1501
|
Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, Low WC, Ohlfest JR. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 2006; 83:121-31. [PMID: 17077937 DOI: 10.1007/s11060-006-9265-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 09/11/2006] [Indexed: 01/23/2023]
Abstract
Mounting evidence suggests that gliomas are comprised of differentiated tumor cells and brain tumor stem cells (BTSCs). BTSCs account for a fraction of total tumor cells, yet are apparently the sole cells capable of tumor initiation and tumor renewal. BTSCs have been identified as the CD133-positive fraction of human glioma, whereas their CD133-negative daughter cells have limited proliferative ability and are not tumorogenic. It is well established that the bulk tumor mass escapes immune surveillance by multiple mechanisms, yet little is known about the immunogenicity of the CD133-positive fraction of the tumor mass. We investigated the immunogenicity of CD133-positive cells in two human astrocytoma and two glioblastoma multiforme samples. Flow cytometry analyses revealed that the majority of CD133-positive cells do not express detectable MHC I or natural killer (NK) cell activating ligands, which may render them resistant to adaptive and innate immune surveillance. Incubating CD133-positive cells in interferon gamma (INF-gamma) significantly increased the percentage of CD133-positive cells that expressed MHC I and NK cell ligands. Furthermore, pretreatment of CD133-positive cells with INF-gamma rendered them sensitive to NK cell-mediated lysis in vitro. There were no consistent differences in immunogenicity between the CD133-positive and CD133-negative cells in these experiments. We conclude that CD133-posistive and CD133-negative glioma cells may be similarly resistant to immune surveillance, but that INF-gamma may partially restore their immunogenicity and potentiate their lysis by NK cells.
Collapse
Affiliation(s)
- Anhua Wu
- Department of Neurosurgery, University of Minnesota Medical School, 3500B LRB/MTRF, Minneapolis, MN, 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
1502
|
Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO. The Wnt Signaling Receptor Lrp5 Is Required for Mammary Ductal Stem Cell Activity and Wnt1-induced Tumorigenesis. J Biol Chem 2006; 281:35081-7. [PMID: 16973609 DOI: 10.1074/jbc.m607571200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.
Collapse
Affiliation(s)
- Charlotta Lindvall
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | |
Collapse
|
1503
|
Abstract
Polycomb group (PcG) proteins are epigenetic gene silencers that are implicated in neoplastic development. Their oncogenic function might be associated with their well-established role in the maintenance of embryonic and adult stem cells. In this review, we discuss new insights into the possible mechanisms by which PcGs regulate cellular identity, and speculate how these functions might be relevant during tumorigenesis.
Collapse
Affiliation(s)
- Anke Sparmann
- Division of Molecular Genetics and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | |
Collapse
|
1504
|
Nazarenko I, Kristiansen G, Fonfara S, Guenther R, Gieseler C, Kemmner W, Schafer R, Petersen I, Sers C. H-REV107-1 stimulates growth in non-small cell lung carcinomas via the activation of mitogenic signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1427-39. [PMID: 17003497 PMCID: PMC1698850 DOI: 10.2353/ajpath.2006.051341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2006] [Indexed: 01/02/2023]
Abstract
H-REV107-1, a known member of the class II tumor suppressor gene family, is involved in the regulation of differentiation and survival. We analyzed H-REV107-1 in non-small cell lung carcinomas, in normal lung, and in immortalized and tumor-derived cell lines. Sixty-eight percent of lung tumors revealed positive H-REV107-1-specific staining. Furthermore, survival analysis demonstrated a significant association of cytoplasmic H-REV107-1 with decreased patient survival. This suggested that H-REV107-1, known as a tumor suppressor, plays a different role in non-small cell lung carcinomas. Knock-down of H-REV107-1 expression in lung carcinoma cells inhibited anchorage-dependent and anchorage-independent growth whereas overexpression of H-REV107-1 induced tumor cell proliferation. Consistent with results of the survival analysis, cytoplasmic localization of the protein was essential for this growth-inducing function. Analysis of signaling pathways potentially involved in this process demonstrated that overexpression of H-REV107-1 stimulated RAS-GTPase activity, ERK1,2 phosphorylation, and caveolin-1 expression in the cell lines analyzed. These results indicate that H-REV107-1 is deficient in its function as a tumor suppressor in non-small cell lung carcinomas and is required for proliferation and anchorage-independent growth in cells expressing high levels of the protein, thus contributing to tumor progression in a subset of non-small cell lung carcinomas.
Collapse
Affiliation(s)
- Irina Nazarenko
- Institute of Pathology, Charité Universitaetsmedizin Berlin Schumannstr. 20/21, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1505
|
Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12:1167-74. [PMID: 16998484 DOI: 10.1038/nm1483] [Citation(s) in RCA: 875] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 08/15/2006] [Indexed: 12/11/2022]
Abstract
The long-term survival of patients with acute myeloid leukemia (AML) is dismally poor. A permanent cure of AML requires elimination of leukemic stem cells (LSCs), the only cell type capable of initiating and maintaining the leukemic clonal hierarchy. We report a therapeutic approach using an activating monoclonal antibody directed to the adhesion molecule CD44. In vivo administration of this antibody to nonobese diabetic-severe combined immune-deficient mice transplanted with human AML markedly reduced leukemic repopulation. Absence of leukemia in serially transplanted mice demonstrated that AML LSCs are directly targeted. Mechanisms underlying this eradication included interference with transport to stem cell-supportive microenvironmental niches and alteration of AML-LSC fate, identifying CD44 as a key regulator of AML LSCs. The finding that AML LSCs require interaction with a niche to maintain their stem cell properties provides a therapeutic strategy to eliminate quiescent AML LSCs and may be applicable to other types of cancer stem cells.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/biosynthesis
- Animals
- Antibodies, Monoclonal/chemistry
- Antigens, CD34/biosynthesis
- Cell Adhesion
- Cell Line, Tumor
- Cell Movement
- Humans
- Hyaluronan Receptors/biosynthesis
- Immunotherapy/methods
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Stem Cells/cytology
Collapse
Affiliation(s)
- Liqing Jin
- Division of Cell and Molecular Biology, University Health Network Suite 8-355, Toronto Medical Discovery Tower, 101 College Street, Toronto, M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
1506
|
Wang Y, Wang S, Bao Y, Ni C, Guan N, Zhao J, Salford LG, Widegren B, Fan X. Coxsackievirus and adenovirus receptor expression in non-malignant lung tissues and clinical lung cancers. J Mol Histol 2006; 37:153-60. [PMID: 17031523 DOI: 10.1007/s10735-006-9055-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/23/2006] [Indexed: 11/29/2022]
Abstract
Adenoviral vector mediated gene delivery has been applied in clinical trials and mechanistic studies to explore new treatment approaches for lung cancers. The expression of coxsackievirus adenovirus receptor (CAR), the primary receptor for the most commonly used adenovirus serotype 5 (Ad5)-based vectors, predominantly determines the permissiveness of lung cancer cells. CAR expression is also suggested to modulate tumor cell proliferation capacity. Here, we studied CAR expression in archival lung cancer specimens by using well-characterized CAR 72 antibodies. High levels of CAR expression were observed in most of the 32 cases of squamous cell carcinoma lung cancers and in all the five cases of small cell lung cancers investigated. In contrast, high levels of CAR expression were detected only in 6 of 22 adenocarcinoma lung cancers. The relative levels of CAR expression did not correlate with the pathologic grade in lung cancers, and was thus inconsistent with a role of modulating cancer cell proliferation. Of note, CAR expression was not detected in non-malignant alveolar cells. Our data suggest a preferred utility of Ad5 vector mediated gene delivery to squamous cell carcinoma lung cancers, small cell lung cancers, but not to the majority of adenocarcinoma lung cancers.
Collapse
Affiliation(s)
- Yong Wang
- Changzhou Second Hospital, Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1507
|
Dulic-Sills A, Blunden MJ, Mawdsley J, Bastin AJ, McAuley D, Griffiths M, Rampton DS, Yaqoob MM, Macey MG, Agrawal SG. New flow cytometric technique for the evaluation of circulating endothelial progenitor cell levels in various disease groups. J Immunol Methods 2006; 316:107-15. [PMID: 17027849 DOI: 10.1016/j.jim.2006.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 07/05/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Circulating endothelial progenitor cells (EPC) localise to sites of ischaemia and play a role in vascular repair and re-endothelialisation of injured blood vessels. Low levels of EPCs are associated with cardiovascular disease (CVD) in the general population. It is not clear at present whether and how the numbers of circulating EPCs vary in diseases other than CVD. We have enumerated EPCs by the flow cytometric analysis of whole blood by using a novel cocktail of monoclonal antibodies. This consisted of CD2FITC, CD13FITC and CD22FITC to eliminate non-progenitor cells and VEGFR2PE and CD133-streptavidin-PeCy7 to include only EPCs. We analysed 250 patients with varying stages of uraemia, 36 patients with inflammatory bowel disease (IBD) and 9 patients with acute respiratory distress syndrome and compared this to 74 healthy controls. Using flow cytometry we were able to measure the circulating levels of EPCs, with a result available within hours of the sample being obtained. Circulating EPC numbers vary in different patient groups and healthy controls. In uraemic patients, irrespective of disease severity, there are lower numbers of circulating EPC numbers compared to normal controls (46.6+/-3.7 vs. 66.1+/-4.7; p=0.03). This new technique provides a means of monitoring patients and shows a reduction in circulating EPCs in uraemic patients; this abnormality may be a target of novel therapies.
Collapse
|
1508
|
Caporale M, Cousens C, Centorame P, Pinoni C, De las Heras M, Palmarini M. Expression of the jaagsiekte sheep retrovirus envelope glycoprotein is sufficient to induce lung tumors in sheep. J Virol 2006; 80:8030-7. [PMID: 16873259 PMCID: PMC1563803 DOI: 10.1128/jvi.00474-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA). The expression of the JSRV envelope (Env) alone is sufficient to transform a variety of cell lines in vitro and induce lung cancer in immunodeficient mice. In order to determine the role of the JSRV Env in OPA tumorigenesis in sheep, we derived a JSRV replication-defective virus (JS-RD) which expresses env under the control of its own long terminal repeat (LTR). JS-RD was produced by transiently transfecting 293T cells with a two plasmid system, involving (i) a packaging plasmid, with the putative JSRV packaging signal deleted, expressing the structural and enzymatic proteins Gag, Pro, and Pol, and (ii) a plasmid which expresses env in trans for JS-RD particles and provides the genomes necessary to deliver JSRV env upon infection. During the optimization of the JS-RD system we determined that both R-U5 (in the viral 5' LTR) and the env region are important for JSRV particle production. Two independent experimental transmission studies were carried out with newborn lambs. Four of five lambs inoculated with JS-RD showed OPA lesions in the lungs at various times between 4 and 12 months postinoculation. Abundant expression of JSRV Env was detected in tumor cells of JS-RD-infected animals and PCR assays confirmed the presence of the deleted JS-RD genome. These data strongly suggest that the JSRV Env functions as a dominant oncoprotein in the natural immunocompetent host and that JSRV can induce OPA in the absence of viral spread.
Collapse
Affiliation(s)
- Marco Caporale
- Institute of Comparative Medicine, University of Glasgow Veterinary School, 464 Bearsden Road, Glasgow G61 1QH, Scotland
| | | | | | | | | | | |
Collapse
|
1509
|
Abstract
Most human cancers derive from a single cell targeted by genetic and epigenetic alterations that initiate malignant transformation. Progressively, these early cancer cells give rise to different generations of daughter cells that accumulate additional mutations, acting in concert to drive the full neoplastic phenotype. As we have currently deciphered many of the gene pathways disrupted in cancer, our knowledge about the nature of the normal cells susceptible to transformation upon mutation has remained more elusive. Adult stem cells are those that show long-term replicative potential, together with the capacities of self-renewal and multi-lineage differentiation. These stem cell properties are tightly regulated in normal development, yet their alteration may be a critical issue for tumorigenesis. This concept has arisen from the striking degree of similarity noted between somatic stem cells and cancer cells, including the fundamental abilities to self-renew and differentiate. Given these shared attributes, it has been proposed that cancers are caused by transforming mutations occurring in tissue-specific stem cells. This hypothesis has been functionally supported by the observation that among all cancer cells within a particular tumor, only a minute cell fraction has the exclusive potential to regenerate the entire tumor cell population; these cells with stem-like properties have been termed cancer stem cells. Cancer stem cells can originate from mutation in normal somatic stem cells that deregulate their physiological programs. Alternatively, mutations may target more committed progenitor cells or even mature cells, which become reprogrammed to acquire stem-like functions. In any case, mutated genes should promote expansion of stem/progenitor cells, thus increasing their predisposition to cancer development by expanding self-renewal and pluripotency over their normal tendency towards relative quiescency and proper differentiation.
Collapse
Affiliation(s)
- José A Martínez-Climent
- Division of Oncology, Center for Applied Medical Research University of Navarra, Pamplona, Spain.
| | | | | |
Collapse
|
1510
|
Costea DE, Tsinkalovsky O, Vintermyr OK, Johannessen AC, Mackenzie IC. Cancer stem cells – new and potentially important targets for the therapy of oral squamous cell carcinoma. Oral Dis 2006; 12:443-54. [PMID: 16910914 DOI: 10.1111/j.1601-0825.2006.01264.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is increasing evidence that the growth and spread of cancers is driven by a small subpopulation of cancer stem cells (CSCs) - the only cells that are capable of long-term self-renewal and generation of the phenotypically diverse tumour cell population. Current failure of cancer therapies may be due to their lesser effect on potentially quiescent CSCs which remain vital and retain their full capacity to repopulate the tumour. Treatment strategies for the elimination of cancer therefore need to consider the consequences of the presence of CSCs. However, the development of new CSC-targeted strategies is currently hindered by the lack of reliable markers for the identification of CSCs and the poor understanding of their behaviour and fate determinants. Recent studies of cell lines derived from oral squamous cell carcinoma (OSCC) indicate the presence of subpopulations of cells with phenotypic and behavioural characteristics corresponding to both normal epithelial stem cells and to cells capable of initiating tumours in vivo. The present review discusses the relevance to OSCC of current CSC concepts, the state of various methods for CSC identification, characterization and isolation (clonal functional assay, cell sorting based on surface markers or uptake of Hoechst dye), and possible new approaches to therapy.
Collapse
Affiliation(s)
- D E Costea
- Bergen Oral Cancer Group, Department of Oral Sciences, Oral Pathology and Forensic Odontology, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
1511
|
Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:338-46. [PMID: 16877336 PMCID: PMC1698791 DOI: 10.2353/ajpath.2006.060312] [Citation(s) in RCA: 427] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent prospective isolation of a wide variety of somatically derived stem cells has affirmed the notion that homeostatic maintenance of most tissues and organs is mediated by tissue-specific stem and progenitor cells and fueled enthusiasm for the use of such cells in strategies aimed at repairing or replacing damaged, diseased, or genetically deficient tissues and organs. Hematopoietic stem cells (HSCs) are arguably the most well-characterized tissue-specific stem cell, with decades of basic research and clinical application providing not only a profound understanding of the principles of stem cell biology, but also of its potential pitfalls. It is our belief that emerging stem cell fields can benefit greatly from an understanding of the lessons learned from the study of HSCs. In this review we discuss some general concepts regarding stem cell biology learned from the study of HSCs with a highlight on recent work pertaining to emerging topics of interest for stem cell biology.
Collapse
Affiliation(s)
- David Bryder
- Stanford University School of Medicine, B257 Beckman Center, Stanford, CA 94305-5323, USA
| | | | | |
Collapse
|
1512
|
Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 2006; 103:13180-5. [PMID: 16924102 PMCID: PMC1551904 DOI: 10.1073/pnas.0605669103] [Citation(s) in RCA: 997] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mechanisms leading to fibroblast accumulation during pulmonary fibrogenesis remain unclear. Although there is in vitro evidence of lung alveolar epithelial-to-mesenchymal transition (EMT), whether EMT occurs within the lung is currently unknown. Biopsies from fibrotic human lungs demonstrate epithelial cells with mesenchymal features, suggesting EMT. To more definitively test the capacity of alveolar epithelial cells for EMT, mice expressing beta-galactosidase (beta-gal) exclusively in lung epithelial cells were generated, and their fates were followed in an established model of pulmonary fibrosis, overexpression of active TGF-beta1. beta-gal-positive cells expressing mesenchymal markers accumulated within 3 weeks of in vivo TGF-beta1 expression. The increase in vimentin-positive cells within injured lungs was nearly all beta-gal-positive, indicating epithelial cells as the main source of mesenchymal expansion in this model. Ex vivo, primary alveolar epithelial cells cultured on provisional matrix components, fibronectin or fibrin, undergo robust EMT via integrin-dependent activation of endogenous latent TGF-beta1. In contrast, primary cells cultured on laminin/collagen mixtures do not activate the TGF-beta1 pathway and, if exposed to active TGF-beta1, undergo apoptosis rather than EMT. These data reveal alveolar epithelial cells as progenitors for fibroblasts in vivo and implicate the provisional extracellular matrix as a key regulator of epithelial transdifferentiation during fibrogenesis.
Collapse
Affiliation(s)
- Kevin K. Kim
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Matthias C. Kugler
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Paul J. Wolters
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Liliane Robillard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Michael G. Galvez
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Alexis N. Brumwell
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Harold A. Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1513
|
Abstract
Tumour-wide 'omics' approaches have long held sway as the approach to identifying useful therapeutic targets. This view is changing with the realization that many, if not all, cancers contain a minority population of self-renewing stem cells, the cancer stem cells, which are entirely responsible for sustaining the tumour as well as giving rise to proliferating but progressively differentiating cells that are responsible for much of the cellular heterogeneity that is so familiar to histopathologists. Moreover, although many tumours probably have their origins in normal stem cells, persuasive evidence from the haematopoietic system suggests that genetic alterations in more committed progenitor cells can reactivate the self-renewal machinery, resulting in a further source of cancer stem cells. Thus, the bulk of the tumour is not the problem, and so the identification of cancer stem cells and the factors that regulate their behaviour are likely to have an enormous bearing on the way that we treat neoplastic disease in the future.
Collapse
Affiliation(s)
- J Burkert
- Histopathology Unit, Cancer Research UK, and ICMS, Queen Mary's School of Medicine and Dentistry, London WC2A 3PX, UK.
| | | | | |
Collapse
|
1514
|
Nystul TG, Spradling AC. Breaking out of the mold: diversity within adult stem cells and their niches. Curr Opin Genet Dev 2006; 16:463-8. [PMID: 16919446 DOI: 10.1016/j.gde.2006.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 08/03/2006] [Indexed: 01/02/2023]
Abstract
During the past several years, it has become increasingly possible to study adult stem cells in their native territories within tissues. These studies have provided new evidence for the existence of stem cells in the breast, muscle, lung and kidney and have led to a deeper understanding of the best-known stem cells in Drosophila and mice. Tissue stem cells are turning out to be diverse, with varying division rates, lineage lengths, and mechanisms of regulation. In addition, stem cells are now known to engage in a wide variety of interactions with neighboring cells and extracellular matrices, and to respond to various neural and hormonal signals. Stem cell niches are also diverse, sometimes harboring multiple stem cell types. Internally, a stem cell's chromatin and cytoskeletal organization play key roles. Understanding how stem cells and their progeny are controlled will illuminate fundamental biological mechanisms that govern the construction and maintenance of tissues within metazoan animals.
Collapse
Affiliation(s)
- Todd G Nystul
- Department of Embryology, Carnegie Institution of Washington and Howard Hughes Medical Institute, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
1515
|
Kruger JA, Kaplan CD, Luo Y, Zhou H, Markowitz D, Xiang R, Reisfeld RA. Characterization of stem cell-like cancer cells in immune-competent mice. Blood 2006; 108:3906-12. [PMID: 16912222 DOI: 10.1182/blood-2006-05-024687] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, the cancer stem cell hypothesis has gained significant recognition as the descriptor of tumorigenesis. Although previous studies relied on transplanting human or rat tumor cells into immunecompromised mice, our study used the Hoechst 33342 dye-based side population (SP) technique to isolate and transplant stem cell-like cancer cells (SCLCCs) from the 4T1 and NXS2 murine carcinoma cell lines into the immune-competent microenvironment of syngeneic mice. 4T1 cells displayed an SP of 2% with a Sca-1(high)c-Kit(-)CD45(-) phenotype, whereas NXS2 cells contained an SP of 0.2% with a Sca-1(high)CD24(high)c-Kit(-)CD45(-)GD (high)(2) phenotype. Reverse transcription-polymerase chain reaction (RT-PCR) further revealed up-regulation in SP cells of ABCG2, Sca-1, Wnt-1, and TGF-beta2. Additionally, 4T1 and NXS2 SP cells exhibited increased resistance to chemotherapy, and 4T1 SP cells also showed an increased ability to efflux doxorubicin, which correlated with a selective increase in the percentage of SP cells found in the tumors of doxorubicin-treated mice. Most importantly, SP cells showed a markedly higher repopulation and tumorigenic potential in vivo, which correlated with an increased number of cells in the SP compartment of SP-derived tumors. Taken together, these results show that we successfully characterized SCLCCs from 2 murine carcinoma cell lines in the immune-competent microenvironment of syngeneic mice.
Collapse
Affiliation(s)
- Jorg A Kruger
- The Scripps Research Institute, Department of Immunology, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
1516
|
Yuan Z, Goetz JA, Singh S, Ogden SK, Petty WJ, Black CC, Memoli VA, Dmitrovsky E, Robbins DJ. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene 2006; 26:1046-55. [PMID: 16909105 DOI: 10.1038/sj.onc.1209860] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although it had previously been suggested that the hedgehog (HH) pathway might be activated in some lung tumors, the dependence of non-small cell lung carcinomas (NSCLC) for HH activity had not been comprehensively studied. During a screen of a panel of 60 human tumor cell lines with an HH antagonist, we observed that the proliferation of a subset of NSCLC cell lines was inhibited. These NSCLC cell lines express HH, as well as key HH target genes, consistent with them being activated through an autocrine mechanism. Interestingly, we also identified a number of NSCLC cell lines that express high levels of the downstream transcription factor GLI1 and harbor enhanced levels of HH activity, but appear insensitive to known HH antagonists. We hypothesized that the high levels of GLI1 in these cells would function downstream of the HH antagonist target, allowing them to bypass the antagonist-mediated block in proliferation. Consistent with this hypothesis, when the levels of GLI1 are knocked down in such cells, they become sensitive to these inhibitors. We go on to show that a large percentage of primary NSCLC samples express GLI1, consistent with constitutive activation of the HH pathway in these samples. Taken together, these results establish the involvement of the HH signaling pathway in a subset of NSCLCs.
Collapse
Affiliation(s)
- Z Yuan
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1517
|
Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20:1915-24. [PMID: 16900209 DOI: 10.1038/sj.leu.2404357] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proper response of normal stem cells (NSC) to motomorphogens and chemoattractants plays a pivotal role in organ development and renewal/regeneration of damaged tissues. Similar chemoattractants may also regulate metastasis of cancer stem cells (CSC). Growing experimental evidence indicates that both NSC and CSC express G-protein-coupled seven-transmembrane span receptor CXCR4 and respond to its specific ligand alpha-chemokine stromal derived factor-1 (SDF-1), which is expressed by stroma cells from different tissues. In addition, a population of very small embryonic-like (VSEL) stem cells that express CXCR4 and respond robustly to an SDF-1 gradient was recently identified in adult tissues. VSELs express several markers of embryonic and primordial germ cells. It is proposed that these cells are deposited early in the development as a dormant pool of embryonic/pluripotent NSC. Expression of both CXCR4 and SDF-1 is upregulated in response to tissue hypoxia and damage signal attracting circulating NSC and CSC. Thus, pharmacological modulation of the SDF-1-CXCR4 axis may lead to the development of new therapeutic strategies to enhance mobilization of CXCR4+ NSC and their homing to damaged organs as well as inhibition of the metastasis of CXCR4+ cancer cells.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
1518
|
Abstract
Metastasis follows the inappropriate activation of a genetic programme termed invasive growth, which is a physiological process that occurs during embryonic development and post-natal organ regeneration. Burgeoning evidence indicates that invasive growth is also executed by stem and progenitor cells, and is usurped by cancer stem cells. The MET proto-oncogene, which is expressed in both stem and cancer cells, is a key regulator of invasive growth. Recent findings indicate that the MET tyrosine-kinase receptor is a sensor of adverse microenvironmental conditions (such as hypoxia) and drives cell invasion and metastasis through the transcriptional activation of a set of genes that control blood coagulation.
Collapse
Affiliation(s)
- Carla Boccaccio
- Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Str. Prov. 142, 10060 Candiolo, Italy.
| | | |
Collapse
|
1519
|
Sui Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L. Gene amplification and associated loss of 5' regulatory sequences of CoAA in human cancers. Oncogene 2006; 26:822-35. [PMID: 16878147 PMCID: PMC9245580 DOI: 10.1038/sj.onc.1209847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CoAA is an RRM-containing transcriptional coactivator that stimulates transcriptional activation and regulates alternative splicing. We show that the CoAA gene is amplified at the chromosome 11q13 locus in a subset of primary human cancers including non-small cell lung carcinoma, squamous cell skin carcinoma and lymphoma. Analysis of 42 primary tumors suggests that CoAA amplifies independently from the CCND1 locus. Detailed mapping of three CoAA amplicons reveals that the amplified CoAA gene is consistently located at the 5' boundaries of the amplicons. The CoAA coding and basal promoter sequences are retained within the amplicons but upstream silencing sequences are lost. CoAA protein is overexpressed in tumors containing the amplified CoAA gene. RNA dot blot analysis of 100 cases of primary tumors suggests elevated CoAA mRNA expression. CoAA positively regulates its own basal promoter in transfection assays. Thus, gene amplification, loss of silencing sequence and positive feedback regulation may lead to drastic upregulation of CoAA protein. CoAA has transforming activities when tested in soft agar assays, and CoAA is homologous to oncoproteins EWS and TLS, which regulate alternative splicing. These data imply that CoAA may share a similar oncogenic mechanism with oncogene EWS and that CoAA deregulation may alter the alternative splicing of target genes.
Collapse
Affiliation(s)
- Y Sui
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Z Yang
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - S Xiong
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - L Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - KL Blanchard
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - SC Peiper
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - WS Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - D Tuan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - L Ko
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
1520
|
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006; 20:1218-49. [PMID: 16702400 DOI: 10.1101/gad.1415606] [Citation(s) in RCA: 842] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the United States with a median survival of <6 mo and a dismal 5-yr survival rate of 3%-5%. The cancer's lethal nature stems from its propensity to rapidly disseminate to the lymphatic system and distant organs. This aggressive biology and resistance to conventional and targeted therapeutic agents leads to a typical clinical presentation of incurable disease at the time of diagnosis. The well-defined serial histopathologic picture and accompanying molecular profiles of PDAC and its precursor lesions have provided the framework for emerging basic and translational research. Recent advances include insights into the cancer's cellular origins, high-resolution genomic profiles pointing to potential new therapeutic targets, and refined mouse models reflecting both the genetics and histopathologic evolution of human PDAC. This confluence of developments offers the opportunity for accelerated discovery and the future promise of improved treatment.
Collapse
Affiliation(s)
- Aram F Hezel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
1521
|
Rawlins EL, Hogan BLM. Epithelial stem cells of the lung: privileged few or opportunities for many? Development 2006; 133:2455-65. [PMID: 16735479 DOI: 10.1242/dev.02407] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most reviews of adult stem cells focus on the relatively undifferentiated cells dedicated to the renewal of rapidly proliferating tissues, such as the skin, gut and blood. By contrast, there is mounting evidence that organs and tissues such as the liver and pancreatic islets, which turn over more slowly,use alternative strategies, including the self-renewal of differentiated cells. The response of these organs to injury may also reveal the potential of differentiated cells to act as stem cells. The lung shows both slow turnover and rapid repair. New experimental approaches, including those based on studies of embryonic development, are needed to identify putative lung stem cells and strategies of lung homeostasis and repair.
Collapse
Affiliation(s)
- Emma L Rawlins
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
1522
|
Ji H, Houghton AM, Mariani TJ, Perera S, Kim CB, Padera R, Tonon G, McNamara K, Marconcini LA, Hezel A, El-Bardeesy N, Bronson RT, Sugarbaker D, Maser RS, Shapiro SD, Wong KK. K-ras activation generates an inflammatory response in lung tumors. Oncogene 2006; 25:2105-12. [PMID: 16288213 DOI: 10.1038/sj.onc.1209237] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activating mutations in K-ras are one of the most common genetic alterations in human lung cancer. To dissect the role of K-ras activation in bronchial epithelial cells during lung tumorigenesis, we created a model of lung adenocarcinoma by generating a conditional mutant mouse with both Clara cell secretory protein (CC10)-Cre recombinase and the Lox-Stop-Lox K-ras(G12D) alleles. The activation of K-ras mutant allele in CC10 positive cells resulted in a progressive phenotype characterized by cellular atypia, adenoma and ultimately adenocarcinoma. Surprisingly, K-ras activation in the bronchiolar epithelium is associated with a robust inflammatory response characterized by an abundant infiltration of alveolar macrophages and neutrophils. These mice displayed early mortality in the setting of this pulmonary inflammatory response with a median survival of 8 weeks. Bronchoalveolar lavage fluid from these mutant mice contained the MIP-2, KC, MCP-1 and LIX chemokines that increased significantly with age. Cell lines derived from these tumors directly produced MIP-2, LIX and KC. This model demonstrates that K-ras activation in the lung induces the elaboration of inflammatory chemokines and provides an excellent means to further study the complex interactions between inflammatory cells, chemokines and tumor progression.
Collapse
Affiliation(s)
- H Ji
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1523
|
Lucattelli M, Fineschi S, Geppetti P, Gerard NP, Lungarella G. Neurokinin-1 receptor blockade and murine lung tumorigenesis. Am J Respir Crit Care Med 2006; 174:674-83. [PMID: 16799078 DOI: 10.1164/rccm.200602-193oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Analogous to the adenoma-carcinoma sequence in the colon, it has been proposed that adenocarcinoma (AC) in the lung arises from adenomatous hyperplasia that progresses through atypical adenomatous hyperplasia to AC. However, the data supporting this sequence are largely circumstantial and the almost impossible task of identifying these lesions before resection rules out any longitudinal study in humans. OBJECTIVES, METHODS, AND RESULTS We show in mice that the loss of function of the neurokinin-1 receptor (NK-1R)-due to either a pharmacologic or genetic manipulation-results in a sequence of morphologic changes in response to bleomycin treatment that precede the development of AC. We also demonstrate that a series of alterations in gene expression of proliferation markers (i.e., PCNA and Ki-67) and cell cycle regulators (i.e., FHIT, p53, and p21) characterizes the sequence of the precursor lesions. The loss of function of the NK-1R results in changes of the apoptotic rate and in a delay of DNA break recovery of alveolar epithelial cells following bleomycin treatment. The NK-1R blockade interferes with a caspase-independent pathway of apoptosis by affecting both the translocation of Nur77 into the cytoplasm and the expression of some important Bcl2 family members such as Bcl2 and Bak. CONCLUSIONS To our knowledge, this is the first model to demonstrate a role for NK-1R in lung epithelial cell death and tumorigenesis. This animal model may provide new information on the biology of AC and will facilitate designing and testing of new therapeutic interventions.
Collapse
Affiliation(s)
- Monica Lucattelli
- Department of Physiopathology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
1524
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|
1525
|
Affiliation(s)
- Dan J Raz
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, 94143-1724, USA
| | | | | | | |
Collapse
|
1526
|
Abstract
Bronchioloalveolar carcinoma (BAC) is classified as a subset of lung adenocarcinoma but has a distinct clinical presentation, tumor biology, response to therapy, and prognosis compared with other subtypes of non-small-cell lung carcinoma (NSCLC). Bronchioloalveolar carcinoma disproportionately affects women, never-smokers, and Asians and is characterized by growth along alveolar septae without evidence of stromal, vascular, or pleural invasion. Although pure BAC accounts for approximately 4% of lung cancers, tumors with histologically mixed BAC and adenocarcinoma account for > 20% of all NSCLCs, and the incidence of BAC might be increasing. Bronchioloalveolar carcinoma histology is most commonly found in small lesions identified incidentally on chest radiographs or computed tomography scans and might represent a precursor lesion to invasive adenocarcinoma. As with other subsets of NSCLC, surgical resection is the only potentially curative treatment. Patients with unresectable BAC are more likely to respond to the epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib than patients with other subtypes of NSCLC. Stage for stage, patients with BAC have a higher rate of long-term survival but might have an increased rate of intrathoracic recurrence than patients with other subtypes of NSCLC.
Collapse
Affiliation(s)
- Dan J Raz
- Department of Surgery, University of California, San Francisco, CA 94131, USA.
| | | | | | | |
Collapse
|
1527
|
Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A 2006; 103:9530-5. [PMID: 16772384 PMCID: PMC1480441 DOI: 10.1073/pnas.0510232103] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, we report a serum-free culture system for primary neonatal pulmonary cells that can support the growth of octamer-binding transcription factor 4+ (Oct-4+) epithelial colonies with a surrounding mesenchymal stroma. In addition to Oct-4, these cells also express other stem cell markers such as stage-specific embryonic antigen 1 (SSEA-1), stem cell antigen 1 (Sca-1), and Clara cell secretion protein (CCSP) but not c-Kit, CD34, and p63, indicating that they represent a subpopulation of Clara cells that have been implicated as lung stem/progenitor cells in lung injury models. These colony cells can be kept for weeks in primary cultures and undergo terminal differentiation to alveolar type-2- and type-1-like pneumocytes sequentially when removed from the stroma. In addition, we have demonstrated the presence of Oct-4+ long-term BrdU label-retaining cells at the bronchoalveolar junction of neonatal lung, providing a link between the Oct-4+ cells in vivo and in vitro and strengthening their identity as putative neonatal lung stem/progenitor cells. Lastly, these Oct-4+ epithelial colony cells, which also express angiotensin-converting enzyme 2, are the target cells for severe acute respiratory syndrome coronavirus infection in primary cultures and support active virus replication leading to their own destruction. These observations imply the possible involvement of lung stem/progenitor cells, in addition to pneumocytes, in severe acute respiratory syndrome coronavirus infection, accounting for the continued deterioration of lung tissues and apparent loss of capacity for lung repair.
Collapse
Affiliation(s)
- Thai-Yen Ling
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Der Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 114, Taiwan; and
| | - Chung-Leung Li
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Alice L. Yu
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
| | - Yen-Hua Huang
- Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Jung Wu
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
| | - You-Chin Lin
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
| | - Shu-Hwa Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - John Yu
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1528
|
Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, Mahmood U, Mitchell A, Sun Y, Al-Hashem R, Chirieac LR, Padera R, Bronson RT, Kim W, Jänne PA, Shapiro GI, Tenen D, Johnson BE, Weissleder R, Sharpless NE, Wong KK. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006; 9:485-95. [PMID: 16730237 DOI: 10.1016/j.ccr.2006.04.022] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/16/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
To understand the role of human epidermal growth factor receptor (hEGFR) kinase domain mutations in lung tumorigenesis and response to EGFR-targeted therapies, we generated bitransgenic mice with inducible expression in type II pneumocytes of two common hEGFR mutants seen in human lung cancer. Both bitransgenic lines developed lung adenocarcinoma after sustained hEGFR mutant expression, confirming their oncogenic potential. Maintenance of these lung tumors was dependent on continued expression of the EGFR mutants. Treatment with small molecule inhibitors (erlotinib or HKI-272) as well as prolonged treatment with a humanized anti-hEGFR antibody (cetuximab) led to dramatic tumor regression. These data suggest that persistent EGFR signaling is required for tumor maintenance in human lung adenocarcinomas expressing EGFR mutants.
Collapse
Affiliation(s)
- Hongbin Ji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1529
|
Mackenzie IC. Stem cell properties and epithelial malignancies. Eur J Cancer 2006; 42:1204-12. [PMID: 16644206 DOI: 10.1016/j.ejca.2006.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 01/31/2006] [Indexed: 01/24/2023]
Abstract
The growth and repair of normal tissues depends on a small sub-population of cells termed somatic stem cells whose primary characteristic is an ability for indefinite self-renewal. Epithelial stem cells divide to produce cells, termed transient amplifying cells, that undergo a few rounds of more rapid division before they terminally differentiate. Evidence that the growth of tumours, as for normal tissues, is ultimately dependent on a subpopulation of the proliferatively competent cells was first shown for leukaemias by isolation of small sub-populations of phenotypically distinct 'tumour-initiating cells'. Differing cell surface phenotypes also prospectively identify tumour-initiating sub-populations in solid tumours. Even cell lines derived from tumours retain hierarchical stem cell patterns demonstrable as differing clonogenic abilities related to cellular properties such as size, adhesiveness, dye exclusion, and patterns of gene expression. Malignant stem cells appear to form the primary targets of therapy, but how differences between malignant stem and other cells affect therapeutic responses remains unclear. However, transplantation methods exist for their analysis and the in vitro persistence of stem cell patterns may provide systems for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ian C Mackenzie
- Center for Cutaneous Biology, Institute for Cell and Molecular Science, 4 Newark Street, Whitechapel, London E1 2AT, UK.
| |
Collapse
|
1530
|
Denham M, Cole TJ, Mollard R. Embryonic stem cells form glandular structures and express surfactant protein C following culture with dissociated fetal respiratory tissue. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1210-5. [PMID: 16399789 DOI: 10.1152/ajplung.00427.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse embryonic stem cells (MESCs) are pluripotent, theoretically immortal cells derived from the inner cell mass of developing blastocysts. The respiratory epithelium develops from the primitive foregut endoderm as a result of inductive morphogenetic interactions with the surrounding visceral mesoderm. After dissociation of the explanted fetal lung into single cells, these morphogenetic signaling pathways instruct reconstitution of the developing lung according to a process known as organotypic regeneration. Data presented here demonstrate that such fetal lung morphogenetic cues induce MESC derivatives to incorporate into the reforming pseudoglandular-like tubular ducts, display pan-keratin and surfactant protein C (Sftpc) immunoreactivity, and express Sftpc transcripts while displaying a normal diploid karyotype in coculture. The Sftpc inductive capacity of dissociated fetal lung tissue shows stage specificity with 24% of all MESC derivatives displaying Sftpc immunoreactivity after coculture with embryonic day 11.5 (E11.5) lung buds compared with 6% and 0.02% following coculture with E12.5 and E13.5 lung buds, respectively. MESC derivative Sftpc immunoreactivity follows a spatial and temporal specific maturation profile with an initially ubiquitous cellular Sftpc immunostaining pattern becoming apically polarized with time. Directing differentiation of MESCs into respiratory lineages has important implications for cell replacement therapeutics aimed at treating respiratory-specific diseases such as cystic fibrosis and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Mark Denham
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
1531
|
Simon DM, Arikan MC, Srisuma S, Bhattacharya S, Tsai LW, Ingenito EP, Gonzalez F, Shapiro SD, Mariani TJ. Epithelial cell PPAR[gamma] contributes to normal lung maturation. FASEB J 2006; 20:1507-9. [PMID: 16720732 DOI: 10.1096/fj.05-5410fje] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma is a member of the nuclear hormone receptor superfamily that can promote cellular differentiation and organ development. PPARgamma expression has been reported in a number of pulmonary cell types, including inflammatory, mesenchymal, and epithelial cells. We find that PPARgamma is prominently expressed in the airway epithelium in the mouse lung. In an effort to define the physiological role of PPARgamma within the lung, we have ablated PPARgamma using a novel line of mice capable of specifically targeting the airway epithelium. Airway epithelial cell PPARgamma-targeted mice display enlarged airspaces resulting from insufficient postnatal lung maturation. The increase in airspace size is accompanied by alterations in lung physiology, including increased lung volumes and decreased tissue resistance. Genome-wide expression profiling reveals a reduction in structural extracellular matrix (ECM) gene expression in conditionally targeted mice, suggesting a disruption in epithelial-mesenchymal interactions necessary for the establishment of normal lung structure. Expression profiling of airway epithelial cells isolated from conditionally targeted mice indicates PPARgamma regulates genes encoding known PPARgamma targets, additional lipid metabolism enzymes, and markers of cellular differentiation. These data reveal airway epithelial cell PPARgamma is necessary for normal lung structure and function.
Collapse
Affiliation(s)
- Dawn M Simon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Thorn 908, 75 Francis St., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1532
|
Abstract
Cancer develops from normal tissues through the accumulation of genetic alterations that act in concert to confer malignant phenotypes. Although we have now identified some of the genes that when mutated initiate tumor formation and drive cancer progression, the identity of the cell population(s) susceptible to such transforming events remains undefined for the majority of human cancers. Recent work indicates that a small population of cells endowed with unique self-renewal properties and tumorigenic potential is present in some, and perhaps all, tumors. Although our understanding of the biology of these putative cancer stem cells remains rudimentary, the existence of such cells has implications for current conceptualizations of malignant transformation and therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
1533
|
Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 2006; 20:1496-510. [PMID: 16705038 PMCID: PMC1475762 DOI: 10.1101/gad.1417406] [Citation(s) in RCA: 362] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Somatic mutations in exons encoding the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are found in human lung adenocarcinomas and are associated with sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib. Nearly 90% of the EGFR mutations are either short, in-frame deletions in exon 19 or point mutations that result in substitution of arginine for leucine at amino acid 858 (L858R). To study further the role of these mutations in the initiation and maintenance of lung cancer, we have developed transgenic mice that express an exon 19 deletion mutant (EGFR(DeltaL747-S752)) or the L858R mutant (EGFR(L858R)) in type II pneumocytes under the control of doxycycline. Expression of either EGFR mutant leads to the development of lung adenocarcinomas. Two weeks after induction with doxycycline, mice that express the EGFR(L858R) allele show diffuse lung cancer highly reminiscent of human bronchioloalveolar carcinoma and later develop interspersed multifocal adenocarcinomas. In contrast, mice expressing EGFR(DeltaL747-S752) develop multifocal tumors embedded in normal lung parenchyma with a longer latency. With mice carrying either EGFR allele, withdrawal of doxycycline (to reduce expression of the transgene) or treatment with erlotinib (to inhibit kinase activity) causes rapid tumor regression, as assessed by magnetic resonance imaging and histopathology, demonstrating that mutant EGFR is required for tumor maintenance. These models may be useful for developing improved therapies for patients with lung cancers bearing EGFR mutations.
Collapse
Affiliation(s)
- Katerina Politi
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
1534
|
Fan X, Salford LG, Widegren B. Glioma stem cells: evidence and limitation. Semin Cancer Biol 2006; 17:214-8. [PMID: 16750389 DOI: 10.1016/j.semcancer.2006.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 04/17/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Gliomas, in particular the high-grade anaplastic glioma and glioblastoma multiforme (GBM), are manifested by morphological, genetic and phenotypic heterogeneity. Most of the studies hitherto have been performed on bulk glioma cells, with limited understanding on the origin and the relative contribution of particular glioma cell populations to glioma growth and progression. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and tumor-initiating function. Such cells have been defined as glioma stem cells. However, questions remain as to whether the currently identified glioma stem cells are the cell-of-origin for glioma initiation and progression, or the results of such processes. In this review, we discuss the current evidence and limitation in identifying glioma stem cells and the potential origin of glioma stem cells in the context of post-natal neural cell regeneration and their transformation mechanisms. The implication of these findings for glioma diagnosis and treatment will also be reviewed.
Collapse
Affiliation(s)
- Xiaolong Fan
- The Rausing Laboratory, Department of Neurosurgery, Lund University Hospital, Lund, Sweden.
| | | | | |
Collapse
|
1535
|
Abstract
Pulmonary neuroendocrine cells (PNECs) have been around for 60 years in the scientific literature, although phylogenetically they are ancient. Their traditionally ascribed functions include chemoreception and regulation of lung maturation and growth. There is recent evidence that neuroendocrine (NE) differentiation in the lung is regulated by genes and pathways that are conserved in the development of the nervous system from Drosophila to humans (such as achaete-scute homolog-1), or implicated in the carcinogenesis of the nervous or NE system (such as the retinoblastoma tumor suppressor gene). In addition, complex neural networks are in place to regulate chemosensory and other functions. Even solitary PNECs appear to be innervated. For the first time ever, we have mouse models for lung NE carcinomas, including the most common and virulent small cell lung carcinoma. Moreover, PNECs may be important for inflammatory responses, and pivotal for lung stem cell niches. These discoveries signify an exciting new era for PNECs and are likely to have therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
1536
|
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9:391-403. [PMID: 16697959 DOI: 10.1016/j.ccr.2006.03.030] [Citation(s) in RCA: 1784] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/02/2006] [Accepted: 03/22/2006] [Indexed: 02/06/2023]
Abstract
The concept of tumor stem cells (TSCs) provides a new paradigm for understanding tumor biology, although it remains unclear whether TSCs will prove to be a more robust model than traditional cancer cell lines. We demonstrate marked phenotypic and genotypic differences between primary human tumor-derived TSCs and their matched glioma cell lines. Unlike the matched, traditionally grown tumor cell lines, TSCs derived directly from primary glioblastomas harbor extensive similarities to normal neural stem cells and recapitulate the genotype, gene expression patterns, and in vivo biology of human glioblastomas. These findings suggest that TSCs may be a more reliable model than many commonly utilized cancer cell lines for understanding the biology of primary human tumors.
Collapse
Affiliation(s)
- Jeongwu Lee
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1537
|
Stripp BR, Shapiro SD. Stem Cells in Lung Disease, Repair, and the Potential for Therapeutic Interventions. Am J Respir Cell Mol Biol 2006; 34:517-18. [PMID: 16618784 DOI: 10.1165/rcmb.f315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
1538
|
Abstract
Until recently, it was thought that only embryonic stem cells were pluripotent and that adult stem cells were restricted in their differentiative and regenerative potential to become the tissues in which they reside. However, the discovery that adult stem cells in one tissue can contribute to the formation of other tissues, especially after injury or cell damage, implies that stem cells have developmental plasticity. For example, haematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) from bone marrow can be used to regenerate diverse tissues at distant sites, including the lung. This article reviews the character of stem cells in the lung parenchyma and focuses on the potential uses of adult stem cells in research of lung injury and lung disease therapies.
Collapse
Affiliation(s)
- C C Yen
- Department of Life Sciences, National Chung Hsing University, and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
1539
|
Huff CA, Matsui WH, Smith BD, Jones RJ. Strategies to eliminate cancer stem cells: clinical implications. Eur J Cancer 2006; 42:1293-7. [PMID: 16644203 DOI: 10.1016/j.ejca.2006.01.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 12/31/2022]
Abstract
Over the past two decades, major advances in our understanding of cancer have translated into only modest increments in survival for the majority of cancer patients. Recent data suggesting cancers arise from rare self-renewing stem cells that are biologically distinct from their more numerous differentiated progeny may explain this paradox. Current anticancer therapies have been developed to decrease the bulk of the tumour mass (i.e. the differentiated cancer cells). Although treatments directed against the bulk of the cancer may produce dramatic responses, they are unlikely to result in long-term remissions if the rare cancer stem cells are also not targeted. Conversely, treatments that selectively attack cancer stem cells will not immediately eliminate the differentiated cancer cells, and might therefore be prematurely abandoned if clinical activity is judged solely by traditional response criteria that reflect changes in the bulk of the tumour. Re-examining both our pre-clinical and clinical drug development paradigms to include the cancer stem cell concept has the potential to revolutionize the treatment of many cancers.
Collapse
Affiliation(s)
- Carol Ann Huff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bunting-Blaustein Cancer Research Building, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
1540
|
Goto K, Salm SN, Coetzee S, Xiong X, Burger PE, Shapiro E, Lepor H, Moscatelli D, Wilson EL. Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 2006; 24:1859-68. [PMID: 16644920 DOI: 10.1634/stemcells.2005-0585] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prostate carcinoma and benign prostatic hypertrophy may both originate in stem cells, highlighting the importance of the characterization of these cells. The prostate gland contains a network of ducts each of which consists of a proximal (adjacent to the urethra), an intermediate, and a distal region. Here, we report that two populations of cells capable of regenerating prostatic tissue in an in vivo prostate reconstitution assay are present in different regions of prostatic ducts. The first population (with considerable growth potential) resides in the proximal region of ducts and in the urethra, and the survival of these cells does not require the presence of androgens. The second population (with more limited growth potential) is found in the remaining ductal regions and requires androgen for survival. In addition, we find that primitive proximal prostate cells that are able to regenerate functional prostatic tissue in vivo are also programmed to re-establish a proximal-distal ductal axis. Similar to their localization in the intact prostate, cells with the highest regenerative capacity are found in the proximal region of prostatic ducts formed in an in vivo prostate reconstitution assay. The primitive proximal cells can be passaged through four generations of subrenal capsule grafts. Together, these novel findings illustrate features of primitive prostate cells that may have implications for the development of therapies for treating proliferative prostatic diseases.
Collapse
Affiliation(s)
- Ken Goto
- Department of Cell Biology, MSB 634, NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1541
|
Abstract
Tumor stem cells are quiescent and, therefore, resistant to therapy, yet harbor the capacity to replenish a tumor after therapy. Therefore, it is tempting to explain all therapeutic failures by the persistence of tumor stem cells. Yet, this explanation is relevant only to initial stages of stem-cell-dependent tumors (such as chronic myeloid leukemia) that, actually, are well controlled by therapy. In advanced cancers that poorly respond to therapy, quiescent tumor stem cells play a negligible role. Instead, proliferating cells determine disease progression, prognosis, therapeutic failures, and resistance to therapy. And therapy fails not because it eliminates only proliferating tumor cells, but because it does not eliminate them. With noticeable exceptions, it is the proliferating cell that should be targeted, whereas resting cancer cells including stem and dormant cells need to be targeted only when they 'wake up'. Finally, I discuss a strategy of selectively killing dominant proliferating clones, including proliferating stem-like and drug-resistant cancer cells, while sparing normal cells.
Collapse
Affiliation(s)
- M V Blagosklonny
- Cancer Center, Ordway Research Institute, Albany, NY 12208, USA.
| |
Collapse
|
1542
|
Abstract
Cancer stem cells (CSC) are recently proposed to be the cancer initiating cells responsible for tumorigenesis and contribute to cancer resistance. Advances have been made in identifying and enriching CSC in leukemia and several solid tumors, including breast, brain and lung cancers. These studies suggest that, like normal stem cells, CSCs should be rare, quiescent, and capable of self-renewing and maintaining tumor growth and heterogeneity. Although the concept of CSC originates from that of normal stem cells, CSCs are not necessarily aberrant counterparts of normal stem cells. In fact, they may arise from stem cells or committed progenitors of corresponding tissues, and even cells from other tissues. At the molecular level, the alteration of stem cell self-renewal pathway(s) has been recognized as an essential step for CSC transformation. Better understanding of CSC will no doubt lead to a new era of both basic and clinical cancer research, re-classification of human tumors and development of novel therapeutic strategies specifically targeting CSC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095, USA.
| | | | | |
Collapse
|
1543
|
Borok Z, Li C, Liebler J, Aghamohammadi N, Londhe VA, Minoo P. Developmental pathways and specification of intrapulmonary stem cells. Pediatr Res 2006; 59:84R-93R. [PMID: 16549554 DOI: 10.1203/01.pdr.0000203563.37626.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissues have the capacity to maintain a homeostatic balance between wear-and-tear and regeneration. Repair of non-lethal injury also activates cell proliferation to repopulate the injured sites with appropriate cell types and to restore function. Although controversial, the source of the material appears to be at least partly from pools of unique, multipotent stem cells that reside in specialized locations referred to as "niches." Molecular interactions between the niche and the intracellular factors within stem cells are crucial in maintaining stem cell functions, particularly the balance between self-renewal and differentiation. Many of the mediators of the stem cell-niche interactions are similar or identical to those that control developmental pathways during organogenesis. In this review, we present a systematic discussion and evaluation of the relevant literature with a focused emphasis on three primary signaling pathways, WNT, SHH and BMP with potentially overlapping roles during both development and stem cell maintenance.
Collapse
Affiliation(s)
- Zea Borok
- Department of Medicine, Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, 90033, USA
| | | | | | | | | | | |
Collapse
|
1544
|
Stem cells and cystic fibrosis. J Cyst Fibros 2006; 5:141-3. [PMID: 16574502 DOI: 10.1016/j.jcf.2006.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 11/19/2022]
Abstract
Although cystic fibrosis at first sight appears to be one of the most obvious human diseases to treat with gene therapy, since it is caused by a single-gene defect and the main affected organ is the lung which is relatively easily accessible, clinical results have thus far been disappointingly limited. At least one cause for this lack of success is the failure to permanently correct the gene defect in addition to the rapid turnover of lung epithelial cells. Alternative approaches therefore involve the search for and use of stem cell populations. This review presents an overview of recent attempts to identify lung- or bone marrow-derived populations of stem cells or progenitor cells and to apply such cells, heterologous or gene-corrected autologous, to colonize the airways while differentiating into functional respiratory columnar epithelial cells. The most successful approaches thus far appear to be obtained with bone marrow-derived cells such as mesenchymal stem cells, although the transdifferentiation rate thus far has been limited to below the 1% level. As an alternative the proven multipotent nature of bronchioalveolar stem cells isolated from lung tissue may provide another promising approach for successful stem cell therapy.
Collapse
|
1545
|
Abstract
AbstractEvidence has accumulated that malignancy arises from maturation arrest of stem cells — rather than the dedifferentiation of somatic cells. To support this notion, stem cells in contrast to somatic cells are long lived cells and thus may become the subject of accumulating mutations that are crucial for the initiation/progression of cancer. More importantly they may maintain these mutations and pass them to daughter stem cells. Cancer stem cells (CSC) that derive from transformed normal stem cells (NSC) are responsible not only for tumor initiation, but also for its re-growth and metastasis. Accumulating evidence also indicates that adult tissues may contain a population of very small embryonic like (VSEL) stem cells that may give rise to some very immature tumors e.g., pediatric sarcomas. Similar molecular mechanisms operating in NSC and CSC regulate resistance to radio-chemotherapy and promote migration/metastasis. Thus, by studying the biology of NSC we can learn more about cancer.
Collapse
|
1546
|
LIU HE, LIM KH, HUANG MJ, HUANG BS. Targeting epidermal growth factor receptor in lung cancer: Perspective from the Asia-Pacific region. Asia Pac J Clin Oncol 2006. [DOI: 10.1111/j.1743-7563.2006.00043.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
1547
|
Abstract
Although the concept that cancers arise from "stem cells" or "germ cells" was first proposed about 150 years ago, it is only recently that advances in stem cell biology have given new impetus to the "cancer stem cell hypothesis." Two important related concepts of this hypothesis are that (a) tumors originate in either tissue stem cells or their immediate progeny through dysregulation of the normally tightly regulated process of self-renewal. As a result of this, (b) tumors contain a cellular subcomponent that retains key stem cell properties. These properties include self-renewal, which drives tumorigenesis, and differentiation albeit aberrant that contributes to cellular heterogeneity. Recent experimental evidence in a variety of tumors has lent strong support to the cancer stem cell hypothesis that represents a paradigm shift in our understanding of carcinogenesis and tumor cell biology. This hypothesis has fundamental implications for cancer risk assessment, early detection, prognostication, and prevention. Furthermore, the current development of cancer therapeutics based on tumor regression may have produced agents that kill differentiated tumor cells while sparing the rare cancer stem cell population. The development of more effective cancer therapies may thus require targeting this important cell population.
Collapse
Affiliation(s)
- Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109-0942, USA.
| | | | | |
Collapse
|
1548
|
Abstract
Cancer is widely perceived as a heterogeneous group of disorders with markedly different biological properties, which are caused by a series of clonally selected genetic changes in key tumour-suppressor genes and oncogenes. However, recent data suggest that cancer has a fundamentally common basis that is grounded in a polyclonal epigenetic disruption of stem/progenitor cells, mediated by 'tumour-progenitor genes'. Furthermore, tumour cell heterogeneity is due in part to epigenetic variation in progenitor cells, and epigenetic plasticity together with genetic lesions drives tumour progression. This crucial early role for epigenetic alterations in cancer is in addition to epigenetic alterations that can substitute for genetic variation later in tumour progression. Therefore, non-neoplastic but epigenetically disrupted stem/progenitor cells might be a crucial target for cancer risk assessment and chemoprevention.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
1549
|
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2006; 65:10946-51. [PMID: 16322242 DOI: 10.1158/0008-5472.can-05-2018] [Citation(s) in RCA: 2000] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Existing therapies for prostate cancer eradicates the bulk of cells within a tumor. However, most patients go on to develop androgen-independent disease that remains incurable by current treatment strategies. There is now increasing evidence in some malignancies that the tumor cells are organized as a hierarchy originating from rare stem cells that are responsible for maintaining the tumor. We report here the identification and characterization of a cancer stem cell population from human prostate tumors, which possess a significant capacity for self-renewal. These cells are also able to regenerate the phenotypically mixed populations of nonclonogenic cells, which express differentiated cell products, such as androgen receptor and prostatic acid phosphatase. The cancer stem cells have a CD44+/alpha2beta1hi/CD133+ phenotype, and we have exploited these markers to isolate cells from a series of prostate tumors with differing Gleason grade and metastatic states. Approximately 0.1% of cells in any tumor expressed this phenotype, and there was no correlation between the number of CD44+/alpha2beta1hi/CD133+ cells and tumor grade. The identification of a prostate cancer stem cell provides a powerful tool to investigate the tumorigenic process and to develop therapies targeted to the stem cell.
Collapse
Affiliation(s)
- Anne T Collins
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York, United Kingdom.
| | | | | | | | | |
Collapse
|
1550
|
Smith LT, Lin M, Brena RM, Lang JC, Schuller DE, Otterson GA, Morrison CD, Smiraglia DJ, Plass C. Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci U S A 2006; 103:982-7. [PMID: 16415157 PMCID: PMC1348006 DOI: 10.1073/pnas.0510171102] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The identification of tumor suppressor genes has classically depended on their localization within recurrent regions of loss of heterozygosity. According to Knudson's two-hit hypothesis, the remaining allele is lost, either genetically or, more recently identified, through epigenetic events. To date, retrospective analyses have determined promoter methylation as a common alternative alteration in cancer cells to silence cancer-related genes. Here we report an application of restriction landmark genomic scanning that allows for DNA methylation profiling along a region of recurrent loss of heterozygosity at chromosome 6q23-q24. This approach resulted in the identification of a tumor suppressor gene, TCF21, which is frequently lost in human malignancies. We demonstrate that TCF21 is expressed in normal lung airway epithelial cells and aberrantly methylated and silenced in the majority of head and neck squamous cell carcinomas and non-small-cell lung cancers analyzed. TCF21 is known to regulate mesenchymal cell transition into epithelial cells, a property that has been shown to be deficient in carcinomas. We further demonstrate that exogenous expression of TCF21 in cells that have silenced the endogenous TCF21 locus resulted in a reduction of tumor properties in vitro and in vivo.
Collapse
Affiliation(s)
- Laura T Smith
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|