predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner. This study identified chromosomal features highly favored for retroviral integration. It also provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.
Collapse
Affiliation(s)
- Federico Andrea Santoni
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
- Center for Advanced Studies, Research, and Development in Sardinia, Pula, Italy
| | - Oliver Hartley
- Department of Structural Biology and Bioinformatics, University of Geneva, Geneva, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
1493
|
Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010; 107:21931-6. [PMID: 21106759 DOI: 10.1073/pnas.1016071107] [Citation(s) in RCA: 2921] [Impact Index Per Article: 208.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Developmental programs are controlled by transcription factors and chromatin regulators, which maintain specific gene expression programs through epigenetic modification of the genome. These regulatory events at enhancers contribute to the specific gene expression programs that determine cell state and the potential for differentiation into new cell types. Although enhancer elements are known to be associated with certain histone modifications and transcription factors, the relationship of these modifications to gene expression and developmental state has not been clearly defined. Here we interrogate the epigenetic landscape of enhancer elements in embryonic stem cells and several adult tissues in the mouse. We find that histone H3K27ac distinguishes active enhancers from inactive/poised enhancer elements containing H3K4me1 alone. This indicates that the amount of actively used enhancers is lower than previously anticipated. Furthermore, poised enhancer networks provide clues to unrealized developmental programs. Finally, we show that enhancers are reset during nuclear reprogramming.
Collapse
|
1494
|
Every methyl counts--epigenetic calculus. FEBS Lett 2010; 585:2001-7. [PMID: 21108946 DOI: 10.1016/j.febslet.2010.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/22/2022]
Abstract
Histone modifications play an important role in the formation of an epigenetic memory system that maintains cellular identity. Their complex patterns have been suggested to constitute a histone code, which encodes for specific forms of chromatin. According to the histone code hypothesis these specific patterns are passed on from one cell generation to the next. This enables cells to keep a specific gene expression pattern even in absence of the specific transcription factors that initiated the expression of lineage determining genes. The methylation of specific lysine residues within the histone tails plays a particularly important role in defining the histone modification pattern as mutations of the enzymes that catalyze the formation or the removal of methyl groups have severe effects on cellular physiology. Lysines can get mono-, di- or trimethylated, but the molecular function of the different modification states is still not fully understood. In the following review we will highlight recent data that try to tackle this question and discuss their potential impact for our understanding of the role of histone methylation in epigenetic inheritance.
Collapse
|
1495
|
Bhadhprasit W, Sakuma T, Kawasaki Y, Nemoto N. Hepatocyte nuclear factor 4α regulates expression of the mouse female-specific Cyp3a41 gene in the liver. Drug Metab Dispos 2010; 39:490-7. [PMID: 21088200 DOI: 10.1124/dmd.110.035980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CYP3A41 is a female-specific cytochrome P450 in mouse liver. A putative hepatocyte nuclear factor 4α (HNF4α)-binding site was found at -99/-87 in the promoter of Cyp3a41 by reporter assays performed in the hepatocytes of female mice. Cotransfection of an HNF4α expression plasmid significantly increased transcription of the reporter gene. Although electrophoretic mobility shift assays with liver nuclear extracts did not show a sex-related difference, chromatin immunoprecipitation (ChIP) assays showed that larger amounts of HNF4α bound to Cyp3a41 in female than in male mice. A relation between the amount of HNF4α on the Cyp3a41 gene and mRNA expression was observed in hepatic tissue sets, which differ in mRNA expression depending on the sex, age, or endocrine status of mice. The degree of histone-3-lysine-4 dimethylation and histone-3-lysine-27 trimethylation around the HNF4α-binding site was higher in females and males, respectively. Moreover, the ChIP assay indicated greater acetylation of histone-4-lysine-8 of the Cyp3a41 chromatin in females than in males. HNF4α plays an important role in the transcriptional activation of the Cyp3a41 gene, and a sex difference in chromatin structure may contribute to the female-specific expression of Cyp3a41 in the livers of mice.
Collapse
Affiliation(s)
- Wattanaporn Bhadhprasit
- Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | |
Collapse
|
1496
|
Abstract
Several lines of evidence suggest the involvement of disturbance in epigenetic processes in autoimmune disease. Most noteworthy is the global DNA hypomethylation seen in lupus. Epigenetic states in difference from genetic lesions are potentially reversible and hence candidates for pharmacological intervention. Potential targets for drug development are histone modification and DNA methylating and demethylating enzymes. The most advanced set of drugs in clinical development are histone deacetylase (HDAC) inhibitors. However, the prevalence of DNA hypomethylation in lupus suggests that we should shift our attention from HDAC inhibitors to DNA demethylation inhibitors. MBD2 was recently proposed to be involved in demethylation in T cells in lupus and is, therefore, a candidate target. Although this field is at its infancy, it carries great promise.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
1497
|
Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AMR, Davison V, O'Neill LP, Turner BM. Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 2010; 11:R110. [PMID: 21078160 PMCID: PMC3156949 DOI: 10.1186/gb-2010-11-11-r110] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/04/2010] [Accepted: 11/15/2010] [Indexed: 12/21/2022] Open
Abstract
Background Immunolabeling of metaphase chromosome spreads can map components of the human epigenome at the single cell level. Previously, there has been no systematic attempt to explore the potential of this approach for epigenomic mapping and thereby to complement approaches based on chromatin immunoprecipitation (ChIP) and sequencing technologies. Results By immunostaining and immunofluorescence microscopy, we have defined the distribution of selected histone modifications across metaphase chromosomes from normal human lymphoblastoid cells and constructed immunostained karyotypes. Histone modifications H3K9ac, H3K27ac and H3K4me3 are all located in the same set of sharply defined immunofluorescent bands, corresponding to 10- to 50-Mb genomic segments. Primary fibroblasts gave broadly the same banding pattern. Bands co-localize with regions relatively rich in genes and CpG islands. Staining intensity usually correlates with gene/CpG island content, but occasional exceptions suggest that other factors, such as transcription or SINE density, also contribute. H3K27me3, a mark associated with gene silencing, defines a set of bands that only occasionally overlap with gene-rich regions. Comparison of metaphase bands with histone modification levels across the interphase genome (ENCODE, ChIP-seq) shows a close correspondence for H3K4me3 and H3K27ac, but major differences for H3K27me3. Conclusions At metaphase the human genome is packaged as chromatin in which combinations of histone modifications distinguish distinct regions along the euchromatic chromosome arms. These regions reflect the high-level interphase distributions of some histone modifications, and may be involved in heritability of epigenetic states, but we also find evidence for extensive remodeling of the epigenome at mitosis.
Collapse
Affiliation(s)
- Edith Terrenoire
- Chromatin and Gene Expression Group, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
1498
|
Mercer TR, Wilhelm D, Dinger ME, Soldà G, Korbie DJ, Glazov EA, Truong V, Schwenke M, Simons C, Matthaei KI, Saint R, Koopman P, Mattick JS. Expression of distinct RNAs from 3' untranslated regions. Nucleic Acids Res 2010; 39:2393-403. [PMID: 21075793 PMCID: PMC3064787 DOI: 10.1093/nar/gkq1158] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3′ untranslated regions (3′UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3′UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3′UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3′UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3′UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3′UTRs, as well as caution in the use of 3′UTR sequence probes to analyze gene expression.
Collapse
Affiliation(s)
- Tim R Mercer
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1499
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2010. [DOI: 10.1002/med.20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1500
|
Reciprocal intronic and exonic histone modification regions in humans. Nat Struct Mol Biol 2010; 17:1495-9. [PMID: 21057525 PMCID: PMC3057557 DOI: 10.1038/nsmb.1924] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/08/2010] [Indexed: 12/12/2022]
Abstract
While much attention has been focused on chromatin at promoters and exons, human genes are mostly composed of intronic sequences. Analyzing published surveys of nucleosomes and 41 chromatin marks in humans, we identified histone modifications specifically associated with 5′ intronic sequences, distinguishable from promoter marks and bulk nucleosomes. These intronic marks were spatially reciprocal to H3K36me3, typically transitioning near internal exons. Several marks transitioned near bona fide exons, but not near nucleosomes at exon-like sequences. Thus, we interrogated splicing for a role in histone marking. Despite dramatic changes in regulated alternative splicing, histone marks were stable. Notably, these findings are consistent with a role for exon definition in influencing histone marks. In summary, we demonstrate that the location of many intragenic marks in humans can be distilled into a simple organizing principle: association with 5′ intronic or 3′ exonic regions.
Collapse
|