1501
|
Hoshi T, Watanabe Miyano S, Watanabe H, Sonobe RMK, Seki Y, Ohta E, Nomoto K, Matsui J, Funahashi Y. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades. Biochem Biophys Res Commun 2019; 513:1-7. [PMID: 30944079 DOI: 10.1016/j.bbrc.2019.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Lenvatinib inhibits VEGF- and FGF-driven angiogenesis, and proliferation of tumor cells with activated FGF signaling pathways in preclinical models, and we previously demonstrated antitumor activity in human HCC xenograft tumor models. Here, we examined the inhibitory activity of lenvatinib against FGF-driven survival of human HCC cell lines. First, we conducted a histological analysis of FGF19-overexpressing Hep3B2.1-7 xenograft tumors collected from mice treated with lenvatinib. Second, we examined the effects of pharmacological inhibition on survival of cultured HCC cells with an activated FGF signaling pathway under nutrient-starved culture condition to mimic tumor microenvironments induced by angiogenesis inhibition. In the first analysis, area of histological focal necrosis was greater in Hep3B2.1-7 xenograft tumors with the lenvatinib treatment than that after the treatment with sorafenib, which does not inhibit FGFRs. Lenvatinib and E7090 (a selective FGFR1-3 inhibitor), but not sorafenib, induced death of Hep3B2.1-7, and another FGF19 overexpressing HuH-7 cells. Lenvatinib and E7090 decreased phosphorylation of downstream molecules of the FGF signaling pathway (such as FRS2, Erk, and p38 MAPK), and induced PARP cleavage, even under limited nutrients. PD0325901, MEK inhibitor, caused the same changes in HCC cells as those described above for lenvatinib and E7090. These results reveal that the FGF signaling pathway through MAPK cascades plays an important role in survival of HCC cell lines with an activated FGF signaling pathway under limited nutrients, and FGFR-MAPK cascades likely contribute to survival of HCC cells with an activated FGF signaling pathway under tumor microenvironments with limited nutrients, where tumor angiogenesis is inhibited.
Collapse
Affiliation(s)
- Taisuke Hoshi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Hideki Watanabe
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Yuki Seki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Etsuko Ohta
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Kenichi Nomoto
- Oncology Business Group, Eisai Inc., Woodcliff Lake, NJ, USA
| | - Junji Matsui
- Oncology Business Group, Eisai Inc., Woodcliff Lake, NJ, USA
| | | |
Collapse
|
1502
|
Cao Y, Ding W, Zhang J, Gao Q, Yang H, Cao W, Wang Z, Fang L, Du R. Significant Down-Regulation of Urea Cycle Generates Clinically Relevant Proteomic Signature in Hepatocellular Carcinoma Patients with Macrovascular Invasion. J Proteome Res 2019; 18:2032-2044. [DOI: 10.1021/acs.jproteome.8b00921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yin Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Gulou District, Nanjing 210008, China
| | - WenWen Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - JingZi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - Qi Gao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - HaoXiang Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - WangSen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - ZhongXia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Gulou District, Nanjing 210008, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - RongHui Du
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| |
Collapse
|
1503
|
Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M. Exosomes and Hepatocellular Carcinoma: From Bench to Bedside. Int J Mol Sci 2019; 20:E1406. [PMID: 30897788 PMCID: PMC6471845 DOI: 10.3390/ijms20061406] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
As hepatocellular carcinoma (HCC) usually occurs in the background of cirrhosis, which is an end-stage form of liver diseases, treatment options for advanced HCC are limited, due to poor liver function. The exosome is a nanometer-sized membrane vesicle structure that originates from the endosome. Exosome-mediated transfer of proteins, DNAs and various forms of RNA, such as microRNA (miRNA), long noncoding RNA (lncRNA) and messenger RNA (mRNA), contributes to the development of HCC. Exosomes mediate communication between both HCC and non-HCC cells involved in tumor-associated cells, and several molecules are implicated in exosome biogenesis. Exosomes may be potential diagnostic biomarkers for early-stage HCC. Exosomal proteins, miRNAs and lncRNAs could provide new biomarker information for HCC. Exosomes are also potential targets for the treatment of HCC. Notably, further efforts are required in this field. We reviewed recent literature and demonstrated how useful exosomes are for diagnosing patients with HCC, treating patients with HCC and predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Naoya Kato
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
1504
|
Long J, Wang A, Bai Y, Lin J, Yang X, Wang D, Yang X, Jiang Y, Zhao H. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine 2019; 42:363-374. [PMID: 30885723 PMCID: PMC6491941 DOI: 10.1016/j.ebiom.2019.03.022] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND TP53 mutation is the most common mutation in hepatocellular carcinoma (HCC), and it affects the progression and prognosis of HCC. We investigated how TP53 mutation regulates the HCC immunophenotype and thus affects the prognosis of HCC. METHODS We investigated TP53 mutation status and RNA expression in different populations and platforms and developed an immune prognostic model (IPM) based on immune-related genes that were differentially expressed between TP53WT and TP53MUT HCC samples. Then, the influence of the IPM on the immune microenvironment in HCC was comprehensively analysed. FINDINGS TP53 mutation resulted in the downregulation of the immune response in HCC. Thirty-seven of the 312 immune response-related genes were differentially expressed based on TP53 mutation status. An IPM was established and validated based on 865 patients with HCC to differentiate patients with a low or high risk of poor survival. A nomogram was also established for clinical application. Functional enrichment analysis showed that the humoral immune response and immune system diseases pathway represented the major function and pathway, respectively, related to the IPM genes. Moreover, we found that the patients in the high-risk group had higher fractions of T cells follicular helper, T cells regulatory (Tregs) and macrophages M0 and presented higher expression of CTLA-4, PD-1 and TIM-3 than the low-risk group. INTERPRETATION TP53 mutation is strongly related to the immune microenvironment in HCC. Our IPM, which is sensitive to TP53 mutation status, may have important implications for identifying subgroups of HCC patients with low or high risk of unfavourable survival. FUND: This work was supported by the International Science and Technology Cooperation Projects (2016YFE0107100), the Capital Special Research Project for Health Development (2014-2-4012), the Beijing Natural Science Foundation (L172055 and 7192158), the National Ten Thousand Talent Program, the Fundamental Research Funds for the Central Universities (3332018032), and the CAMS Innovation Fund for Medical Science (CIFMS) (2017-I2M-4-003 and 2018-I2M-3-001).
Collapse
Affiliation(s)
- Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongxu Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
1505
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
1506
|
Tsuchiya A, Ogawa M, Watanabe T, Takeuchi S, Kojima Y, Watanabe Y, Kimura N, Hayashi K, Yokoyama J, Terai S. Diverse perspectives to address for the future treatment of heterogeneous hepatocellular carcinoma. Heliyon 2019; 5:e01325. [PMID: 30911692 PMCID: PMC6416651 DOI: 10.1016/j.heliyon.2019.e01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinomas (HCCs), which often arise from chronic liver damage, have poor conditional 5-year survival and are recognized as heterogeneous tumors. Considering the heterogeneity of HCCs, diverse perspectives need to be addressed for treating such tumors, besides the findings of conventional imaging modalities and tumor markers. Data from the latest technologies, such as liquid biopsy, and the detection of the presence of cancer cells with stem/progenitor cell markers, gene mutations and diverse pathways, crosstalk with immune cells and cancer-associated fibroblasts, and mechanisms of epithelial–mesenchymal transition provide diverse lines of information. Integration of these data with clinical data might be necessary to develop effective therapies for precision medicine. Here, we review several aspects of dealing with the complexity of heterogeneous HCCs.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takayuki Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazunao Hayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junji Yokoyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
1507
|
Joseph NM, Tsokos CG, Umetsu SE, Shain AH, Kelley RK, Onodera C, Bowman S, Talevich E, Ferrell LD, Kakar S, Krings G. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J Pathol 2019; 248:164-178. [PMID: 30690729 DOI: 10.1002/path.5243] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/20/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Combined hepatocellular-cholangiocarcinomas (CHC) are mixed tumours with both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) components. CHC prognosis is similar to intrahepatic CC (ICC) and worse than HCC; staging and treatment generally follow ICC algorithms. However, the molecular biology of CHC remains poorly characterised. We performed capture-based next-generation sequencing of 20 CHC and, for comparison, 10 ICC arising in cirrhosis. Intratumour heterogeneity was assessed by separately sequencing the HCC and CC components of nine CHC. CHC demonstrated molecular profiles similar to HCC, even in the CC component. CHC harboured recurrent alterations in TERT (80%), TP53 (80%), cell cycle genes (40%; CCND1, CCNE1, CDKN2A), receptor tyrosine kinase/Ras/PI3-kinase pathway genes (55%; MET, ERBB2, KRAS, PTEN), chromatin regulators (20%; ARID1A, ARID2) and Wnt pathway genes (20%; CTNNB1, AXIN, APC). No CHC had alterations in IDH1, IDH2, FGFR2 or BAP1, genes typically mutated in ICC. TERT promoter mutations were consistently identified in both HCC and CC components, supporting TERT alteration as an early event in CHC evolution. TP53 mutations were present in both components in slightly over half the TP53-altered cases. By contrast, focal amplifications of CCND1, MET and ERRB2, as well as Wnt pathway alterations, were most often exclusive to one component, suggesting that these are late events in CHC evolution. ICC in cirrhosis demonstrated alterations similar to ICC in non-cirrhotic liver, including in IDH1 or IDH2 (30%), CDKN2A (40%), FGFR2 (20%), PBRM1 (20%), ARID1A (10%) and BAP1 (10%). TERT promoter and TP53 mutation were present in only one ICC each. Our data demonstrate that CHC genetics are distinct from ICC (even in cirrhosis) and similar to HCC, which has diagnostic utility and implications for treatment. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nancy M Joseph
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Christos G Tsokos
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Robin K Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Courtney Onodera
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Bowman
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Talevich
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda D Ferrell
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Sanjay Kakar
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
1508
|
Pelusi S, Baselli G, Pietrelli A, Dongiovanni P, Donati B, McCain MV, Meroni M, Fracanzani AL, Romagnoli R, Petta S, Grieco A, Miele L, Soardo G, Bugianesi E, Fargion S, Aghemo A, D'Ambrosio R, Xing C, Romeo S, De Francesco R, Reeves HL, Valenti LVC. Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Sci Rep 2019; 9:3682. [PMID: 30842500 PMCID: PMC6403344 DOI: 10.1038/s41598-019-39998-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising cause of hepatocellular carcinoma (HCC). We examined whether inherited pathogenic variants in candidate genes (n = 181) were enriched in patients with NAFLD-HCC. To this end, we resequenced peripheral blood DNA of 142 NAFLD-HCC, 59 NAFLD with advanced fibrosis, and 50 controls, and considered 404 healthy individuals from 1000 G. Pathogenic variants were defined according to ClinVar, likely pathogenic as rare variants predicted to alter protein activity. In NAFLD-HCC patients, we detected an enrichment in pathogenic (p = 0.024), and likely pathogenic variants (p = 1.9*10-6), particularly in APOB (p = 0.047). APOB variants were associated with lower circulating triglycerides and higher HDL cholesterol (p < 0.01). A genetic risk score predicted NAFLD-HCC (OR 4.96, 3.29-7.55; p = 5.1*10-16), outperforming the diagnostic accuracy of common genetic risk variants, and of clinical risk factors (p < 0.05). In conclusion, rare pathogenic variants in genes involved in liver disease and cancer predisposition are associated with NAFLD-HCC development.
Collapse
Affiliation(s)
- Serena Pelusi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Translational Medicine, Department of Transfusion Medicine and Hepatology, Milan, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Pietrelli
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Benedetta Donati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Misti Vanette McCain
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Marica Meroni
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Renato Romagnoli
- Department of Surgical Sciences, Liver Transplantation Center, University of Turin, Turin, Italy
| | - Salvatore Petta
- Section of Gastroenterology, DIBIMIS, University of Palermo, 90127, Palermo, Italy
| | - Antonio Grieco
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168, Rome, Italy
| | - Luca Miele
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168, Rome, Italy
| | - Giorgio Soardo
- Clinic of Internal Medicine-Liver Unit, Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Silvia Fargion
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Aghemo
- Division of Gastroenterology and Hepatology Unit, Humanitas Research Hospital and Humanitas University, Rozzano (MI), Italy
| | - Roberta D'Ambrosio
- "A.M. e A. Migliavacca" Center for the Study of Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Romeo
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Cardiology Department, University of Gothenburg, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM), Romeo ed Enrica Invernizzi, Bioinformatic group, Milan, Italy
| | - Helen Louise Reeves
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Luca Vittorio Carlo Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Translational Medicine, Department of Transfusion Medicine and Hepatology, Milan, Italy.
| |
Collapse
|
1509
|
Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Xing B, Sun W, Ren L, Hu B, Li C, Zhang L, Qin G, Zhang M, Chen N, Zhang M, Huang Y, Zhou J, Zhao Y, Liu M, Zhu X, Qiu Y, Sun Y, Huang C, Yan M, Wang M, Liu W, Tian F, Xu H, Zhou J, Wu Z, Shi T, Zhu W, Qin J, Xie L, Fan J, Qian X, He F. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019; 567:257-261. [PMID: 30814741 DOI: 10.1038/s41586-019-0987-8] [Citation(s) in RCA: 611] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/01/2019] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma is the third leading cause of deaths from cancer worldwide. Infection with the hepatitis B virus is one of the leading risk factors for developing hepatocellular carcinoma, particularly in East Asia1. Although surgical treatment may be effective in the early stages, the five-year overall rate of survival after developing this cancer is only 50-70%2. Here, using proteomic and phospho-proteomic profiling, we characterize 110 paired tumour and non-tumour tissues of clinical early-stage hepatocellular carcinoma related to hepatitis B virus infection. Our quantitative proteomic data highlight heterogeneity in early-stage hepatocellular carcinoma: we used this to stratify the cohort into the subtypes S-I, S-II and S-III, each of which has a different clinical outcome. S-III, which is characterized by disrupted cholesterol homeostasis, is associated with the lowest overall rate of survival and the greatest risk of a poor prognosis after first-line surgery. The knockdown of sterol O-acyltransferase 1 (SOAT1)-high expression of which is a signature specific to the S-III subtype-alters the distribution of cellular cholesterol, and effectively suppresses the proliferation and migration of hepatocellular carcinoma. Finally, on the basis of a patient-derived tumour xenograft mouse model of hepatocellular carcinoma, we found that treatment with avasimibe, an inhibitor of SOAT1, markedly reduced the size of tumours that had high levels of SOAT1 expression. The proteomic stratification of early-stage hepatocellular carcinoma presented in this study provides insight into the tumour biology of this cancer, and suggests opportunities for personalized therapies that target it.
Collapse
Affiliation(s)
- Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Huichuan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Liangliang Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chaoying Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guangrong Qin
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, China
| | - Menghuan Zhang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, China
| | - Ning Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Manli Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yin Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jinan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaodong Zhu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Qiu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yanjun Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cheng Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng Yan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingchao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Wei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Fang Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Huali Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weimin Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
1510
|
Ruiz-Bañobre J, Goel A. DNA Mismatch Repair Deficiency and Immune Checkpoint Inhibitors in Gastrointestinal Cancers. Gastroenterology 2019; 156:890-903. [PMID: 30578781 PMCID: PMC6409193 DOI: 10.1053/j.gastro.2018.11.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
In the recent few years, significant efforts have been undertaken for the development of different immunotherapeutic approaches against cancer. In this context, immune checkpoint inhibitors (ICIs), a novel class of immunotherapeutic drugs with the potential to unleash the immune system, have emerged as authentic game-changers for managing patients with various cancers, including gastrointestinal malignancies. Although the majority of gastrointestinal cancers are generally considered poorly immunogenic, basic research findings and data from clinical trials have proven that subset(s) of patients with various digestive tract cancers are highly responsive to ICI-based therapy. In this context, a better understanding on the role of various DNA repair pathway alterations, especially the evidence supporting the significant importance of DNA mismatch repair deficiencies and the efficacy of the anti-programmed cell death 1 drugs, have led to US Food and Drug Administration approval of 2 anti-programmed cell death 1 antibodies (pembrolizumab and nivolumab) for the treatment of patients with microsatellite instability. This review aims to provide a comprehensive and up-to-date summary for the role of DNA mismatch repair deficiency in cancer, and its importance in the development of ICI therapy. In addition, we provide insights into the spectrum of various genetic alterations underlying ICI resistance, together with the important influence that the tumor microenvironment plays in mediating the therapeutic response to this new class of drugs. Finally, we provide a comprehensive yet succinct glimpse into the most exciting preclinical discoveries and ongoing clinical trials in the field, highlighting bench-to-beside translational impact of this exciting area of research.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Medical Oncology Department, Arquitecto Marcide University Hospital, Ferrol, Spain; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago, University Clinical Hospital of Santiago de Compostela, Centro de Investigación Biomédica en Red de Cáncer, Santiago de Compostela, Spain
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
1511
|
Clarke CN, Katsonis P, Hsu TK, Koire AM, Silva-Figueroa A, Christakis I, Williams MD, Kutahyalioglu M, Kwatampora L, Xi Y, Lee JE, Koptez ES, Busaidy NL, Perrier ND, Lichtarge O. Comprehensive Genomic Characterization of Parathyroid Cancer Identifies Novel Candidate Driver Mutations and Core Pathways. J Endocr Soc 2019; 3:544-559. [PMID: 30788456 PMCID: PMC6372985 DOI: 10.1210/js.2018-00043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
CONTEXT Elucidating the genomic landscape of sporadic parathyroid carcinoma (PC) has been limited by low tumor incidence. OBJECTIVE Identify driver mutations of sporadic PC and potential actionable pathways. METHODS Patients undergoing surgical resection for sporadic PC between 1980 and 2016 at MD Anderson Cancer Center were identified. Patients with sporadic PC according to World Health Organization diagnostic criteria and with available formalin-fixed, paraffin-embedded (FFPE) PC tumor tissue were included and their clinical data analyzed to assess extent of disease. Patients with parathyroid tumors of uncertain malignancy or atypical parathyroid neoplasms were excluded. Thirty-one patients meeting diagnostic criteria had available tissue for analysis. FFPE PC tumors were subjected to DNA extraction and next-generation whole-exome sequencing. All variant calls are single-algorithm only. Twenty-nine samples passed quality assurance after DNA extraction. MAIN OUTCOME MEASURES Somatic or private germline mutations present in sporadic PC and identification of pathways involved in tumorigenesis. RESULTS We identified 35 genes with considerable mutational load; only eight genes were previously identified in other PC cohorts. These genes mediate critical processes, including chromosome organization, DNA repair, and cell cycle regulations. Gene mutations involved in MAPK signaling and immune response are also heavily implicated. These findings are limited by inherent molecular artifacts in FFPE tissue analysis and the absence of matched germline DNA. Additionally, variant calls are only single algorithm and may include false-positive/negative calls. CONCLUSION We identified 33 candidate driver genes of sporadic PC, in addition to previously known driver genes CDC73 and MEN1.
Collapse
Affiliation(s)
- Callisia N Clarke
- Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Teng-Kuei Hsu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Amanda M Koire
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas
| | - Angelica Silva-Figueroa
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ioannis Christakis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merve Kutahyalioglu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lily Kwatampora
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - E Scott Koptez
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nancy D Perrier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
1512
|
A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Sci Rep 2019; 9:2615. [PMID: 30796273 PMCID: PMC6385312 DOI: 10.1038/s41598-019-39273-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system that has poor prognosis despite extensive therapy. Therefore, it is essential to identify a gene expression-based signature for predicting GBM prognosis. The RNA sequencing data of GBM patients from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases were employed in our study. The univariate and multivariate regression models were utilized to assess the relative contribution of each gene to survival prediction in both cohorts, and the common genes in two cohorts were identified as a final prognostic model. A prognostic risk score was calculated based on the prognostic gene signature. This prognostic signature stratified the patients into the low- and high-risk groups. Multivariate regression and stratification analyses were implemented to determine whether the gene signature was an independent prognostic factor. We identified a 6-gene signature through univariate and multivariate regression models. This prognostic signature stratified the patients into the low- and high-risk groups, implying improved and poor outcomes respectively. Multivariate regression and stratification analyses demonstrated that the predictive value of the 6-gene signature was independent of other clinical factors. This study highlights the significant implications of having a gene signature as a prognostic predictor in GBM, and its potential application in personalized therapy.
Collapse
|
1513
|
Dong JJ, Ying L, Shi KQ. Expression of the Wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma. Cancer Cell Int 2019; 19:34. [PMID: 30814912 PMCID: PMC6376661 DOI: 10.1186/s12935-019-0743-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background The Wnt gene family members are known to participate regulating various normal and pathological processes including tumorigenesis. However, the association between Wnt ligands gene family and prognosis in hepatocellular carcinoma has not been systematically studied. Therefore, we evaluated the role of Wnt ligands gene family in hepatocellular carcinoma using publicly available data from The Cancer Genome Atlas (TCGA). Methods Clinical information and RNA-Seq mRNA expression data were derived from TCGA hepatocellular carcinoma cohort. Differences in overall survival (OS) and disease-free survival (DFS) between increased and decreased expression groups (defined by X-tile analyses) of Wnt ligands gene family were compared using Kaplan-Meier method and Cox regression model, with p-values calculated via log-rank test. Gene Set Enrichment Analysis (GSEA) was performed. Results Multivariate analysis adjusted for patient age, sex, BMI, tumor grade, and TMN stage revealed that Wnt1, Wnt3 and Wnt5B expressions were independent prognostic factors for OS and DFS (OS: HR = 0.58, P = 0.006; HR = 0.65, P = 0.03; HR = 0.56, P = 0.023, respectively; DFS: HR = 0.52, P < 0.001; HR = 1.93, P = 0.003; HR = 0.59, P = 0.011, respectively). Furthermore, expression of Wnt1 and Wnt5B was significantly associated with TMN stage (P = 0.02 and P = 0.03 for OS; P = 0.02 and P = 0.02 for DFS). GSEA showed that nucleotide excision repair was differentially enriched in Wnt1 low expression phenotype and aminoacyl trna biosynthesis and basal transcription factors were differentially enriched in Wnt5B low expression phenotype. Conclusions Our results identified associations of several Wnt ligands with prognosis of HCC patients, indicating that these genes could serve as prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Jia-Jia Dong
- 1Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Li Ying
- 1Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Ke-Qing Shi
- 2Precision Medical Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| |
Collapse
|
1514
|
Wang M, Lv G, Jiang C, Xie S, Wang G. miR-302a inhibits human HepG2 and SMMC-7721 cells proliferation and promotes apoptosis by targeting MAP3K2 and PBX3. Sci Rep 2019; 9:2032. [PMID: 30765768 PMCID: PMC6375964 DOI: 10.1038/s41598-018-38435-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/28/2018] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and has a poor prognosis. miR-302a is an important regulator of tumor occurrence and deterioration, while MAP3K2 and PBX3 genes are involved in cancer cell proliferation and apoptosis. In this study, the expression of miR-302a and MAP3K2/PBX3 were evaluated by qPCR in liver cancer cell lines. Next, the target relationship between miR-302a and MAP3K2/PBX3 was verified using luciferase assays. Meanwhile, the expression correlation between miR-302a and target genes was analyzed in cancer tissue and para-cancerous tissue. In addition, an increased miR-302a level in HepG2 cells and SMMC-7721 cells were achieved through transfection with miR-302a mimics, and the effects on HepG2 cell and SMMC-7721 cell proliferation, apoptosis and MAPK pathways were determined using MTT, flow cytometry, qPCR and western blot assays. The results showed that liver cancer cell lines exhibited low miR-302a expression and MAP3K2 and PBX3 were confirmed to be the target genes of miR-302a. Meanwhile, the HE results showed that cells became enlarged with loose cytoplasm and formed balloon-like lesions in HCC specimens and we found a significant negative correlation between miR-302a and MAP3K2/PBX3 expression. In addition, treatment with miR-302a mimics inhibited HepG2 cells and SMMC-7721 cells proliferation and increased the apoptosis rate. Further research revealed that the MAPK key factors p-p38, p-ERK1/2 and p-JNK were significantly reduced in miR-302a transfected cells and MAP3K2/PBX3 silenced cells. Besides, MAP3K2 and PBX3 overexpression in miR-302a mimics-treated cells exerted the opposite effects. In conclusion, miR-302a inhibited proliferation and promoted apoptosis in human hepatoma cells by targeting MAP3K2 and PBX3.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Chao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shuli Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
1515
|
Gay DM, Ridgway RA, Müller M, Hodder MC, Hedley A, Clark W, Leach JD, Jackstadt R, Nixon C, Huels DJ, Campbell AD, Bird TG, Sansom OJ. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat Commun 2019; 10:723. [PMID: 30760720 PMCID: PMC6374445 DOI: 10.1038/s41467-019-08586-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Different thresholds of Wnt signalling are thought to drive stem cell maintenance, regeneration, differentiation and cancer. However, the principle that oncogenic Wnt signalling could be specifically targeted remains controversial. Here we examine the requirement of BCL9/9l, constituents of the Wnt-enhanceosome, for intestinal transformation following loss of the tumour suppressor APC. Although required for Lgr5+ intestinal stem cells and regeneration, Bcl9/9l deletion has no impact upon normal intestinal homeostasis. Loss of BCL9/9l suppressed many features of acute APC loss and subsequent Wnt pathway deregulation in vivo. This resulted in a level of Wnt pathway activation that favoured tumour initiation in the proximal small intestine (SI) and blocked tumour growth in the colon. Furthermore, Bcl9/9l deletion completely abrogated β-catenin driven intestinal and hepatocellular transformation. We speculate these results support the just-right hypothesis of Wnt-driven tumour formation. Importantly, loss of BCL9/9l is particularly effective at blocking colonic tumourigenesis and mutations that most resemble those that occur in human cancer.
Collapse
Affiliation(s)
- David M Gay
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Joshua D Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David J Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| |
Collapse
|
1516
|
Al-Abdulla R, Lozano E, Macias RIR, Monte MJ, Briz O, O'Rourke CJ, Serrano MA, Banales JM, Avila MA, Martinez-Chantar ML, Geier A, Andersen JB, Marin JJG. Epigenetic events involved in organic cation transporter 1-dependent impaired response of hepatocellular carcinoma to sorafenib. Br J Pharmacol 2019; 176:787-800. [PMID: 30592786 DOI: 10.1111/bph.14563] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The expression of the human organic cation transporter-1 (hOCT1, gene SLC22A1) is reduced in hepatocellular carcinoma (HCC). The molecular bases of this reduction and its relationship with the poor response of HCC to sorafenib were investigated. EXPERIMENTAL APPROACH HCC transcriptomes from 366 samples available at TCGA were analysed. Alternative splicing was determined by RT-PCR. The role of miRNAs in SLC22A1 downregulation was investigated. Expression of Oct1 was measured in rodent HCC models (spontaneously generated in Fxr-/- mice and chemically-induced in rats). hOCT1 was overexpressed in human hepatoma cells (HuH7 and HepG2). Sorafenib and regorafenib uptake was determined by HPLC-MS/MS. KEY RESULTS hOCT1 overexpression enhanced sorafenib, but not regorafenib, quinine-inhibitable uptake by hepatoma cells. In rodent HCC, Oct1 was downregulated, which was accompanied by impaired sorafenib uptake. In mice with s.c.-implanted HCC, sorafenib inhibited the growth of hOCT1 overexpressing tumours. In human HCC, hOCT1 expression was inversely correlated with SLC22A1 promoter methylation, whereas demethylation with decitabine enhanced hOCT1 expression in hepatoma cells. Increased proportion of aberrant hOCT1 mRNA variants was found in HCC samples. In silico analysis identified six miRNAs as candidates to target hOCT1 mRNA. When overexpressed in HepG2 cells a significant hOCT1 mRNA decay was induced by hsa-miR-330 and hsa-miR-1468. Analysis of 39 paired tumour/adjacent samples from TCGA revealed that hsa-mir-330 was consistently upregulated in HCC. CONCLUSION AND IMPLICATIONS Impaired hOCT1 expression/function in HCC, in part due to epigenetic modifications, plays an important role in the poor pharmacological response of this cancer to sorafenib.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria A Serrano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Jesus M Banales
- Department of Hepatology and Gastroenterology. Biodonostia Biomedical Research Institute, San Sebastian University Hospital. Basque Country University, San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Matias A Avila
- Hepatology Programme, Centre for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Maria L Martinez-Chantar
- Department of Metabolomics, CIC bioGUNE, Derio, Vizcaya, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
1517
|
Zhang X, Lu X, Liu Z, Guan R, Wang J, Kong X, Chen L, Bo C, Tian K, Xu S, Bai M, Zhang H, Li J, Wang L, Shen J, Guo M. Integrating multiple-level molecular data to infer the distinctions between glioblastoma and lower-grade glioma. Int J Cancer 2019; 145:952-961. [PMID: 30694558 DOI: 10.1002/ijc.32174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023]
Abstract
Glioblastomas (GBMs) and lower-grade gliomas (LGGs) are the most common malignant brain tumors. Despite extensive studies that have suggested that there are differences between the two in terms of clinical profile and treatment, their distinctions on a molecular level had not been systematically analyzed. Here, we investigated the distinctions between GBM and LGG based on multidimensional data, including somatic mutations, somatic copy number variants (SCNVs), gene expression, lncRNA expression and DNA methylation levels. We found that GBM patients had a higher mutation frequency and SCNVs than LGG patients. Differential mRNAs and lncRNAs between GBM and LGG were identified and a differential mRNA-lncRNA network was constructed and analyzed. We also discovered some differential DNA methylation sites could distinguish between GBM and LGG samples. Finally, we identified some key GBM- and LGG-specific genes featuring multiple-level molecular alterations. These specific genes participate in diverse functions; moreover, GBM-specific genes are enriched in the glioma pathway. Overall, our studies explored the distinctions between GMB and LGG using a comprehensive genomics approach that may provide novel insights into studying the mechanism and treatment of brain tumors.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaojun Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Kuo Tian
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming Bai
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
1518
|
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019; 45:736-746. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is initiated through both genetic and epigenetic alterations. The end-effect of such changes to the DNA machinery is a set of uncontrolled mechanisms of cell division, invasion and, eventually, metastasis. Epigenetic changes are now increasingly appreciated as an essential driver to the cancer phenotype. The epigenetic regulation of cancer is complex and not yet fully understood, but application of epigenetics to clinical practice and in cancer research has the potential to improve cancer care. Epigenetics changes do not cause changes in the DNA base-pairs (and, hence, does not alter the genetic code per se) but rather occur through methylation of DNA, by histone modifications, and, through changes to chromatin structure to alter genetic expression. Epigenetic regulators are characterized as writers, readers or erasers by their mechanisms of action. The human epigenome is influenced from cradle to grave, with internal and external life-time exposure influencing the epigenetic marks that may act as modifiers or drivers of carcinogenesis. Preventive and public health strategies may follow from better understanding of the life-time influence of the epigenome. Epigenetics may be used to define risk, to investigate mechanisms of carcinogenesis, to identify biomarkers, and to identify novel therapeutic options. Epigenetic alterations are found across many solid cancers and are increasingly making clinical impact to cancer management. Novel epigenetic drugs may be used for a more tailored and specific response to treatment of cancers. We present a primer on epigenetics for surgical oncologists with examples from colorectal cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Thomas M Drake
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Kjetil Søreide
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
1519
|
Liu X, Qin S. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Opportunities and Challenges. Oncologist 2019; 24:S3-S10. [PMID: 30819826 PMCID: PMC6394775 DOI: 10.1634/theoncologist.2019-io-s1-s01] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy worldwide, and is especially common in China. A total of 70%-80% of patients are diagnosed at an advanced stage and can receive only palliative care. Sorafenib has been the standard of care for a decade, and promising results for regorafenib as a second-line and lenvatinib as a first-line treatment were reported only 1 or 2 years ago. FOLFOX4 was recently recommended as a clinical practice guideline by the China Food and Drug Administration. All approved systemic therapies remain unsatisfactory, with limited objective response rates and poor overall survival. Immune checkpoint inhibitors (CPIs) offer great promise in the treatment of a rapidly expanding spectrum of solid tumors. Immune checkpoint molecules are involved in almost the whole process of viral-related hepatitis with cirrhosis and HCC and in the most important resistance mechanism of sorafenib. The approval of nivolumab by the U.S. Food and Drug Administration on September 23, 2017, for the treatment of patients with HCC, based only on a phase I/II clinical trial, is a strong hint that immunotherapy will introduce a new era of HCC therapy. CPI-based strategies will soon be a main approach in anticancer treatment for HCC, and we will observe the rapid advances in the therapeutic use of CPIs, even in an adjuvant setting, with great interest. How shall we face the opportunities and challenges? Can we dramatically improve the prognosis of patients with HCC? This review may provide some informed guidance. IMPLICATIONS FOR PRACTICE: Immune checkpoint molecules are involved in almost the whole process of viral-related hepatitis with cirrhosis and hepatocellular carcinoma (HCC) and in the most important resistance mechanism of sorafenib. As all approved systemic therapies in HCC remain unsatisfactory, checkpoint inhibitor (CPI)-based strategies will soon be a main approach in anticancer treatment for advanced stage of HCC, even in an adjuvant setting. In virus-related HCC, especially hepatitis B virus-related HCC, whether CPIs can control virus relapse should be further investigated. Combination strategies involving conventional therapies and immunotherapies are needed to increase clinical benefit and minimize adverse toxicities with regard to the underlying liver disease.
Collapse
Affiliation(s)
- Xiufeng Liu
- People's Liberation Army Cancer Center, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Shukui Qin
- People's Liberation Army Cancer Center, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
1520
|
Ferreira RG, Cardoso MV, de Souza Furtado KM, Espíndola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res 2019; 204:51-71. [PMID: 30304666 DOI: 10.1016/j.trsl.2018.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
Aflatoxin B1 (AFB1) is currently the most commonly studied mycotoxin due to its great toxicity, its distribution in a wide variety of foods such as grains and cereals and its involvement in the development of + (hepatocellular carcinoma; HCC). HCC is one of the main types of liver cancer, and has become a serious public health problem, due to its high incidence mainly in Southeast Asia and Africa. Studies show that AFB1 acts in synergy with other risk factors such as hepatitis B and C virus leading to the development of HCC through genetic and epigenetic modifications. The genetic modifications begin in the liver through the biomorphic AFB1, the AFB1-exo-8.9-Epoxy active, which interacts with DNA to form adducts of AFB1-DNA. These adducts induce mutation in codon 249, mediated by a transversion of G-T in the p53 tumor suppressor gene, causing HCC. Thus, this review provides an overview of the evidence for AFB1-induced epigenetic alterations and the potential mechanisms involved in the development of HCC, focusing on a critical analysis of the importance of severe legislation in the detection of aflatoxins.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neurosciences and Cell Biology Post-Graduation Program, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | - Magda Vieira Cardoso
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | | | | | | | - Marta Chagas Monteiro
- Neurosciences and Cell Biology Post-Graduation Program, Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| |
Collapse
|
1521
|
Shi C, Xu H, Liu J, Zhong Y, Zhang X, Tong X, Zhang L, Li X, Deng L. Alternatively activated NUSAP1 promotes tumor growth and indicates poor prognosis in hepatocellular carcinoma. Transl Cancer Res 2019; 8:238-247. [PMID: 35116752 PMCID: PMC8799080 DOI: 10.21037/tcr.2019.01.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality. The key genes involved in initiation and development of HCC is not entirely clear. METHODS We performed a meta-analysis of available transcriptome data from 6 independent HCC datasets [5 datasets from the Gene Expression Omnibus (GEO) and 1 dataset from The Cancer Genome Atlas (TCGA)]. The associations of the nucleolar and spindle-associated protein 1 (NUSAP1) expression level with clinicopathological factors and survival times were analyzed. Two representative HCC cell models were built to observe the proliferation capacity of HCC cells when NUSAP1 expression was inhibited by shNUSAP1. RESULTS Based on the transcriptome and survival data in the GEO and TCGA databases, NUSAP1 gene was markedly upregulated in HCC. High expression of NUSAP1 in HCC is related to the iCluster1 molecular subgroup, poor survival, poor tumor differentiation and TNM stage. Additionally, pathway analysis based on RNAseq data suggested that NUSAP1 could activate the expression of genes involves in cell proliferation. Furthermore, downregulation of NUSAP1 expression could significantly inhibit the proliferation of SMMC-7721 and Huh7 cells in vitro. CONCLUSIONS Our study provides evidence that NUSAP1 may serve as a candidate prognostic marker and a target for future therapeutic intervention in HCC.
Collapse
Affiliation(s)
- Chao Shi
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hui Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, China
| | - Junyu Liu
- Queen Mary School, Medical College of Nanchang University, Nanchang 330031, China
| | - Yuanbin Zhong
- Department of Infectious Diseases & Key Laboratory of Liver Regenerative Medicine of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xinping Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, China
| | - Xiaoqin Tong
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, China
| | - Lunli Zhang
- Department of Infectious Diseases & Key Laboratory of Liver Regenerative Medicine of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaopeng Li
- Department of Infectious Diseases & Key Laboratory of Liver Regenerative Medicine of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Libin Deng
- College of Basic Medical Science, Nanchang University, Nanchang 330031, China;,Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
1522
|
Shimada S, Mogushi K, Akiyama Y, Furuyama T, Watanabe S, Ogura T, Ogawa K, Ono H, Mitsunori Y, Ban D, Kudo A, Arii S, Tanabe M, Wands JR, Tanaka S. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine 2019; 40:457-470. [PMID: 30598371 PMCID: PMC6412165 DOI: 10.1016/j.ebiom.2018.12.058] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a heterogeneous disease with various etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multi-focal recurrence. We herein identified three major subtypes of HCC by performing integrative analysis of two omics data sets, and clarified that this classification was closely correlated with clinicopathological factors, immune profiles and recurrence patterns. METHODS In the test study, 183 tumor specimens surgically resected from HCC patients were collected for unsupervised clustering analysis of gene expression signatures and comparative analysis of gene mutations. These results were validated by using genome, methylome and transcriptome data of 373 HCC patients provided from the Cancer Genome Atlas Network. In addition, omics data were obtained from pairs of primary and recurrent HCC. FINDINGS Comprehensive molecular evaluation of HCC by multi-platform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying immune suppression; and (3) metabolic disease-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly distinguished between HCC with intrahepatic metastasis (IM) and multi-centric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not correlated to the IM/MC origin, but to the classification. INTERPRETATION Identification of these HCC subtypes provides further insights into patient stratification as well as presents opportunities for therapeutic development. FUND: Ministry of Education, Culture, Sports, Science and Technology of Japan (16H02670 and 18K19575), Japan Agency for Medical Research and Development (JP15cm0106064, JP17cm0106518, JP18cm0106540 and JP18fk0210040).
Collapse
Affiliation(s)
- Shu Shimada
- Department of Molecular Oncology Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Molecular Oncology Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaki Furuyama
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuichi Watanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Ogura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Ogawa
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Ono
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jack R Wands
- Liver Research Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shinji Tanaka
- Department of Molecular Oncology Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
1523
|
Hlady RA, Sathyanarayan A, Thompson JJ, Zhou D, Wu Q, Pham K, Lee JH, Liu C, Robertson KD. Integrating the Epigenome to Identify Drivers of Hepatocellular Carcinoma. Hepatology 2019; 69:639-652. [PMID: 30136421 PMCID: PMC6351162 DOI: 10.1002/hep.30211] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
Disruption of epigenetic mechanisms has been intimately linked to the etiology of human cancer. Understanding how these epigenetic mechanisms (including DNA methylation [5mC], hydroxymethylation [5hmC], and histone post-translational modifications) work in concert to drive cancer initiation and progression remains unknown. Hepatocellular carcinoma (HCC) is increasing in frequency in Western countries but lacks efficacious treatments. The epigenome of HCC remains understudied. To better understand the epigenetic underpinnings of HCC, we performed a genome-wide assessment of 5mC, 5hmC, four histone modifications linked to promoter/enhancer function (H3K4me1, H3K27ac, H3K4me3, and H3K27me3), and transcription across normal, cirrhotic, and HCC liver tissue. Implementation of bioinformatic strategies integrated these epigenetic marks with each other and with transcription to provide a comprehensive epigenetic profile of how and when the liver epigenome is perturbed during progression to HCC. Our data demonstrate significant deregulation of epigenetic regulators combined with disruptions in the epigenome hallmarked by profound loss of 5hmC, locus-specific gains in 5mC and 5hmC, and markedly altered histone modification profiles, particularly remodeling of enhancers. Data integration demonstrates that these marks collaborate to influence transcription (e.g., hyper-5hmC in HCC-gained active enhancers is linked to elevated expression) of genes regulating HCC proliferation. Two such putative epigenetic driver loci identified through our integrative approach, COMT and FMO3, increase apoptosis and decrease cell viability in liver-derived cancer cell lines when ectopically re-expressed. Conclusion: Altogether, integration of multiple epigenetic parameters is a powerful tool for identifying epigenetically regulated drivers of HCC and elucidating how epigenome deregulation contributes to liver disease and HCC.
Collapse
Affiliation(s)
- RA Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - A Sathyanarayan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - JJ Thompson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - D Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Q Wu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - K Pham
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - JH Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905 Mayo Clinic, Rochester, MN 55905, USA
| | - C Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - KD Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
1524
|
Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun 2019; 10:335. [PMID: 30659195 PMCID: PMC6338783 DOI: 10.1038/s41467-018-08245-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinomas (HCC) exhibit distinct promoter hypermethylation patterns, but the epigenetic regulation and function of transcriptional enhancers remain unclear. Here, our affinity- and bisulfite-based whole-genome sequencing analyses reveal global enhancer hypomethylation in human HCCs. Integrative epigenomic characterization further pinpoints a recurrent hypomethylated enhancer of CCAAT/enhancer-binding protein-beta (C/EBPβ) which correlates with C/EBPβ over-expression and poorer prognosis of patients. Demethylation of C/EBPβ enhancer reactivates a self-reinforcing enhancer-target loop via direct transcriptional up-regulation of enhancer RNA. Conversely, deletion of this enhancer via CRISPR/Cas9 reduces C/EBPβ expression and its genome-wide co-occupancy with BRD4 at H3K27ac-marked enhancers and super-enhancers, leading to drastic suppression of driver oncogenes and HCC tumorigenicity. Hepatitis B X protein transgenic mouse model of HCC recapitulates this paradigm, as C/ebpβ enhancer hypomethylation associates with oncogenic activation in early tumorigenesis. These results support a causal link between aberrant enhancer hypomethylation and C/EBPβ over-expression, thereby contributing to hepatocarcinogenesis through global transcriptional reprogramming. There are distinct hypermethylation patterns in gene promoters in hepatocellular carcinomas (HCCs). Here, the authors show that the enhancer of C/EBPβ is recurrently hypomethylated in human HCCs, recapitulating this in a transgenic murine model and linking aberrant enhancer hypomethylation to hepatocarcinogenesis.
Collapse
|
1525
|
Liao H, Liao M, Xu L, Yan X, Ren B, Zhu Z, Yuan K, Zeng Y. Integrative analysis of h-prune as a potential therapeutic target for hepatocellular carcinoma. EBioMedicine 2019; 41:310-319. [PMID: 30665854 PMCID: PMC6444224 DOI: 10.1016/j.ebiom.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
Background Drosophila prune protein (h-prune) has been proved to play an essential role in regulating tumor metastasis. However, the clinical relevance of h-prune and its potential mechanism in regulating hepatocellular carcinoma (HCC) are still poorly understood. Methods In this study, we used tissue microarrays (TMA) containing 304 HCC tumor samples to evaluate the expression of h-prune and its correlation with prognosis. Data of RNAseq, mutation profiles, copy number variation (CNV), miRNAseq and methylation array from The Cancer Genome Atlas (TCGA) dataset were adopted to analyze the distinctive genomic patterns associated with h-prune expression. Results By using TMA, we found increased expression of h-prune in HCC tumor cells compared with adjacent normal tissues. Higher expression of h-prune was correlated with poorer OS and DFS outcomes. In addition, multivariate analysis showed that h-prune expression was an independent risk factor for both OS and DFS. Gene enrichment analysis showed that the gene signatures of cell proliferation, DNA methylation and canonical Wnt signaling pathway were enriched in h-prune-high patients. Notably, somatic mutation analysis demonstrated that higher mutation burden of RB1 and RPS6KA3 could be observed in h-prune-high patients. Moreover, integrative analysis revealed a strong correlation between h-prune expression and epigenetic changes. Interpretation This study has highlighted the clinical value of h-prune in predicting the prognosis of HCC patients and its essential role in promoting tumorigenesis of HCC.
Collapse
Affiliation(s)
- Haotian Liao
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mingheng Liao
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xu
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaokai Yan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bo Ren
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zexin Zhu
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kefei Yuan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Yong Zeng
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
1526
|
Chaudhary K, Poirion OB, Lu L, Huang S, Ching T, Garmire LX. Multimodal Meta-Analysis of 1,494 Hepatocellular Carcinoma Samples Reveals Significant Impact of Consensus Driver Genes on Phenotypes. Clin Cancer Res 2019; 25:463-472. [PMID: 30242023 PMCID: PMC6542354 DOI: 10.1158/1078-0432.ccr-18-0088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/28/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023]
Abstract
Although driver genes in hepatocellular carcinoma (HCC) have been investigated in various previous genetic studies, prevalence of key driver genes among heterogeneous populations is unknown. Moreover, the phenotypic associations of these driver genes are poorly understood. This report aims to reveal the phenotypic impacts of a group of consensus driver genes in HCC. We used MutSigCV and OncodriveFM modules implemented in the IntOGen pipeline to identify consensus driver genes across six HCC cohorts comprising 1,494 samples in total. To access their global impacts, we used The Cancer Genome Atlas (TCGA) mutations and copy-number variations to predict the transcriptomics data, under generalized linear models. We further investigated the associations of the consensus driver genes to patient survival, age, gender, race, and risk factors. We identify 10 consensus driver genes across six HCC cohorts in total. Integrative analysis of driver mutations, copy-number variations, and transcriptomic data reveals that these consensus driver mutations and their copy-number variations are associated with a majority (62.5%) of the mRNA transcriptome but only a small fraction (8.9%) of miRNAs. Genes associated with TP53, CTNNB1, and ARID1A mutations contribute to the tripod of most densely connected pathway clusters. These driver genes are significantly associated with patients' overall survival. Some driver genes are significantly linked to HCC gender (CTNNB1, ALB, TP53, and AXIN1), race (TP53 and CDKN2A), and age (RB1) disparities. This study prioritizes a group of consensus drivers in HCC, which collectively show vast impacts on the phenotypes. These driver genes may warrant as valuable therapeutic targets of HCC.
Collapse
Affiliation(s)
| | - Olivier B Poirion
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Liangqun Lu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Sijia Huang
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Travers Ching
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Lana X Garmire
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
1527
|
Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med 2019; 25:301-311. [PMID: 30643286 DOI: 10.1038/s41591-018-0321-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/09/2018] [Indexed: 12/28/2022]
Abstract
Cancer cells develop mechanisms to escape immunosurveillance, among which modulating the expression of immune suppressive messenger RNAs is most well-documented. However, how this is molecularly achieved remains largely unresolved. Here, we develop an in vivo mouse model of liver cancer to study oncogene cooperation in immunosurveillance. We show that MYC overexpression (MYCTg) synergizes with KRASG12D to induce an aggressive liver tumor leading to metastasis formation and reduced mouse survival compared with KRASG12D alone. Genome-wide ribosomal footprinting of MYCTg;KRASG12 tumors compared with KRASG12D revealed potential alterations in translation of mRNAs, including programmed-death-ligand 1 (PD-L1). Further analysis revealed that PD-L1 translation is repressed in KRASG12D tumors by functional, non-canonical upstream open reading frames in its 5' untranslated region, which is bypassed in MYCTg;KRASG12D tumors to evade immune attack. We show that this mechanism of PD-L1 translational upregulation was effectively targeted by a potent, clinical compound that inhibits eIF4E phosphorylation, eFT508, which reverses the aggressive and metastatic characteristics of MYCTg;KRASG12D tumors. Together, these studies reveal how immune-checkpoint proteins are manipulated by distinct oncogenes at the level of mRNA translation, which can be exploited for new immunotherapies.
Collapse
|
1528
|
Pascut D, Sukowati CHC, Antoniali G, Mangiapane G, Burra S, Mascaretti LG, Buonocore MR, Crocè LS, Tiribelli C, Tell G. Serum AP-endonuclease 1 (sAPE1) as novel biomarker for hepatocellular carcinoma. Oncotarget 2019; 10:383-394. [PMID: 30719231 PMCID: PMC6349448 DOI: 10.18632/oncotarget.26555] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
Late diagnosis for Hepatocellular Carcinoma (HCC) remains one of the leading causes for the high mortality rate. The apurinic/apyrimidinic endonuclease 1 (APE1), an essential member of the base excision DNA repair (BER) pathway, contributes to cell response to oxidative stress and has other non-repair activities. In this study, we evaluate the role of serum APE1 (sAPE1) as a new diagnostic biomarker and we investigate the biological role for extracellular APE1 in HCC. sAPE1 level was quantified in 99 HCC patients, 50 non-HCC cirrhotic and 100 healthy controls. The expression level was significantly high in HCC (75.8 [67.3-87.9] pg/mL) compared to cirrhosis (29.8 [18.3-36.5] pg/mL] and controls (10.8 [7.5-13.2] pg/mL) (p < 0.001). The sAPE1 level corresponded with its protein expression in HCC tissue. sAPE1 had high diagnostic accuracy to differentiate HCC from cirrhotic (AUC = 0.87, sensitivity 88%, specificity 71%, cut-off of 36.3 pg/mL) and healthy subjects (AUC 0.98, sensibility 98% and specificity 83%, cut-off of 19.0 pg/mL). Recombinant APE1, exogenously added to JHH6 cells, significantly promotes IL-6 and IL-8 expression, suggesting a role of sAPE1 as a paracrine pro-inflammatory molecule, which may modulate the inflammatory status in cancer microenvironment. We described herein, for the first time to our knowledge, that sAPE1 might be considered as a promising diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Devis Pascut
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
| | - Caecilia Hapsari Ceriapuri Sukowati
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Giovanni Mascaretti
- Transfusion Medicine Department, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | | | - Lory Saveria Crocè
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Clinica Patologie Fegato, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Claudio Tiribelli
- Liver Research Center, Fondazione Italiana Fegato, ONLUS, AREA Science Park, Basovizza, Trieste, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
1529
|
Choy CT, Wong CH, Chan SL. Embedding of Genes Using Cancer Gene Expression Data: Biological Relevance and Potential Application on Biomarker Discovery. Front Genet 2019; 9:682. [PMID: 30662451 PMCID: PMC6329279 DOI: 10.3389/fgene.2018.00682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 01/04/2023] Open
Abstract
Artificial neural networks (ANNs) have been utilized for classification and prediction task with remarkable accuracy. However, its implications for unsupervised data mining using molecular data is under-explored. We found that embedding can extract biologically relevant information from The Cancer Genome Atlas (TCGA) gene expression dataset by learning a vector representation through gene co-occurrence. Ground truth relationship, such as cancer types of the input sample and semantic meaning of genes, were showed to retain in the resulting entity matrices. We also demonstrated the interpretability and usage of these matrices in shortlisting candidates from a long gene list as in the case of immunotherapy response. 73 related genes are singled out while the relatedness of 55 genes with immune checkpoint proteins (PD-1, PD-L1, and CTLA-4) are supported by literature. 16 novel genes (ACAP1, C11orf45, CD79B, CFP, CLIC2, CMPK2, CXCR2P1, CYTIP, FER, MCTO1, MMP25, RASGEF1B, SLFN12, TBC1D10C, TRAF3IP3, TTC39B) related to immune checkpoint proteins were identified. Thus, this method is feasible to mine big volume of biological data, and embedding would be a valuable tool to discover novel knowledge from omics data. The resulting embedding matrices mined from TCGA gene expression data are interactively explorable online (http://bit.ly/tcga-embedding-cancer) and could serve as an informative reference for gene relatedness in the context of cancer and is readily applicable to biomarker discovery of any molecular targeted therapy.
Collapse
Affiliation(s)
- Chi Tung Choy
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Chi Hang Wong
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
1530
|
Molecular Subtypes and Genomic Signatures of Hepatocellular Carcinoma for Prognostication and Therapeutic Decision-Making. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
1531
|
Analysis of Hepatocellular Carcinoma Tissue for Biomarker Discovery. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
1532
|
Couri T, Pillai A. Goals and targets for personalized therapy for HCC. Hepatol Int 2019; 13:125-137. [PMID: 30600478 DOI: 10.1007/s12072-018-9919-1] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide and its incidence continues to rise. While cirrhosis underlies most cases of HCC, many molecular pathways are implicated in HCC carcinogenesis, including the TERT promoter mutation, Wnt/β-catenin, P53, Akt/mTOR, vascular endothelial growth factor receptor (VEGFR), and endothelial growth factor receptor (EGFR)/RAS/MAPK pathways. While the most widely used staging and treatment algorithm for HCC-the Barcelona Clinic Liver Cancer (BCLC) system-does not recommend systemic molecular therapy for early HCC, a variety of treatment options are available depending upon the stage of HCC at diagnosis. Determining the best treatment options must take into account not only the burden and extent of HCC, but also the patient's performance status, underlying liver function, extra-hepatic disease and co-morbidities. Radiofrequency or microwave ablation, liver resection, or liver transplantation, all potential curative therapies for HCC, should be the first-line treatments when possible. For patients who are not candidates of curative treatments, locoregional therapies such as transarterial chemoembolization (TACE), transarterial radioembolization (TARE), and stereotactic body radiation (SBRT) can improve survival and quality of life. Sorafenib, a multi-kinase VEGF inhibitor, is the most widely used systemic chemotherapy approved as a first-line agent for unresectable or advanced HCC. Clinical trials are underway directed towards molecular therapies that target different aspects of the hepatocellular carcinogenesis cascade. Ideally, the goal of future therapy should be to target multiple pathways in the HCC cascade with combination treatments to achieve personalized care aimed at improving overall survival.
Collapse
Affiliation(s)
- Thomas Couri
- Department of Internal Medicine, University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
1533
|
Dhanasekaran R, Nault JC, Roberts LR, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019; 156:492-509. [PMID: 30404026 PMCID: PMC6340723 DOI: 10.1053/j.gastro.2018.11.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is poorly understood, but recent advances in genomics have increased our understanding of the mechanisms by which hepatitis B virus, hepatitis C virus, alcohol, fatty liver disease, and other environmental factors, such as aflatoxin, cause liver cancer. Genetic analyses of liver tissues from patients have provided important information about tumor initiation and progression. Findings from these studies can potentially be used to individualize the management of HCC. In addition to sorafenib, other multi-kinase inhibitors have been approved recently for treatment of HCC, and the preliminary success of immunotherapy has raised hopes. Continued progress in genomic medicine could improve classification of HCCs based on their molecular features and lead to new treatments for patients with liver cancer.
Collapse
Affiliation(s)
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Europeen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
1534
|
Liu S, Zhou Z, Jia Y, Xue J, Liu Z, Cheng K, Cheng S, Liu S. Identification of portal vein tumor thrombus with an independent clonal origin in hepatocellular carcinoma via multi-omics data analysis. Cancer Biol Med 2019; 16:147-170. [PMID: 31119055 PMCID: PMC6528462 DOI: 10.20892/j.issn.2095-3941.2018.0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective Multiple mechanisms underlying the development of portal vein tumor thrombus (PVTT) in hepatocellular carcinoma (HCC) have been reported recently. However, the origins of PVTT remain unknown. Increasing multi-omics data on PVTTs in HCCs have made it possible to investigate whether PVTTs originate from the corresponding primary tumors (Ts). Methods The clonal relationship between PVTTs and their corresponding primary Ts was investigated using datasets deposited in public databases. One DNA copy number variations dataset and three gene expression datasets were downloaded for the analyses. Clonality analysis was performed to investigate the clonal relationship between PVTTs and Ts from an individual patient. Differential gene expression analysis was applied to investigate the gene expression profiles of PVTTs and Ts. Results One out of 19 PVTTs had no clonal relationship with its corresponding T, whereas the others did. The PVTTs with independent clonal origin showed different gene expression and enrichment in biological processes from the primary Ts. Based on the unique gene expression profiles, a gene signature including 24 genes was used to identify pairs of PVTTs and primary Ts without any clonal relationship. Validation in three datasets showed that these types of pairs of PVTTs and Ts can be identified by the 24-gene signature. Conclusions Our findings show a direct evidence for PVTT origin and consolidate the heterogeneity of PVTTs observed in clinic. The results suggest that PVTT investigation at a molecular level is clinically necessary for diagnosis and treatment.
Collapse
Affiliation(s)
- Shupeng Liu
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zaixin Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jie Xue
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhiyong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Kai Cheng
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
1535
|
Cai C, Wang W, Tu Z. Aberrantly DNA Methylated-Differentially Expressed Genes and Pathways in Hepatocellular Carcinoma. J Cancer 2019; 10:355-366. [PMID: 30719129 PMCID: PMC6360310 DOI: 10.7150/jca.27832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Methylation plays a significant role in the etiology and pathogenesis of hepatocellular carcinoma (HCC). The aim of the present study is to identify aberrantly methylated-diferentially expressed genes (DEGs) and dysregulated pathways associated with the development of HCC through integrated analysis of gene expression and methylation microarray. Method: Aberrantly methylated-DEGs were identified from gene expression microarrays (GSE62232, GSE74656) and gene methylation microarrays (GSE44909, GSE57958). Functional enrichment and pathway enrichment analyses were performed through the database of DAVID. Protein-protein interaction (PPI) network was established by STRING and visualized in Cytoscape. Subsequently, overall survival (OS) analysis of hub genes was performed by OncoLnc. Finally, we validated the expression level of CDCA5 by quantitative real-time PCR (qRT-PCR) and western blotting, and performed Immunohistochemical experiments utilizing a tissue microarray. Cell growth assay and flow cytometry were behaved to explore the function of CDCA5. Results: Aberrantly methylated-DEGs were enriched in biological process, molecular function, cellular component and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Among them, cell cycle was enriched most frequently, and some terms associated with cancer were enriched, such as p53 signaling pathway, pathways in cancers, PI3K-Akt signaling pathway and AMPK signaling pathway. After survival analysis and validation in TCGA database including methylation and gene expression status, 12 hub genes were identified. Furthermore, the expression level of new gene CDCA5 was validated in HCC cell lines and hepatic normal cell lines through qRT-PCR and western blotting. In additional, immunohistochemistry experiments revealed higher CDCA5 protein expression from HCC tumor tissues compared with paracancer tissues by tissue microarray. Finally, through loss of function, we demonstrated that CDCA5 promoted proliferation by regulating the cell cycle. Conclusions: In summary, the present study implied possible aberrantly methylated-differentially expressed genes and dysregulated pathways in HCC by bioinformatics analysis and experiments, which could be helpful in understanding the molecular mechanisms underlying the development and progression of HCC. Hub genes including CDC20, AURKB, BIRC5, RRM2, MCM2, PTTG1, CDKN2A, NEK2, CENPF, RACGAP1, GNA14 and especially the new gene CDCA5 may serve as biomarkers for diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Changzhou Cai
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhenhua Tu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People`s Hospital, Shenzhen 518112, China
| |
Collapse
|
1536
|
Balluff B, Buck A, Martin‐Lorenzo M, Dewez F, Langer R, McDonnell LA, Walch A, Heeren RM. Integrative Clustering in Mass Spectrometry Imaging for Enhanced Patient Stratification. Proteomics Clin Appl 2019; 13:e1800137. [PMID: 30580496 PMCID: PMC6590511 DOI: 10.1002/prca.201800137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Indexed: 12/04/2022]
Abstract
SCOPE In biomedical research, mass spectrometry imaging (MSI) can obtain spatially-resolved molecular information from tissue sections. Especially matrix-assisted laser desorption/ionization (MALDI) MSI offers, depending on the type of matrix, the detection of a broad variety of molecules ranging from metabolites to proteins, thereby facilitating the collection of multilevel molecular data. Lately, integrative clustering techniques have been developed that make use of the complementary information of multilevel molecular data in order to better stratify patient cohorts, but which have not yet been applied in the field of MSI. MATERIALS AND METHODS In this study, the potential of integrative clustering is investigated for multilevel molecular MSI data to subdivide cancer patients into different prognostic groups. Metabolomic and peptidomic data are obtained by MALDI-MSI from a tissue microarray containing material of 46 esophageal cancer patients. The integrative clustering methods Similarity Network Fusion, iCluster, and moCluster are applied and compared to non-integrated clustering. CONCLUSION The results show that the combination of multilevel molecular data increases the capability of integrative algorithms to detect patient subgroups with different clinical outcome, compared to the single level or concatenated data. This underlines the potential of multilevel molecular data from the same subject using MSI for subsequent integrative clustering.
Collapse
Affiliation(s)
- Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute (M4I)Maastricht University6229 ERMaastrichtThe Netherlands
| | - Achim Buck
- Research Unit Analytical PathologyHelmholtz Zentrum München85764OberschleißheimGermany
| | - Marta Martin‐Lorenzo
- Maastricht MultiModal Molecular Imaging institute (M4I)Maastricht University6229 ERMaastrichtThe Netherlands
| | - Frédéric Dewez
- Maastricht MultiModal Molecular Imaging institute (M4I)Maastricht University6229 ERMaastrichtThe Netherlands
| | - Rupert Langer
- Institute of PathologyUniversity of BernCH‐3008BernSwitzerland
| | | | - Axel Walch
- Research Unit Analytical PathologyHelmholtz Zentrum München85764OberschleißheimGermany
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging institute (M4I)Maastricht University6229 ERMaastrichtThe Netherlands
| |
Collapse
|
1537
|
Li S, Hu Z, Zhao Y, Huang S, He X. Transcriptome-Wide Analysis Reveals the Landscape of Aberrant Alternative Splicing Events in Liver Cancer. Hepatology 2019; 69:359-375. [PMID: 30014619 DOI: 10.1002/hep.30158] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/30/2018] [Indexed: 01/02/2023]
Abstract
Alternative splicing (AS) is assumed to be a pivotal determinant for the generation of diverse transcriptional variants in cancer. However, the comprehensive dysregulation of AS and the prospective biological and clinical relevance in hepatocellular carcinoma (HCC) remain obscure. Here, we identified and depicted the AS landscape in HCC by performing reference-based assembly of sequencing reads from over 600 RNA sequencing (RNA-seq) libraries. We detected various differentially spliced ASEs across patients covering not only protein-coding genes, but also considerable numbers of noncoding genes. Strikingly, alternative transcription initiation was found to frequently occur in HCC. These differential ASEs were highly related to "cancer hallmarks" and involved in metabolism-related pathways in particular. In addition, 243 differential ASEs were identified as risk predictors for HCC patient survival. The isoform switch of metabolism-related gene UGP2 (UDP-glucose pyrophosphorylase 2) might play an essential role in HCC. We further constructed regulatory networks between RNA-binding protein (RBP) genes and the corresponding ASEs. Further analysis demonstrated that the regulated networks were enriched in a variety of metabolism-related pathways. Conclusion: Differential ASEs are prevalent in HCC, where alternative transcription initiation was found to frequently occur. We found that genes having differential ASEs were significantly enriched in metabolism-related pathways. The expression variations, binding relations, and even mutations of RBP genes largely influenced differential ASEs in HCC.
Collapse
Affiliation(s)
- Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
1538
|
Wang Y, Wang Y, Wang S, Tong Y, Jin L, Zong H, Zheng R, Yang J, Zhang Z, Ouyang E, Zhou M, Zhang X. GIDB: a knowledge database for the automated curation and multidimensional analysis of molecular signatures in gastrointestinal cancer. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5487627. [PMID: 31089686 PMCID: PMC6517830 DOI: 10.1093/database/baz051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/08/2019] [Accepted: 03/29/2019] [Indexed: 01/12/2023]
Abstract
Gastrointestinal (GI) cancer is common, characterized by high mortality, and includes oesophagus, gastric, liver, bile duct, pancreas, rectal and colon cancers. The insufficient specificity and sensitivity of biomarkers is still a key clinical hindrance for GI cancer diagnosis and successful treatment. The emergence of `precision medicine', `basket trial' and `field cancerization' concepts calls for an urgent need and importance for the understanding of how organ system cancers occur at the molecular levels. Knowledge from both the literature and data available in public databases is informative in elucidating the molecular alterations underlying GI cancer. Currently, most available cancer databases have not offered a comprehensive discovery of gene-disease associations, molecular alterations and clinical information by integrated text mining and data mining in GI cancer. We develop GIDB, a panoptic knowledge database that attempts to automate the curation of molecular signatures using natural language processing approaches and multidimensional analyses. GIDB covers information on 8730 genes with both literature and data supporting evidence, 248 miRNAs, 58 lncRNAs, 320 copy number variations, 49 fusion genes and 2381 semantic networks. It presents a comprehensive database, not only in parallelizing supporting evidence and data integration for signatures associated with GI cancer but also in providing the timeline feature of major molecular discoveries. It highlights the most comprehensive overview, research hotspots and the development of historical knowledge of genes in GI cancer. Furthermore, GIDB characterizes genomic abnormalities in multilevel analysis, including simple somatic mutations, gene expression, DNA methylation and prognosis. GIDB offers a user-friendly interface and two customizable online tools (Heatmap and Network) for experimental researchers and clinicians to explore data and help them shorten the learning curve and broaden the scope of knowledge. More importantly, GIDB is an ongoing research project that will continue to be updated and improve the automated method for reducing manual work.
Collapse
Affiliation(s)
- Ying Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yueqian Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuangkuai Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuantao Tong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ling Jin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Zong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rongbin Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinxuan Yang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - En Ouyang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengyan Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoyan Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
1539
|
Hung MH, Wang XW. Molecular Alterations and Heterogeneity in Hepatocellular Carcinoma. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1540
|
Li Y, Zhang MC, Xu XK, Zhao Y, Mahanand C, Zhu T, Deng H, Nevo E, Du JZ, Chen XQ. Functional Diversity of p53 in Human and Wild Animals. Front Endocrinol (Lausanne) 2019; 10:152. [PMID: 30915036 PMCID: PMC6422910 DOI: 10.3389/fendo.2019.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
The common understanding of p53 function is a genome guardian, which is activated by diverse stresses stimuli and mediates DNA repair, apoptosis, and cell cycle arrest. Increasing evidence has demonstrated p53 new cellular functions involved in abundant endocrine and metabolic response for maintaining homeostasis. However, TP53 is frequently mutant in human cancers, and the mutant p53 (Mut-p53) turns to an "evil" cancer-assistant. Mut-p53-induced epithelial-mesenchymal transition (EMT) plays a crucial role in the invasion and metastasis of endocrine carcinomas, and Mut-p53 is involved in cancer immune evasion by upregulating PD-L1 expression. Therefore, Mut-p53 is a valuable treatment target for malignant tumors. Targeting Mut-p53 in correcting sequence and conformation are increasingly concerned. Interestingly, in wild animals, p53 variations contribute to cancer resistant and high longevity. This review has discussed the multiple functions of p53 in health, diseases, and nature evolution, summarized the frequently mutant sites of p53, and the mechanisms of Mut-p53-mediated metastasis and immune evasion in endocrine cancers. We have provided a new insight for multiple roles of p53 in human and wild animals.
Collapse
Affiliation(s)
- Yi Li
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Meng-Chen Zhang
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Xiao-Kang Xu
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Chatoo Mahanand
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Deng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eviatar Nevo
- Institute of Evolution and International Graduate Center of Evolution, University of Haifa, Haifa, Israel
| | - Ji-Zeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue-Qun Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang UniversityHHangzhou, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue-Qun Chen
| |
Collapse
|
1541
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
1542
|
Benfeitas R, Bidkhori G, Mukhopadhyay B, Klevstig M, Arif M, Zhang C, Lee S, Cinar R, Nielsen J, Uhlen M, Boren J, Kunos G, Mardinoglu A. Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis. EBioMedicine 2018; 40:471-487. [PMID: 30606699 PMCID: PMC6412169 DOI: 10.1016/j.ebiom.2018.12.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Redox metabolism is often considered a potential target for cancer treatment, but a systematic examination of redox responses in hepatocellular carcinoma (HCC) is missing. METHODS Here, we employed systems biology and biological network analyses to reveal key roles of genes associated with redox metabolism in HCC by integrating multi-omics data. FINDINGS We found that several redox genes, including 25 novel potential prognostic genes, are significantly co-expressed with liver-specific genes and genes associated with immunity and inflammation. Based on an integrative analysis, we found that HCC tumors display antagonistic behaviors in redox responses. The two HCC groups are associated with altered fatty acid, amino acid, drug and hormone metabolism, differentiation, proliferation, and NADPH-independent vs -dependent antioxidant defenses. Redox behavior varies with known tumor subtypes and progression, affecting patient survival. These antagonistic responses are also displayed at the protein and metabolite level and were validated in several independent cohorts. We finally showed the differential redox behavior using mice transcriptomics in HCC and noncancerous tissues and associated with hypoxic features of the two redox gene groups. INTERPRETATION Our integrative approaches highlighted mechanistic differences among tumors and allowed the identification of a survival signature and several potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden.
| | - Gholamreza Bidkhori
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden.
| | - Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden.
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden.
| | - Sunjae Lee
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden.
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden.
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK.
| |
Collapse
|
1543
|
Apasu JE, Schuette D, LaRanger R, Steinle JA, Nguyen LD, Grosshans HK, Zhang M, Cai WL, Yan Q, Robert ME, Mak M, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo. FASEB J 2018; 33:4802-4813. [PMID: 30592625 DOI: 10.1096/fj.201802004r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increased levels of the calcium-binding protein neuronal calcium sensor 1 (NCS1) predict an unfavorable patient outcome in several aggressive cancers, including breast and liver tumors. Previous studies suggest that NCS1 overexpression facilitates metastatic spread of these cancers. To investigate this hypothesis, we explored the effects of NCS1 overexpression on cell proliferation, survival, and migration patterns in vitro in 2- and 3-dimensional (2/3-D). Furthermore, we translated our results into an in vivo mouse xenograft model. Cell-based proliferation assays were used to demonstrate the effects of overexpression of NCS1 on growth rates. In vitro colony formation and wound healing experiments were performed and 3-D migration dynamics were studied using collagen gels. Nude mice were injected with breast cancer cells to monitor NCS1-dependent metastasis formation over time. We observed that increased NCS1 levels do not change cellular growth rates, but do significantly increase 2- and 3-D migration dynamics in vitro. Likewise, NCS1-overexpressing cells have an increased capacity to form distant metastases and demonstrate better survival and less necrosis in vivo. We found that NCS1 preferentially localizes to the leading edge of cells and overexpression increases the motility of cancer cells. Furthermore, this phenotype is correlated with an increased number of metastases in a xenograft model. These results lay the foundation for exploring the relevance of an NCS1-mediated pathway as a metastatic biomarker and as a target for pharmacologic interventions.-Apasu, J. E., Schuette, D., LaRanger, R., Steinle, J. A., Nguyen, L. D., Grosshans, H. K., Zhang, M., Cai, W. L., Yan, Q., Robert, M. E., Mak, M., Ehrlich, B. E. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan E Apasu
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Daniel Schuette
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Ryan LaRanger
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA; and
| | - Julia A Steinle
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | | | - Meiling Zhang
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Wesley L Cai
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA; and
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
1544
|
Stavraka C, Rush H, Ross P. Combined hepatocellular cholangiocarcinoma (cHCC-CC): an update of genetics, molecular biology, and therapeutic interventions. J Hepatocell Carcinoma 2018; 6:11-21. [PMID: 30643759 PMCID: PMC6312394 DOI: 10.2147/jhc.s159805] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combined hepatocellular cholangiocarcinoma (CC) is a rare and aggressive primary hepatic malignancy with significant histological and biological heterogeneity. It presents with more aggressive behavior and worse survival outcomes than either hepatocellular carcinoma or CC and remains a diagnostic challenge. An accurate diagnosis is crucial for its optimal management. Major hepatectomy with hilar node resection remains the mainstay of treatment in operable cases. Advances in the genetic and molecular characterization of this tumor will contribute to the better understanding of its pathogenesis and shape its future management.
Collapse
Affiliation(s)
- Chara Stavraka
- Department of Medical Oncology, Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK,
| | - Hannah Rush
- Department of Medical Oncology, Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK,
| | - Paul Ross
- Department of Medical Oncology, Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK, .,Department of Oncology, King's College Hospital NHS Foundation Trust, London, UK,
| |
Collapse
|
1545
|
Augello G, Emma MR, Cusimano A, Azzolina A, Mongiovì S, Puleio R, Cassata G, Gulino A, Belmonte B, Gramignoli R, Strom SC, McCubrey JA, Montalto G, Cervello M. Targeting HSP90 with the small molecule inhibitor AUY922 (luminespib) as a treatment strategy against hepatocellular carcinoma. Int J Cancer 2018; 144:2613-2624. [DOI: 10.1002/ijc.31963] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Giuseppa Augello
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
| | - Maria Rita Emma
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
| | - Antonella Cusimano
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
| | - Antonina Azzolina
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
| | - Sarah Mongiovì
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”Histopathology and Immunohistochemistry Laboratory Palermo Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”Histopathology and Immunohistochemistry Laboratory Palermo Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health ScienceUniversity of Palermo Palermo Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health ScienceUniversity of Palermo Palermo Italy
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory MedicineKarolinska Institutet Stockholm Sweden
| | - Stephen C. Strom
- Division of Pathology, Department of Laboratory MedicineKarolinska Institutet Stockholm Sweden
| | - James A. McCubrey
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina University Greenville North Carolina USA
| | - Giuseppe Montalto
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
- Biomedic Department of Internal Medicine and SpecialtiesUniversity of Palermo Palermo Italy
| | - Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”National Research Council (CNR) Palermo Italy
| |
Collapse
|
1546
|
Osorio JC, Harding JJ. Understanding and quantifying the immune microenvironment in hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:107. [PMID: 30701214 DOI: 10.21037/tgh.2018.12.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Juan C Osorio
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - James J Harding
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
1547
|
Chen PF, Li QH, Zeng LR, Yang XY, Peng PL, He JH, Fan B. A 4-gene prognostic signature predicting survival in hepatocellular carcinoma. J Cell Biochem 2018; 120:9117-9124. [PMID: 30582205 DOI: 10.1002/jcb.28187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To develop an independent prognostic signature for patients with hepatocellular carcinoma (HCC). METHODS HCC gene expression profile the cancer genome atlas-liver hepatocellular carcinoma and GSE14520 were used as discovery and test set, respectively. Differentially expressed genes (DEGs) were identified between HCC tissues and adjacent normal liver tissues. Univariate Cox proportional hazards regression analysis was performed to identify DEGs correlated with survival of HCC patients. A 4-gene-based signature was constructed based on a least absolute shrinkage and selection operator Cox penalized regression model. The predictive value of the signature was analyzed and validated. RESULTS Two hundred sixty-three DEGs were identified between HCC and adjacent liver tissues. After univariate survival analysis, 90 DEGs were found to be significantly correlated with the overall survival (OS) of HCC patients, of which 4 genes (KPNA2, CDC20, SPP1, and TOP2A) with non-zero coefficient were used to construct a prognostic signature. The 4-gene signature was significantly associated with the age (P = 0.046), grade ( P = 0.022), and T stage ( P = 0.023) of HCC patients in the discovery set and it also significantly associated with TNM stage ( P = 0.033), and serum alpha-fetoprotein lever ( P = 0.034). Patients in the 4-gene low-risk group were associated with better OS and recurrence-free survival (RFS) than those in the high-risk group in the discovery and test set. Meanwhile, the 4-gene signature is an independent prognostic factor regarding OS and RFS in the discovery and test set. CONCLUSION We developed a 4-gene-based signature, which could be a candidate prognostic factor for patients with HCC.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Qing-He Li
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Li-Rong Zeng
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Xue-Ying Yang
- Department of Medical Records, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Pai-Lan Peng
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Jian-Hua He
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Bin Fan
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| |
Collapse
|
1548
|
Chen XY, Zhang J, Hou LD, Zhang R, Chen W, Fan HN, Huang YX, Liu H, Zhu JS. Upregulation of PD-L1 predicts poor prognosis and is associated with miR-191-5p dysregulation in colon adenocarcinoma. Int J Immunopathol Pharmacol 2018; 32:2058738418790318. [PMID: 30045644 PMCID: PMC6073840 DOI: 10.1177/2058738418790318] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Targeting of the programmed cell-death 1 ligand 1 (PD-L1) signal pathway is a
promising treatment strategy in several cancers. The purpose of this study was
to evaluate the clinical significance of PD-L1 in patients with colon
adenocarcinoma (COAD). A total of 240 patients who were diagnosed with COAD from
The Cancer Genome Atlas (TCGA) RNA-sequencing data and another cohort for
pair-matched COAD samples (n = 40) in tissue microarray (TMA) were enrolled in
this study. The correlation of PD-L1 or miR-191-5p expression with
clinicopathological features and prognosis in patients with COAD was further
analyzed using TCGA data and TMA. The Cox proportional hazard regression model
was used to evaluate the association of PD-L1 or miR-191-5p expression with
overall survival (OS) and tumor recurrence in patients with COAD. The microRNAs
(miRNAs) that target PD-L1 gene were identified by bioinformatics and Spearman
correlation analysis. We found that PD-L1 expression was increased in COAD
tissues and was correlated with poor survival and tumor recurrence in patients
with COAD. The increased expression of PD-L1 was attributed to the dysregulation
of miR-191-5p expression rather than its genetic or epigenetic alterations.
Moreover, the expression of miR-191-5p presented the negative correlation with
PD-L1 expression and acted as an independent prognostic factor of OS in patients
with COAD. Therefore, PD-L1 may predict poor prognosis and is negatively
associated with miR-191-5p expression in patients with COAD.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Dan Hou
- 2 Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Ning Fan
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Xia Huang
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liu
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Shui Zhu
- 1 Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
1549
|
Ji D, Chen GF, Liu X, Zhu J, Sun JY, Zhang XY, Lu XJ. Identification of LINC01615 as potential metastasis-related long noncoding RNA in hepatocellular carcinoma. J Cell Physiol 2018; 234:12964-12970. [PMID: 30556902 DOI: 10.1002/jcp.27963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is one of the most prevalent and fatal cancers. Studying the long noncoding RNA (lncRNA) alterations in hepatocellular carcinoma may lead to new therapeutic strategies. We checked whether there were correlations between The Cancer Genome Atlas expression profiles of the differentially expressed lncRNAs and their DNA methylation status or the copy number variations for hepatocellular carcinoma. We obtained 41 lncRNAs that were differentially expressed between tumor and normal samples, and their DNA methylation status was negatively correlated with the expression levels. We identified five lncRNAs that were recurrently amplified or deleted in tumor samples, but none of them were associated with the messenger RNA (mRNA) expression levels. To obtain the biological function of these lncRNAs, the coexpressed mRNAs in the hepatocellular carcinoma were figured out. A total of 10 lncRNAs were highly correlated with at least one gene. Six out of the ten lncRNAs were already known to be related with cancer previously. LINC01615 had 72 coexpressed genes, and we carried out the gene ontology (GO) term enrichment for these protein-coding genes. The results suggested that these lncRNAs were associated with extracellular matrix organization. To summarize, we identified 41 potentially cancer-related lncRNAs. In particular, we proposed that LINC01615 potentially affected the extracellular matrix and had further impacts on the metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dong Ji
- Second Liver Cirrhosis Diagnosis and Treatment Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Feng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoliu Liu
- Medical Laboratory of Shenzhen LuoHu People's Hospital, Shenzhen, China
| | - Jing Zhu
- Sparkfire Scientific Research Group, Nanjing Medical University, Nanjing, China
| | - Jin-Yu Sun
- Sparkfire Scientific Research Group, Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
1550
|
Crona J, Backman S, Welin S, Taïeb D, Hellman P, Stålberg P, Skogseid B, Pacak K. RNA-Sequencing Analysis of Adrenocortical Carcinoma, Pheochromocytoma and Paraganglioma from a Pan-Cancer Perspective. Cancers (Basel) 2018; 10:E518. [PMID: 30558313 PMCID: PMC6315481 DOI: 10.3390/cancers10120518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022] Open
Abstract
Adrenocortical carcinoma (ACC) and pheochromocytoma and paraganglioma (PPGL) are defined by clinicopathological criteria and can be further sub-divided based on different molecular features. Whether differences between these molecular subgroups are significant enough to re-challenge their current clinicopathological classification is currently unknown. It is also not fully understood to which other cancers ACC and PPGL show similarity to. To address these questions, we included recent RNA-Seq data from the Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) datasets. Two bioinformatics pipelines were used for unsupervised clustering and principal components analysis. Results were validated using consensus clustering model and interpreted according to previous pan-cancer experiments. Two datasets consisting of 3319 tumors from 35 disease categories were studied. Consistent with the current classification, ACCs clustered as a homogenous group in a pan-cancer context. It also clustered close to neural crest derived tumors, including gliomas, neuroblastomas, pancreatic neuroendocrine tumors, and PPGLs. Contrary, some PPGLs mixed with pancreatic neuroendocrine tumors or neuroblastomas. Thus, our unbiased gene-expression analysis of PPGL did not overlap with their current clinicopathological classification. These results emphasize some importances of the shared embryological origin of these tumors, all either related or close to neural crest tumors, and opens for investigation of a complementary categorization based on gene-expression features.
Collapse
Affiliation(s)
- Joakim Crona
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185 Uppsala, Sweden.
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD 20892, USA.
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset ing 70, 75185 Uppsala, Sweden.
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185 Uppsala, Sweden.
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix Marseille Université, 13385 Marseille, France.
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset ing 70, 75185 Uppsala, Sweden.
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset ing 70, 75185 Uppsala, Sweden.
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185 Uppsala, Sweden.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD 20892, USA.
| |
Collapse
|