1501
|
Pan Y, Li D, Yang J, Wang N, Xiao E, Tao L, Ding X, Sun P, Li D. Portal Venous Circulating Tumor Cells Undergoing Epithelial-Mesenchymal Transition Exhibit Distinct Clinical Significance in Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:757307. [PMID: 34778073 PMCID: PMC8582019 DOI: 10.3389/fonc.2021.757307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Much importance is attached to the clinical application value of circulating tumor cells (CTCs), meanwhile tumor-proximal CTCs detection has interested researchers for its unique advantage. This research mainly discusses the correlation of portal venous (PoV) CTCs counts in different epithelial-mesenchymal transition status with clinicopathologic parameters and postoperative prognosis in resectable pancreatic ductal adenocarcinoma patients (PDAC). METHODS PDAC patients (n=60) who received radical resection were enrolled in this research. PoV samples from all patients and peripheral venous (PV) samples from 32 patients among them were collected to verify spatial heterogeneity of CTCs distribution, and explore their correlation with clinicopathologic parameters and clinical prognosis. RESULTS CTCs detectable rate and each phenotype count of PoV were higher than those of PV. Patients with recurrence had higher PV and PoV epithelial CTCs (E-CTCs) counts than recurrence-free patients (P<0.05). Some unfavourable clinicopathologic parameters were closely related to higher PoV CTCs counts. Multivariate regression analysis demonstrated that PoV mesenchymal CTC (M-CTC)s≥1/5 ml was an independent risk factor for metastasis free survival (MFS) (P=0.003) and overall survival (OS) (P=0.043). CONCLUSIONS Our research demonstrated that portal venous was a preferable vessel for CTC test, and patients with PoV M-CTC≥1/5 ml had shorter MFS and OS time in resectable PDAC patients. PoV CTC phenotype detection has the potential to be a reliable and accurate tool to identify resectable PDAC patients with high tendency of postoperative metastasis for better stratified management.
Collapse
Affiliation(s)
- Yujin Pan
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Deyu Li
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiuhui Yang
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ning Wang
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Erwei Xiao
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangming Ding
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Peichun Sun
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital Zhengzhou, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongxiao Li
- Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
1502
|
Kempf N, Moutahir F, Goiffon I, Cantaloube S, Bystricky K, Lavigne AC. Analysis of Cellular EMT States Using Molecular Biology and High Resolution FISH Labeling. Methods Mol Biol 2021; 2179:353-383. [PMID: 32939733 DOI: 10.1007/978-1-0716-0779-4_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis results from the ability of cancer cells to grow and to spread beyond the primary tumor to distant organs. Epithelial-to-Mesenchymal Transition (EMT), a fundamental developmental process, is reactivated in cancer cells, and causes epithelial properties to evolve into mesenchymal and invasive ones. EMT changes cellular characteristics between two distinct states, yet, the process is not binary but rather reflects a broad spectrum of partial EMT states in which cells exhibit various degrees of intermediate epithelial and mesenchymal phenotypes. EMT is a complex multistep process that involves cellular reprogramming through numerous signaling pathways, alterations in gene expression, and changes in chromatin morphology. Therefore, expression of key proteins, including cadherins, occludin, or vimentin must be precisely regulated. A comprehensive understanding of how changes in nuclear organization, at the level of single genes clusters, correlates with these processes during formation of metastatic cells is still missing and yet may help personalized prognosis and treatment in the clinic. Here, we describe methods to correlate physiological and molecular states of cells undergoing an EMT process with chromatin rearrangements observed via FISH labeling of specific domains.
Collapse
Affiliation(s)
- Noémie Kempf
- Center for Integrative Biology (CBI), Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), University of Toulouse, UPS, CNRS, F-31062 Toulouse, France
| | - Fatima Moutahir
- Center for Integrative Biology (CBI), Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), University of Toulouse, UPS, CNRS, F-31062 Toulouse, France
| | - Isabelle Goiffon
- Center for Integrative Biology (CBI), Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), University of Toulouse, UPS, CNRS, F-31062 Toulouse, France
| | - Sylvain Cantaloube
- Center for Integrative Biology (CBI), Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), University of Toulouse, UPS, CNRS, F-31062 Toulouse, France
| | - Kerstin Bystricky
- Center for Integrative Biology (CBI), Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), University of Toulouse, UPS, CNRS, F-31062 Toulouse, France
| | - Anne-Claire Lavigne
- Center for Integrative Biology (CBI), Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), University of Toulouse, UPS, CNRS, F-31062 Toulouse, France.
| |
Collapse
|
1503
|
Peyre L, Meyer M, Hofman P, Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. Br J Cancer 2021; 124:91-101. [PMID: 33257838 PMCID: PMC7782794 DOI: 10.1038/s41416-020-01177-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.
Collapse
Affiliation(s)
- Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
1504
|
Abstract
Metastasis and chemoresistance, the most lethal features of cancer progression, are strongly associated with a form of cellular plasticity known as the epithelial-to-mesenchymal transition (EMT). Carcinoma cells undergoing EMT lose their epithelial morphology and become more mobile, allowing them to invade and migrate more efficiently. This shift is also associated with a change in vulnerability to chemotherapeutic agents. Importantly, EMT does not involve a single mechanism, but rather encompasses a spectrum of phenotypes with differing degrees of epithelial and mesenchymal characteristics. These hybrid/partial epithelial-mesenchymal states are associated with other important aspects of tumor biology, such as distinct modes of cellular invasion and drug resistance, illustrating the need to further characterize this phenomenon in tumor cells. Although simple in theory, the identification of tumor cells that have undergone EMT in vivo has proven difficult due to their high similarity to other mesenchymal cells that populate tumor stroma, such as cancer-associated fibroblasts. This protocol describes two methods for isolating epithelial and EMT cancer cell populations from primary murine tumors and cultured cancer cells to identify different EMT subtypes. These populations can then be used for several applications, including, but not limited to, functional studies of motility or invasion, gene expression analysis (RNA sequencing and RT-qPCR), DNA sequencing, epigenetic analysis, tumor subtyping, western blotting, immunohistochemistry, etc. Finally, we describe a flow cytometry-based approach to identify and study tumors cells that are undergoing partial EMT.
Collapse
|
1505
|
Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Naturae 2021; 13:76-90. [PMID: 33959388 PMCID: PMC8084295 DOI: 10.32607/actanaturae.11062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
The review analyzes Snail family proteins, which are transcription factors involved in the regulation of the epithelial-mesenchymal transition (EMT) of tumor cells. We describe the structure of these proteins, their post-translational modification, and the mechanisms of Snail-dependent regulation of genes. The role of Snail proteins in carcinogenesis, invasion, and metastasis is analyzed. Furthermore, we focus on EMT signaling mechanisms involving Snail proteins. Next, we dissect Snail signaling in hypoxia, a condition that complicates anticancer treatment. Finally, we offer classes of chemical compounds capable of down-regulating the transcriptional activity of Snails. Given the important role of Snail proteins in cancer biology and the potential for pharmacological inhibition, Snail family proteins may be considered promising as therapeutic targets.
Collapse
Affiliation(s)
- M. A. Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. I. Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - V. V. Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. M. Scherbakov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
1506
|
Giangreco G, Malabarba MG, Sigismund S. Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biol Cell 2020; 113:165-182. [PMID: 33617023 DOI: 10.1111/boc.202000129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Although endocytosis was first described as the process mediating macromolecule or nutrient uptake through the plasma membrane, it is now recognised as a critical component of the cellular infrastructure involved in numerous processes, ranging from receptor signalling, proliferation and migration to polarity and stem cell regulation. To realise these varying roles, endocytosis needs to be finely regulated. Accordingly, multiple endocytic mechanisms exist that require specialised molecular machineries and an array of endocytic adaptor proteins with cell-specific functions. This review provides some examples of specialised functions of endocytic adaptors and other components of the endocytic machinery in different cell physiological processes, and how the alteration of these functions is linked to cancer. In particular, we focus on: (i) cargo selection and endocytic mechanisms linked to different adaptors; (ii) specialised functions in clathrin-mediated versus non-clathrin endocytosis; (iii) differential regulation of endocytic mechanisms by post-translational modification of endocytic proteins; (iv) cell context-dependent expression and function of endocytic proteins. As cases in point, we describe two endocytic protein families, dynamins and epsins. Finally, we discuss how dysregulation of the physiological role of these specialised endocytic proteins is exploited by cancer cells to increase cell proliferation, migration and invasion, leading to anti-apoptotic or pro-metastatic behaviours.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| |
Collapse
|
1507
|
Wernitznig D, Meier-Menches SM, Cseh K, Theiner S, Wenisch D, Schweikert A, Jakupec MA, Koellensperger G, Wernitznig A, Sommergruber W, Keppler BK. Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids. Metallomics 2020; 12:2121-2133. [PMID: 33295928 DOI: 10.1039/d0mt00227e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organometallic metal(arene) anticancer agents were believed to confer low selectivity for potential cellular targets. However, the ruthenium(arene) pyridinecarbothioamide (plecstatin-1) showed target selectivity for plectin, a scaffold protein and cytolinker. We employed a three-dimensional cancer spheroid model and showed that plecstatin-1 limited spheroid growth, induced changes in the morphology and in the architecture of tumour spheroids by disrupting the cytoskeletal organization. Additionally, we demonstrated that plecstatin-1 induced oxidative stress, followed by the induction of an immunogenic cell death signature through phosphorylation of eIF2α, exposure of calreticulin, HSP90 and HSP70 on the cell membrane and secretion of ATP followed by release of high mobility group box-1.
Collapse
Affiliation(s)
- Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1508
|
Zhang J, Zhao R, Xing D, Cao J, Guo Y, Li L, Sun Y, Tian L, Liu M. Magnesium Isoglycyrrhizinate Induces an Inhibitory Effect on Progression and Epithelial-Mesenchymal Transition of Laryngeal Cancer via the NF-κB/Twist Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5633-5644. [PMID: 33376307 PMCID: PMC7765753 DOI: 10.2147/dddt.s272323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Background Magnesium isoglycyrrhizinate (MI) was extracted from roots of the plant Glycyrrhiza glabra, which displays multiple pharmacological activities such as anti-inflammation, anti-apoptosis, and anti-tumor. Here, we aimed to investigate the effect of MI on the progression and epithelial–mesenchymal transition (EMT) of laryngeal cancer. Methods Forty laryngeal cancer clinical samples were used. The role of MI in the proliferation of laryngeal cancer cells was assessed by MTT assay, Edu assay and colony formation assay. The function of MI in the migration and invasion of laryngeal cancer cells was tested by transwell assays. The effect of MI on apoptosis of laryngeal cancer cells was determined by cell apoptosis assay. The impact of MI on tumor growth in vivo was analyzed by tumorigenicity analysis using Balb/c nude mice. qPCR and Western blot analysis were performed to measure the expression levels of gene and protein, respectively. Results We identified that EMT-related transcription factor Twist was significantly elevated in the laryngeal cancer tissues. The expression of Twist was also enhanced in the human laryngeal carcinoma HEP-2 cells compared with that in the primary laryngeal epithelial cells. The high expression of Twist was remarkably correlated with poor overall survival of patients with laryngeal cancer. Meanwhile, our data revealed that MI reduced cell proliferation, migration and invasion and enhanced apoptosis of laryngeal cancer cells in vitro. Moreover, MI decreased transcriptional activation and the expression levels of NF-κB and Twist, and alleviated EMT in vitro and in vivo. MI remarkably inhibited tumor growth and EMT of laryngeal cancer cells in vivo. Conclusion MI restrains the progression of laryngeal cancer and induces an inhibitory effect on EMT in laryngeal cancer by modulating the NF-κB/Twist signaling. Our finding provides new insights into the mechanism by which MI inhibits laryngeal carcinoma development, enriching the understanding of the anti-tumor function of MI.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Rui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Dongliang Xing
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yan Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Liang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| |
Collapse
|
1509
|
Xu E, Xia X, Jiang C, Li Z, Yang Z, Zheng C, Wang X, Du S, Miao J, Wang F, Wang Y, Lu X, Guan W. GPER1 Silencing Suppresses the Proliferation, Migration, and Invasion of Gastric Cancer Cells by Inhibiting PI3K/AKT-Mediated EMT. Front Cell Dev Biol 2020; 8:591239. [PMID: 33425895 PMCID: PMC7793665 DOI: 10.3389/fcell.2020.591239] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/27/2020] [Indexed: 01/06/2023] Open
Abstract
G protein coupled estrogen receptor (GPER1) is a membrane estrogen receptor, belonging to the seven-transmembrane G protein-coupled receptors family, and has important biological functions in cancer. However, the functional role of GPER1 in gastric cancer (GC) remain incompletely understood. In the present study, we employed gene set enrichment analysis and discovered that GPER1 expression was concomitant with EMT process and was positively correlated with activation of the PI3K/AKT pathway in GC. Knockdown of GPER1 with siRNA suppressed the proliferation, migration, and invasion of AGS and MGC-803 GC cells. Knockdown of GPER1 also downregulated the mesenchymal markers N-cadherin and vimentin, upregulated E-cadherin, an epithelial marker, and suppressed expression of the Snail, Slug and Twist1 transcription factors, indicating that knockdown of GPER1 inhibited EMT. Moreover, 740Y-P, a PI3K activator, reversed the effects of GPER1 knockdown on EMT processes. Overexpression of GPER1 with plasmid can further prove these findings. In summary, these data demonstrate that GPER1 inhibition suppresses the proliferation, migration, and invasion of gastric cancer cells by inhibiting PI3K/AKT-mediated EMT. Our study elucidated the function of GPER1 in gastric cancer, and we identified PI3K/AKT-mediated EMT as a novel mechanism by which GPER1 contributes to proliferation, migration, and invasion of gastric cancer. These data suggest that combining inhibition of GPER1 and PI3K may be a potential therapeutic approach to inhibit gastric cancer metastasis.
Collapse
Affiliation(s)
- En Xu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zijian Li
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chang Zheng
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shangce Du
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Miao
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yizhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
1510
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
1511
|
Wu Z, Luo J, Huang T, Yi R, Ding S, Xie C, Xu A, Zeng Y, Wang X, Song Y, Shi X, Long H. MiR-4310 induced by SP1 targets PTEN to promote glioma progression. Cancer Cell Int 2020; 20:567. [PMID: 33327965 PMCID: PMC7745362 DOI: 10.1186/s12935-020-01650-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background miRNAs have been reported to be involved in multiple biological processes of gliomas. Here, we aimed to analyze miR-4310 and its correlation genes involved in the progression of human glioma. Methods miR-4310 expression levels were examined in glioma and non-tumor brain (NB) tissues. The molecular mechanisms of miR-4310 expression and its effects on cell proliferation, migration, and invasion were explored using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide, Transwell chamber, Boyden chamber, and western blot analyses, as well as its effect on tumorigenesis was explored in vivo in nude mice. The relationships between miR-4310, SP1, phosphatase, and tensin homolog (PTEN) were explored using chromatin immunoprecipitation, agarose gel electrophoresis, electrophoresis mobility shift, and dual-luciferase reporter gene assays. Results miR-4310 expression was upregulated in glioma tissues compared to that in NB tissues. Overexpressed miR-4310 promoted glioma cell proliferation, migration, and invasion in vitro, as well as tumorigenesis in vivo. The inhibition of miR-4310 expression was sufficient to reverse these results. Mechanistic analyses revealed that miR-4310 promoted glioma progression through the PI3K/AKT pathway by targeting PTEN. Additionally, SP1 induced the expression of miR-4310 by binding to its promoter region. Conclusion miR-4310 promotes the progression of glioma by targeting PTEN and activating the PI3K/AKT pathway; meanwhile, the expression of miR-4310 was induced by SP1.
Collapse
Affiliation(s)
- Zhiyong Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.,Department of Neurosurgery, Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong ((Shenzhen)), Shenzhen, 518116, Guangdong, People's Republic of China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, People's Republic of China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, People's Republic of China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - An'qi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, People's Republic of China
| | - Xizhao Wang
- Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, Fujian, People's Republic of China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Xiaofeng Shi
- Department of Neurosurgery, Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong ((Shenzhen)), Shenzhen, 518116, Guangdong, People's Republic of China.
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
1512
|
Pastushenko I, Mauri F, Song Y, de Cock F, Meeusen B, Swedlund B, Impens F, Van Haver D, Opitz M, Thery M, Bareche Y, Lapouge G, Vermeersch M, Van Eycke YR, Balsat C, Decaestecker C, Sokolow Y, Hassid S, Perez-Bustillo A, Agreda-Moreno B, Rios-Buceta L, Jaen P, Redondo P, Sieira-Gil R, Millan-Cayetano JF, Sanmatrtin O, D'Haene N, Moers V, Rozzi M, Blondeau J, Lemaire S, Scozzaro S, Janssens V, De Troya M, Dubois C, Pérez-Morga D, Salmon I, Sotiriou C, Helmbacher F, Blanpain C. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 2020; 589:448-455. [PMID: 33328637 DOI: 10.1038/s41586-020-03046-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1-5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2-CD44-SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state.
Collapse
Affiliation(s)
- Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Dermatology Department, Cliniques de l'Europe, Brussels, Belgium.,Dermatology Department, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Federico Mauri
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Florian de Cock
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bob Meeusen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Ghent, Belgium.,VIB Proteomics Core, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, Ghent, Belgium.,VIB Proteomics Core, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Manuel Thery
- CytoMorpho Lab, UMR976 HIPI, CEA, INSERM, Université de Paris, Paris, France.,CytoMorpho Lab, UMR5168 LPCV, CEA, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaelle Lapouge
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Yves-Rémi Van Eycke
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium.,Laboratory of Image Synthesis and Analysis, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Balsat
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Charleroi, Belgium.,Laboratory of Image Synthesis and Analysis, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Youri Sokolow
- Department of Thoracic Surgery, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sergio Hassid
- Department of Otolaryngology - Head and Neck Surgery, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Beatriz Agreda-Moreno
- Department of Otolaryngology - Head and Neck Surgery, Hospital Clinico 'Lozano Blesa', Zaragoza, Spain
| | - Luis Rios-Buceta
- Dermatology Department, Ramón y Cajal Hospital, Madrid, Spain.,University of Alcalá, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Pedro Jaen
- Dermatology Department, Ramón y Cajal Hospital, Madrid, Spain.,University of Alcalá, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Pedro Redondo
- Department of Dermatology, Clinica Universidad de Navarra, Navarra, Spain
| | - Ramon Sieira-Gil
- Department of Maxillofacial Surgery, Head and Neck Surgery, Hospital Clínic, Barcelona, Spain
| | | | - Onofre Sanmatrtin
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Nicky D'Haene
- Pathology Department, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Moers
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Milena Rozzi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jeremy Blondeau
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Lemaire
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Scozzaro
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Charleroi, Belgium.,Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Isabelle Salmon
- Pathology Department, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium. .,WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
1513
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
1514
|
Zhang H, Guo W, Zhang F, Li R, Zhou Y, Shao F, Feng X, Tan F, Wang J, Gao S, Gao Y, He J. Monoacylglycerol Lipase Knockdown Inhibits Cell Proliferation and Metastasis in Lung Adenocarcinoma. Front Oncol 2020; 10:559568. [PMID: 33363004 PMCID: PMC7756122 DOI: 10.3389/fonc.2020.559568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
Abnormal metabolism is one of the hallmarks of cancer cells. Monoacylglycerol lipase (MGLL), a key enzyme in lipid metabolism, has emerged as an important regulator of tumor progression. In this study, we aimed to characterize the role of MGLL in the development of lung adenocarcinoma (LUAD). To this end, we used tissue microarrays to evaluate the expression of MGLL in LUAD tissue and assessed whether the levels of this protein are correlated with clinicopathological characteristics of LUAD. We found that the expression of MGLL is higher in LUAD samples than that in adjacent non-tumor tissues. In addition, elevated MGLL expression was found to be associated with advanced tumor progression and poor prognosis in LUAD patients. Functional studies further demonstrated that stable short hairpin RNA (shRNA)-mediated knockdown of MGLL inhibits tumor proliferation and metastasis, both in vitro and in vivo, and mechanistically, our data indicate that MGLL regulates Cyclin D1 and Cyclin B1 in LUAD cells. Moreover, we found that knockdown of MGLL suppresses the expression of matrix metalloproteinase 14 (MMP14) in A549 and H322 cells, and in clinical samples, expression of MMP14 is significantly correlated with MGLL expression. Taken together, our results indicate that MGLL plays an oncogenic role in LUAD progression and metastasis and may serve as a potential biomarker for disease prognosis and as a target for the development of personalized therapies.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
1515
|
Yang N, Liu Z, Pang S, Wu J, Liang J, Sun L. Predicative value of IFITM2 in renal clear cell carcinoma: IFITM2 is associated with lymphatic metastasis and poor clinical outcome. Biochem Biophys Res Commun 2020; 534:157-164. [PMID: 33308825 DOI: 10.1016/j.bbrc.2020.11.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/27/2023]
Abstract
Renal clear cell carcinoma (ccRCC), is an inflammation-related malignancy with poor therapeutic outcome. Interferon-induced transmembrane protein 2 (IFITM2), an inflammation related gene, is reported to promote tumor progression via inducing cytokine release and lymphatic metastasis. However, IFITM2's role in ccRCC remains unclear. In this study, we aimed to explore the role of IFITM2 in ccRCC. In vitro studies displayed overexpressed IFITM2 level in tumor tissues, while analysis of 538 cases from TCGA unveiled the correlation of upregulated-IFITM2 with shorter survival. Migration and invasion of ccRCC were inhibited following the downregulation of IFITM2. Cocultured with IFITM2-silenced ccRCC cells, human lymphatic endothelial cells were inhibited in proliferation, migration and tube formation, indicating that lymphangiognesis was contributed by IFITM2 expression. Taken together, IFITM2 promotes ccRCC progression by inducing malignant characteristics and lymphatic metastasis. Therefore, IFITM2 represents a promising novel target for therapy and effective prediction of malignancy of ccRCC.
Collapse
Affiliation(s)
- Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junguang Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
1516
|
Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu M, Yao N, Qu C, Hong J. Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell Int 2020; 20:586. [PMID: 33372604 PMCID: PMC7720384 DOI: 10.1186/s12935-020-01687-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND M2-polarized tumor-associated macrophages (M2-TAMs) have been shown to correlate with the progression of various cancers, including intrahepatic cholangiocarcinoma (ICC). However, the interactions and mechanism between M2 macrophages and ICC are not completely clear. We aimed to clarify whether M2 macrophages promote the malignancy of ICC and its mechanism. METHODS Two progressive murine models of ICC were used to evaluate the alterations in different macrophage populations and phenotypes. Furthermore, we assessed M2 macrophage infiltration in 48 human ICC and 15 normal liver samples. The protumor functions and the underlying molecular mechanisms of M2 macrophages in ICC were investigated in an in vitro coculture system. RESULTS We found that the number of M2 macrophages was significantly higher in ICC tissues than in normal bile ducts in the two murine models. M2 macrophage infiltration was highly increased in peritumoral compared with intratumoral regions and normal liver (p < 0.01). ICC cells induced macrophages to differentiate into the M2-TAM phenotype, and coculture with these M2 macrophages promoted ICC cell proliferation, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, M2-TAM-derived IL-10 promoted the malignant properties of ICC cells through STAT3 signaling. Furthermore, blockade of IL-10/STAT3 signaling partly rescued the effects of M2 macrophages on ICC. CONCLUSION Our results indicated that M2-polarized macrophages induced by ICC promote tumor growth and invasiveness through IL-10/STAT3-induced EMT and might be a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510630, Guangdong, China
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Zelong Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Yingjun Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Yuchuan Jiang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Ke Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mengxian Tu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
1517
|
He X, Zhong X, Hu Z, Zhao S, Wei P, Li D. An insight into small extracellular vesicles: Their roles in colorectal cancer progression and potential clinical applications. Clin Transl Med 2020; 10:e249. [PMID: 33377655 PMCID: PMC7733319 DOI: 10.1002/ctm2.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of mortality worldwide. Small extracellular vesicles (sEVs) are nano-sized extracellular vesicles containing a variety of bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites. Recent evidence from CRC has revealed that sEVs contribute to tumorigenesis, progression, and drug resistance, and serve as a tool for "liquid biopsy" and a drug delivery system for therapy. In this review, we summarize information about the roles of sEVs in the proliferation, invasion, migration, epithelial-mesenchymal transition, formation of the premetastatic niche, and drug resistance to elucidate the mechanisms governing sEVs in CRC and to identify novel targets for therapy and prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ping Wei
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
1518
|
Cheng R, Gao S, Hu W, Liu Y, Cao Y. Nuclear factor I/B mediates epithelial-mesenchymal transition in human melanoma cells through ZEB1. Oncol Lett 2020; 21:81. [PMID: 33363618 PMCID: PMC7723069 DOI: 10.3892/ol.2020.12342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
The relationship between nuclear factor I/B (NFIB) and cancer attracts growing research interest. NFIB has diverse and specific roles in tumor progression and invasion. However, the potential effects and functions of this transcription factor in melanoma remain unclear. The present study sought to determine the distinguishing properties of NFIB in melanoma cells. Immunohistochemical examination of the tissues of 15 patients with melanoma indicated that the expression of NFIB was high in melanoma specimens, compared with the benign nevus and normal skin specimens. In addition, the relationship between high NFIB expression and low overall survival rate was assessed. Functional studies demonstrated that NFIB enhanced the malignancy of melanoma, including proliferation, migration and invasion. In addition, NFIB silencing in A375 and A875 cell lines inhibited the process of epithelial-mesenchymal transition (EMT), upregulated E-cadherin and zona occludens-1, but suppressed N-cadherin and vimentin expression. These findings may suggest a new function of NFIB in promoting the migration and invasion of melanoma cells. Therefore, the present study further evaluated the association between NFIB and zinc finger protein E-box binding homeobox-1 (ZEB1) in melanoma. Mechanistic experiments revealed that NFIB exerted its roles during EMT by regulating ZEB1. Overall, the present data indicates that NFIB promotes the malignancy of melanoma, particularly EMT, by modulating the ZEB1 axis, such as ZEB2, ATM and CHK1, which may represent a potential molecular therapeutic target in melanoma.
Collapse
Affiliation(s)
- Ruimin Cheng
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Gao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Hu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yamei Liu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
1519
|
Calabrò ML, Lazzari N, Rigotto G, Tonello M, Sommariva A. Role of Epithelial-Mesenchymal Plasticity in Pseudomyxoma Peritonei: Implications for Locoregional Treatments. Int J Mol Sci 2020; 21:ijms21239120. [PMID: 33266161 PMCID: PMC7731245 DOI: 10.3390/ijms21239120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial-mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal-epithelial transition, MET), now collectively called epithelial-mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial-mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
- Correspondence:
| | - Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Marco Tonello
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Antonio Sommariva
- Advanced Surgical Oncology, Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| |
Collapse
|
1520
|
Kryczka J, Sochacka E, Papiewska-Pająk I, Boncela J. Implications of ABCC4-Mediated cAMP Eflux for CRC Migration. Cancers (Basel) 2020; 12:cancers12123547. [PMID: 33261018 PMCID: PMC7760996 DOI: 10.3390/cancers12123547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) presents significant molecular heterogeneity. The cellular plasticity of epithelial to mesenchymal transition (EMT) is one of the key factors responsible for the heterogeneous nature of metastatic CRC. EMT is an important regulator of ATP binding cassette (ABC) protein expression; these proteins are the active transporters of a broad range of endogenous compounds and anticancer drugs. In our previous studies, we performed a transcriptomic and functional analysis of CRC in the early stages of metastasis induced by the overexpression of Snail, the transcription factor involved in EMT initiation. Interestingly, we found a correlation between the Snail expression and ABCC4 (MRP4) protein upregulation. The relationship between epithelial transition and ABCC4 expression and function in CRC has not been previously defined. In the current study, we propose that the ABCC4 expression changes during EMT and may be differentially regulated in various subpopulations of CRC. We confirmed that ABCC4 upregulation is correlated with the phenotype conversion process in CRC. The analysis of Gene Expression Omnibus (GEO) sets showed that the ABCC4 expression was elevated in CRC patients. The results of a functional study demonstrated that, in CRC, ABCC4 can regulate cell migration in a cyclic nucleotide-dependent manner.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
| | - Ewelina Sochacka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
- Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
- Correspondence:
| |
Collapse
|
1521
|
Dong B, Qiu Z, Wu Y. Tackle Epithelial-Mesenchymal Transition With Epigenetic Drugs in Cancer. Front Pharmacol 2020; 11:596239. [PMID: 33343366 PMCID: PMC7746977 DOI: 10.3389/fphar.2020.596239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Epithelial-mesenchymal Transition (EMT) is a de-differentiation process in which epithelial cells lose their epithelial properties to acquire mesenchymal features. EMT is essential for embryogenesis and wound healing but is aberrantly activated in pathological conditions like fibrosis and cancer. Tumor-associated EMT contributes to cancer cell initiation, invasion, metastasis, drug resistance and recurrence. This dynamic and reversible event is governed by EMT-transcription factors (EMT-TFs) with epigenetic complexes. In this review, we discuss recent advances regarding the mechanisms that modulate EMT in the context of epigenetic regulation, with emphasis on epigenetic drugs, such as DNA demethylating reagents, inhibitors of histone modifiers and non-coding RNA medication. Therapeutic contributions that improve epigenetic regulation of EMT will translate the clinical manifestation as treating cancer progression more efficiently.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Zhaoping Qiu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States,*Correspondence: Yadi Wu,
| |
Collapse
|
1522
|
Cai Y, Chen K, Cheng C, Xu Y, Cheng Q, Xu G, Wu Y, Wu Z. Prp19 Is an Independent Prognostic Marker and Promotes Neuroblastoma Metastasis by Regulating the Hippo-YAP Signaling Pathway. Front Oncol 2020; 10:575366. [PMID: 33224878 PMCID: PMC7667276 DOI: 10.3389/fonc.2020.575366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Pre-mRNA processing factor 19 (Prp19) was previously reported to be involved in tumor progression. However, Prp19 expression and its functions remain elusive in neuroblastoma. Here, we aim to identify the functions and mechanisms of Prp19 in neuroblastoma. Neuroblastic tumor tissue microarrays and two independent validation data sets indicate that Prp19 is associated with high-risk markers and bone marrow metastasis and serves as a prognostic marker for worse clinical outcomes with neuroblastoma. Gain- and loss-of-expression assays reveal that Prp19 promotes invasion, migration, and epithelial-mesenchymal transition (EMT) of neuroblastoma cells in vitro. Bioinformatics analysis of RNA-seq data shows that the expressions of YAP and its downstream genes are significantly inhibited after downregulation of Prp19. Prp19 and YAP expression in metastatic lymph nodes is higher than in situ neuroblastoma tissue. Further experiments show that Prp19 regulates YAP expression and consequently affects cell invasion, migration, and EMT in neuroblastoma by pre-mRNA splicing of YAP. In conclusion, our findings provide the first evidence that Prp19 is a potential therapeutic target and prognostic biomarker for patients with neuroblastoma.
Collapse
Affiliation(s)
- Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yonghu Xu
- Department of Pediatric Urology, Xinhua Hospital, National Key Clinical Specialty, Shanghai Top-Priority Clinical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qianqian Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Guofeng Xu
- Department of Pediatric Urology, Xinhua Hospital, National Key Clinical Specialty, Shanghai Top-Priority Clinical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
1523
|
El-Khoury F, Bignon J, Martin JR. jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genomics 2020; 21:817. [PMID: 33225905 PMCID: PMC7682050 DOI: 10.1186/s12864-020-07197-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are conserved from archaebacteria to mammals. They are associated in the nucleolus, with proteins to form small nucleolar ribonucleoprotein (snoRNPs). They modify ribosomal RNAs, for example, the H/ACA box that converts uridine to pseudouridine. In humans, various pathologies have been associated with snoRNAs, and several snoRNAs have been reported to participate in many cancer processes. Recently, a new H/ACA box snoRNA named jouvence has been identified in Drosophila and has been shown to be involved in lifespan determination in relation to gut homeostasis. Because snoRNAs are conserved through evolution, both structurally and functionally, a jouvence orthologue has been identified in humans. RT-PCR has revealed that jouvence is expressed, suggesting that it might be functional. These results suggest the hypothesis that jouvence may display similar functions, including increasing the healthy lifespan in humans. Results Here, we report the characterization of the human snoRNA jouvence, which has not yet been annotated in the genome. We show that its overexpression significantly stimulates cell proliferation, both in various stable cancerous cell lines as well as in primary cells. By contrast, its knockdown by siRNA leads to the opposite phenotype, a rapid decrease in cell proliferation. Transcriptomic analysis (RNA-Seq) revealed that the overexpression of jouvence leads to a dedifferentiation signature of the cells. Conversely, the knockdown of jouvence led to a striking decrease in the expression levels of genes involved in ribosome biogenesis and the spliceosome. Conclusion The overexpression of a single and short non-coding RNA of 159 nucleotides, the snoRNA-jouvence, seems to be sufficient to reorient cells toward stemness, while its depletion blocks cell proliferation. In this context, we speculate that the overexpression of jouvence, which appears to be a non-canonical H/ACA snoRNA, could represent a new tool to fight against the deleterious effects of aging, while inversely, its knockdown by siRNA could represent a new approach in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07197-3.
Collapse
Affiliation(s)
- Flaria El-Khoury
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-René Martin
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
1524
|
Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci Rep 2020; 40:221502. [PMID: 31840737 PMCID: PMC6944659 DOI: 10.1042/bsr20192727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
The overall survival rate of patients with hepatocellular carcinoma (HCC) has remained unchanged over the last several decades. Therefore, novel drugs and therapies are required for HCC treatment. Isoliquiritigenin (ISL), a natural flavonoid predominantly isolated from the traditional Chinese medicine Glycyrrhizae Radix (Licorice), has a high anticancer potential and broad application value in various cancers. Here, we aimed to investigate the anticancer role of ISL in the HCC cell line Hep3B. Functional analysis revealed that ISL inhibited the proliferation of Hep3B cells by causing G1/S cell cycle arrest in vitro. Meanwhile, the inhibitory effect of ISL on proliferation was also observed in vivo. Further analysis revealed that ISL could suppress the migration and metastasis of Hep3B cells in vitro and in vivo. Mechanistic analysis revealed that ISL inhibited cyclin D1 and up-regulated the proteins P21, P27 that negatively regulate the cell cycle. Furthermore, ISL induced apoptosis while inhibiting cell cycle transition. In addition, phosphatidylinositol 3′-kinase/protein kinase B (PI3K/AKT) signal pathway was suppressed by ISL treatment, and the epithelial marker E-cadherin was up-regulated when the mesenchymal markers Vimentin and N-cadherin were down-regulated. In brief, our findings suggest that ISL could be a promising agent for preventing HCC tumorigenesis and metastasis.
Collapse
|
1525
|
Zhang Z, Jing J, Ye Y, Chen Z, Jing Y, Li S, Hong W, Ruan H, Liu Y, Hu Q, Wang J, Li W, Lin C, Diao L, Zhou Y, Han L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med 2020; 12:101. [PMID: 33225964 PMCID: PMC7682077 DOI: 10.1186/s13073-020-00795-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. METHODS We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. RESULTS We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions. We experimentally characterized the dual function of two genes, DNAJC9 and HSPA14, in lung cancer cells. We further demonstrated the generalization of this dual direction of associations between HSPs and cancer hallmarks, suggesting the necessity to more carefully evaluate HSPs as therapeutic targets and develop highly specific HSP inhibitors for cancer intervention. CONCLUSIONS Our study furnishes a holistic view of functional associations of HSPs with cancer hallmarks to aid the development of HSP inhibitors as well as other drugs in cancer therapy.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiao Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wei Hong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaoming Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
1526
|
Yang Y, Feng L, Ma H, Wang R, Fang J. High expression of novel biomarker KRT16P3 promotes the progression of tongue squamous cell carcinoma and predicts poor prognosis. J Oral Pathol Med 2020; 50:385-393. [PMID: 33220105 DOI: 10.1111/jop.13138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/22/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Overexpression of long non-coding RNAs (lncRNAs) reveals the abnormal pathological processes in many human cancers. KRT16P3, a novel overexpressed lncRNA in tongue squamous cell carcinoma (TSCC), was identified by previous lncRNA microarrays. However, the role of KRT16P3 in TSCC is not clear. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of KRT16P3 in TSCC tissues and cells. Next, the relationships between KRT16P3 and the clinical significance of TSCC patients were analyzed. Additionally, Cell Counting Kit-8, 5-Bromo-2-deoxyuridine (BrdU) incorporation assay, cell colony formation assay, flow cytometry cell apoptosis analysis, scratch wound healing assay, transwell invasion assay were used to explore the biological function of KRT16P3. Western blot and qRT-PCR were used to determine the expression of epithelial-mesenchymal transition (EMT) markers. The pathway changes after KRT16P3 knockdown were detected by Western blot. RESULTS We found KRT16P3 expression is significantly upregulated in TSCC tissues and positively associated with advanced clinicopathological features of TSCC patients, and it may serve as a poor prognostic factor. Functionally, KRT16P3 knockdown inhibits proliferation, migration, invasion and promotes apoptosis of TSCC cells. Furthermore, we also revealed that KRT16P3 knockdown suppresses EMT and JAK2/STAT3 signaling pathway. CONCLUSION Our results validated that KRT16P3 can modulate the malignant progression, EMT process, and JAK2/STAT3 signaling pathway of TSCC, which might also serve as a novel prognostic biomarker and an attractive target for TSCC patients.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ling Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongzhi Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
1527
|
Yu H, Zhang W, Han P, Yang B, Feng X, Zhou P, Zhu X, Zhou B, Chen W, Qian J, Yu J. MST4 Regulates Epithelial-Mesenchymal Transition of Choriocarcinoma by Mediating TGF-β1 Expression. Onco Targets Ther 2020; 13:11935-11946. [PMID: 33244239 PMCID: PMC7683511 DOI: 10.2147/ott.s269168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mammalian Ste20-like kinase 4 (MST4), also known as serine/threonine kinase 26 (STK26), promotes development of several cancers and is found to be highly expressed in the placenta. However, in choriocarcinoma that originated from the placenta, the expression of MST4 was undetermined and its mechanism was unknown. In this study, the expression of MST4 in choriocarcinoma as well as the underlying mechanism was explored. Purpose To detect the expression of MST4 in patient samples and mechanism of mediating EMT by MST4 in choriocarcinoma. Patients and Methods The metastatic lesions of choriocarcinoma (n=17) and volunteer villus (n=17) were collected to determine MST4 expression using immunohistochemistry and H&E staining. We use siRNA and lentiviral vector to knockdown MST4 and use plasmid to overexpress MST4 in choriocarcinoma. Then, we apply real-time polymerase chain reaction (RT-PCR), Western blot assay and immunofluorescence assay to detect target protein expressions. Cell invasion and migration and cell proliferation were detected by transwell assay and wound healing assay and CCK-8 and cell colony formation. Results MST4 is lowly expressed in the metastatic lesions of choriocarcinoma patients when compared with normal villus. Knockdown of MST4 activated epithelial–mesenchymal transition (EMT) process, significantly increasing the ability of invasion and migration in choriocarcinoma cell lines (JAR and JEG-3). In contrast, the EMT process was restrained in choriocarcinoma cell lines with overexpressed MST4. Meanwhile, genome-wide gene expression array, Western blot and ELISA revealed that tumor growth factor-beta 1 (TGF-β1) has significantly increased. The EMT process and metastatic prompting biofunction were reversed after using TGF-β1 inhibitor (LY364947) in the choriocarcinoma cell lines with MST4 knockdown. Conclusion Our studies demonstrated that MST4 was lowly expressed in patient samples. Additionally, JAR and JEG-3 increase cell invasion and migration ability while there is no influence on cell proliferation with MST4 knockdown. Conversely, the metastatic ability of JAR and JEG-3 was decreased with overexpressed MST4. Moreover, TGF-β1 was a key factor after MST4 knockdown. In conclusion, MST4 affects choriocarcinoma EMT by mediating TGF-β1 expression.
Collapse
Affiliation(s)
- Hanxi Yu
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Peilin Han
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Ping Zhou
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Xiaoxu Zhu
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Bingqian Zhou
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Pujiang 322200, People's Republic of China
| | - Wei Chen
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| | - Jun Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310006, People's Republic of China
| |
Collapse
|
1528
|
Xia Q, Li Y, Han D, Dong L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther 2020; 28:551-565. [PMID: 33204002 DOI: 10.1038/s41417-020-00255-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
1529
|
Beyond DNA Repair: DNA-PKcs in Tumor Metastasis, Metabolism and Immunity. Cancers (Basel) 2020; 12:cancers12113389. [PMID: 33207636 PMCID: PMC7698146 DOI: 10.3390/cancers12113389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key component of the DNA-PK complex that has a well-characterized function in the non-homologous end-joining repair of DNA double-strand breaks. Since its identification, a large body of evidence has demonstrated that DNA-PKcs is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis of cancer patients. Intriguingly, recent studies have suggested novel functions beyond the canonical role of DNA-PKcs, which has transformed the paradigm of DNA-PKcs in tumorigenesis and has reinvigorated the interest to target DNA-PKcs for cancer treatment. In this review, we update recent advances in DNA-PKcs, in particular the emerging roles in tumor metastasis, metabolic dysregulation, and immune escape. We further discuss the possible molecular basis that underpins the pleiotropism of DNA-PKcs in cancer. Finally, we outline the biomarkers that may predict the therapeutic response to DNA-PKcs inhibitor therapy. Understanding the functional repertoire of DNA-PKcs will provide mechanistic insights of DNA-PKcs in malignancy and, more importantly, may revolutionize the design and utility of DNA-PKcs-based precision cancer therapy.
Collapse
|
1530
|
Carboxyl-terminal polypeptide fragment of MUC16 combing stathmin1 promotes gallbladder cancer cell migration and invasion. Med Oncol 2020; 37:114. [PMID: 33196934 DOI: 10.1007/s12032-020-01438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/30/2020] [Indexed: 01/21/2023]
Abstract
CA-125, coded by MUC16 gene, is responsible to many kinds of tumor metastasis. However, the related mechanism remains unclear. We have established a novel manner to reveal gallbladder cancer metastasis related to serum CA-125 levels through the C-terminal polypeptide of MUC16 gene production. MUC16 C-terminal polypeptide significantly promoted gallbladder cancer cell migration and invasion in vitro. Mass spectrum indicated that interaction of MUC16 C-terminal fragment with the C-terminal domain of stathmin1 inhibited the phosphorylation of stathmin1 to promote the combination with tubulin. Stathmin1 knockdown inhibited the migration and invasion of gallbladder cancer cells in vitro and lung metastasis in vivo induced by MUC16 C-terminal polypeptide. The high expression level of MUC16c consistent with stathmin1 was also confirmed in gallbladder cancer tissues. Our study revealed the underlying mechanism of gallbladder cancer metastasis related to CA-125 levels, which was beneficial for CA-125 in gallbladder cancer diagnose and therapy.
Collapse
|
1531
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
1532
|
Zhang T, Zhang K, Ji K, Zhang C, Jiang Y, Zhang Q, Tian Z, Wang X, Zhang M, Li X. microRNA-365 inhibits YAP through TLR4-mediated IRF3 phosphorylation and thereby alleviates gastric precancerous lesions. Cancer Cell Int 2020; 20:549. [PMID: 33292210 PMCID: PMC7664090 DOI: 10.1186/s12935-020-01578-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background Gastric carcinoma (GC) is currently one of the most common malignant tumors of the digestive system, and gastric precancerous lesions play a vital role in studying the mechanism of GC. Multiple microRNAs (miRNAs) have been documented to be potential biomarkers to indicate progression of gastric precancerous lesions. In this study, we explained the anti-cancer effect of miR-365 in gastric precancerous lesions via regulation of the TLR4/IRF3/YAP/CDX2 axis. Methods miR-365, TLR4, CDX2 and IPF3 expression was determined in GC and atrophic gastritis tissues and cells. After transfection of shRNA and overexpression plasmids, in vitro experiments detected the alteration of cell viability, apoptosis and inflammatory factors. Bioinformatics analysis, Co-IP and dual luciferase reporter gene assay were conducted to evaluate the binding between miR-365 and TLR4 as well as IRF3 and YAP. Rat models were established to explore the effect of the miR-365 and TLR4 on gastric precancerous lesions. Results miR-365 was poorly expressed in GC and atrophic gastritis tissues and GC cell lines, while TLR4, CDX2 and IRF3 were overexpressed. Of note, miR-365 was indicated to target TLR4 and thereby suppressed cancer progression and increased hemoglobin content. Interestingly, silencing of TLR4 was accompanied by decreased IRF3 phosphorylation and reduced expression with less binding between CDX2 and IRF3. Downregulation of YAP resulted in declined CDX2 expression in cancer cells. Moreover, the inhibitory role of miR-365 was further confirmed in animal models. Conclusion Taken together, miR-365-mediated TLR4 inhibition reduces IRF3 phosphorylation and YAP-mediated CDX2 transcription to impede progression of gastric precancerous lesions.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Kunpeng Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Kaiyue Ji
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Xinyu Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Mengyuan Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
1533
|
Sha Y, Wang S, Zhou P, Nie Q. Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data. Nucleic Acids Res 2020; 48:9505-9520. [PMID: 32870263 PMCID: PMC7515733 DOI: 10.1093/nar/gkaa725] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Rapid growth of single-cell transcriptomic data provides unprecedented opportunities for close scrutinizing of dynamical cellular processes. Through investigating epithelial-to-mesenchymal transition (EMT), we develop an integrative tool that combines unsupervised learning of single-cell transcriptomic data and multiscale mathematical modeling to analyze transitions during cell fate decision. Our approach allows identification of individual cells making transition between all cell states, and inference of genes that drive transitions. Multiscale extractions of single-cell scale outputs naturally reveal intermediate cell states (ICS) and ICS-regulated transition trajectories, producing emergent population-scale models to be explored for design principles. Testing on the newly designed single-cell gene regulatory network model and applying to twelve published single-cell EMT datasets in cancer and embryogenesis, we uncover the roles of ICS on adaptation, noise attenuation, and transition efficiency in EMT, and reveal their trade-off relations. Overall, our unsupervised learning method is applicable to general single-cell transcriptomic datasets, and our integrative approach at single-cell resolution may be adopted for other cell fate transition systems beyond EMT.
Collapse
Affiliation(s)
- Yutong Sha
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
1534
|
Hou Y, Wang W, Zeng Z, Gan W, Lv S, Li T, Yan Z, Zhang R, Yang M. High SEMA4C expression promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal carcinoma. Aging (Albany NY) 2020; 12:21992-22018. [PMID: 33177246 PMCID: PMC7695389 DOI: 10.18632/aging.104038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Semaphorin 4C (SEMA4C), is an important regulator of axonal guidance and aggravates tumor development. However, the roles and prognostic value of SEMA4C in colorectal cancer (CRC) remain unclear. Here, bioinformatics analyses of transcriptome data from multiple CRC patient datasets and immunohistochemical staining of a CRC tissue microarray (TMA) (n=83) showed that SEMA4C mRNA and protein expression were higher in CRC tissues than normal colorectal tissues. SEMA4C mRNA and protein expression correlated with pathologic stage and metastasis in CRC patients. Higher SEMA4C expression was associated with shorter overall survival, consensus molecular subtype 4 (CMS4), and DNA hypomethylation of SEMA4C in CRC patients. Multivariate Cox regression analyses revealed that SEMA4C expression was an independent prognostic predictor in CRC patients. Gene set expression analysis (GSEA) illustrated that SEMA4C expression had remarkable correlations with epithelial-mesenchymal transition (EMT) as well as hedgehog, Wnt/β-catenin, TGF-β, and Notch signaling pathways. Receiver operating characteristic (ROC) curve analysis demonstrated that SEMA4C expression accurately distinguished between the CMS4 and CMS1-3 subtypes of CRC patients. By inhibiting EMT, SEMA4C silencing reduced in vitro proliferation, migration, and invasion by CRC cells. These findings suggest that SEMA4C is a CMS4-associated gene that enhances CRC progression by inducing EMT.
Collapse
Affiliation(s)
- Yufang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zifan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenqiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Silin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rixin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
1535
|
Landry-Truchon K, Houde N, Lhuillier M, Charron L, Hadchouel A, Delacourt C, Foulkes WD, Galmiche-Rolland L, Jeannotte L. Deletion of Yy1 in mouse lung epithelium unveils molecular mechanisms governing pleuropulmonary blastoma pathogenesis. Dis Model Mech 2020; 13:dmm045989. [PMID: 33158935 PMCID: PMC7790197 DOI: 10.1242/dmm.045989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pleuropulmonary blastoma (PPB) is a very rare pediatric lung disease. It can progress from abnormal epithelial cysts to an aggressive sarcoma with poor survival. PPB is difficult to diagnose as it can be confounded with other cystic lung disorders, such as congenital pulmonary airway malformation (CPAM). PPB is associated with mutations in DICER1 that perturb the microRNA (miRNA) profile in lung. How DICER1 and miRNAs act during PPB pathogenesis remains unsolved. Lung epithelial deletion of the Yin Yang1 (Yy1) gene in mice causes a phenotype mimicking the cystic form of PPB and affects the expression of key regulators of lung development. Similar changes in expression were observed in PPB but not in CPAM lung biopsies, revealing a distinctive PPB molecular signature. Deregulation of molecules promoting epithelial-mesenchymal transition (EMT) was detected in PPB specimens, suggesting that EMT might participate in tumor progression. Changes in miRNA expression also occurred in PPB lung biopsies. miR-125a-3p, a candidate to regulate YY1 expression and lung branching, was abnormally highly expressed in PPB samples. Together, these findings support the concept that reduced expression of YY1, due to the abnormal miRNA profile resulting from DICER1 mutations, contributes to PPB development via its impact on the expression of key lung developmental genes.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Mickaël Lhuillier
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Alice Hadchouel
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
- AP-HP, Hôpital Necker-Enfants Malades, 75743 Paris, Cedex15, France
| | - Christophe Delacourt
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
- AP-HP, Hôpital Necker-Enfants Malades, 75743 Paris, Cedex15, France
| | - William D Foulkes
- Department of Medical Genetics, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montréal, Canada H3T 1E2
| | | | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
1536
|
Tang H, Han X, Feng Y, Hao Y. linc00968 inhibits the tumorigenesis and metastasis of lung adenocarcinoma via serving as a ceRNA against miR-9-5p and increasing CPEB3. Aging (Albany NY) 2020; 12:22582-22598. [PMID: 33159015 PMCID: PMC7746359 DOI: 10.18632/aging.103833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence confirms that long noncoding RNAs (lncRNAs) exert vital functions in multiple biological process among malignant cancers. In the current study, we uncovered that linc00968 was downregulated in lung adenocarcinoma (LUAD). Furthermore, the low level of linc00968 was correlated with worse prognosis in patients with LUAD. Upregulation of linc00968 restrained the growth and metastatic phenotypes of LUAD cell in vitro and in vivo. Using bioinformation methods and luciferase reporter assay, we identified that linc00968 acted as a competing endogenous RNA (ceRNA) via sponging miR-9-5p to modulate the level of Cytoplasmic Polyadenylation Element Binding Protein 3 (CPEB3) in LUAD. In addition, LUAD cell migration, colony formation and epithelial-mesenchymal transition (EMT) process were suppressed by linc00968 while these aggressive traits were reversed by miR-142-5p or CPEB3 silencing. Altogether, our work disclosed that linc00968 played a critical role in LUAD and linc00968/miR-9-5p/CPEB3 regulatory axis might be a potential treatment target in LUAD.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xiaolei Han
- Health Office, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yan Feng
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yueqin Hao
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
1537
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
1538
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
1539
|
Wang N, Yang L, Dai J, Wu Y, Zhang R, Jia X, Liu C. 5-FU inhibits migration and invasion of CRC cells through PI3K/AKT pathway regulated by MARCH1. Cell Biol Int 2020; 45:368-381. [PMID: 33085122 PMCID: PMC7894547 DOI: 10.1002/cbin.11493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is a major health problem with a significant impact on the patients' quality of life. 5‐Fluorouracil is the most common chemotherapy drug used for this type of cancer. While its molecular mechanism is the inhibition of DNA synthesis via the inhibition of thymine nucleotide synthetase, its complete anticancer mechanism is not clear. Membrane‐associated RING‐CH‐1 (MARCH1) is an E3 ubiquitin ligase that plays an important role in antigen presentation. However, MARCH1 has not been studied in the context of colorectal cancer. In this study, we demonstrated that MARCH1 is highly expressed in colorectal cancer tissues and cell lines. Furthermore, migration and invasion of colorectal tumor cells were inhibited via transfection with small interfering RNAs to suppress the expression of MARCH1. The western blot analysis showed that MARCH1 regulates epithelial–mesenchymal transition and the PI3K/AKT pathway. Moreover, 5‐fluorouracil inhibited the proliferation, migration, and invasion of tumor cells, via the targeting of MARCH1 and the consequent downregulation of the PI3K/AKT pathway, impacting the progression of epithelial–mesenchymal transition. In conclusion, our study shows that MARCH1 may play a role as an oncogene in colorectal cancer and may represent a new target molecule of 5‐fluorouracil.
Collapse
Affiliation(s)
- Nuan Wang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Yang
- Cancer Research Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Juanjuan Dai
- Cancer Research Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Yan Wu
- Cancer Research Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Ranran Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Xingfang Jia
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
1540
|
Ogrodzinski MP, Teoh ST, Lunt SY. Targeting Subtype-Specific Metabolic Preferences in Nucleotide Biosynthesis Inhibits Tumor Growth in a Breast Cancer Model. Cancer Res 2020; 81:303-314. [PMID: 33115804 DOI: 10.1158/0008-5472.can-20-1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Investigating metabolic rewiring in cancer can lead to the discovery of new treatment strategies for breast cancer subtypes that currently lack targeted therapies. In this study, we used MMTV-Myc-driven tumors to model breast cancer heterogeneity, investigating the metabolic differences between two histologic subtypes, the epithelial-mesenchymal transition (EMT) and the papillary subtypes. A combination of genomic and metabolomic techniques identified differences in nucleotide metabolism between EMT and papillary subtypes. EMT tumors preferentially used the nucleotide salvage pathway, whereas papillary tumors preferred de novo nucleotide biosynthesis. CRISPR/Cas9 gene editing and mass spectrometry-based methods revealed that targeting the preferred pathway in each subtype resulted in greater metabolic impact than targeting the nonpreferred pathway. Knocking out the preferred nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth, whereas knocking out the nonpreferred pathway has a lesser effect or may even result in increased tumor growth. Collectively, these data suggest that significant differences in metabolic pathway utilization distinguish EMT and papillary subtypes of breast cancer and identify said pathways as a means to enhance subtype-specific diagnoses and treatment strategies. SIGNIFICANCE: These findings uncover differences in nucleotide salvage and de novo biosynthesis using a histologically heterogeneous breast cancer model, highlighting metabolic vulnerabilities in these pathways as promising targets for breast cancer subtypes.
Collapse
Affiliation(s)
- Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan. .,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
1541
|
Wen XQ, Qian XL, Sun HK, Zheng LL, Zhu WQ, Li TY, Hu JP. MicroRNAs: Multifaceted Regulators of Colorectal Cancer Metastasis and Clinical Applications. Onco Targets Ther 2020; 13:10851-10866. [PMID: 33149603 PMCID: PMC7602903 DOI: 10.2147/ott.s265580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third-commonest malignant cancer, and its metastasis is the major reason for cancer-related death. The process of metastasis is highly coordinated and involves a complex cascade of multiple steps. In recent years, miRNAs, as highly conserved, endogenous, noncoding, single-stranded RNA, has been confirmed to be involved in the development of various cancers. Considering that miRNA is also involved in a series of biological behaviors, regulating CRC occurrence and development, we review and summarize the role of miRNAs and related signaling pathways in several CRC-metastasis stages, including invasion and migration, mobility, metabolism, epithelial-mesenchymal transition, tumor-microenvironment communication, angiogenesis, anoikis, premetastatic-niche formation, and cancer stemness. In addition, we review the application of miRNAs as diagnostic CRC markers and in clinical treatment resistance. This review can contribute to understanding of the mechanism of miRNAs in CRC progression and provide a theoretical basis for clinical CRC treatment.
Collapse
Affiliation(s)
- Xiang-Qiong Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xian-Ling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Medical Imaging, Shanghai Medical College,Fudan University, Shanghai, 200032, People's Republic of China
| | - Huan-Kui Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lin-Lin Zheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Wei-Quan Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jia-Ping Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
1542
|
Gupta R, Kumar G, Jain BP, Chandra S, Goswami SK. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT. Mol Cell Biochem 2020; 476:633-648. [PMID: 33083950 DOI: 10.1007/s11010-020-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022]
Abstract
SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, β-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.
Collapse
Affiliation(s)
- Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110054, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Sunandini Chandra
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
1543
|
Dzulko M, Pons M, Henke A, Schneider G, Krämer OH. The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation. Biochim Biophys Acta Rev Cancer 2020; 1874:188453. [PMID: 33068647 DOI: 10.1016/j.bbcan.2020.188453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.
Collapse
Affiliation(s)
- Melanie Dzulko
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, 81675 Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
1544
|
Sha Z, Zhou J, Wu Y, Zhang T, Li C, Meng Q, Musunuru PP, You F, Wu Y, Yu R, Gao S. BYSL Promotes Glioblastoma Cell Migration, Invasion, and Mesenchymal Transition Through the GSK-3β/β-Catenin Signaling Pathway. Front Oncol 2020; 10:565225. [PMID: 33178594 PMCID: PMC7593785 DOI: 10.3389/fonc.2020.565225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
BYSL, which encodes the human bystin protein, is a sensitive marker for astrocyte proliferation during brain damage and inflammation. Previous studies have revealed that BYSL has important roles in embryo implantation and prostate cancer infiltration. However, the role and mechanism of BYSL in glioblastoma (GBM) cell migration and invasion remain unknown. We found that knockdown of BYSL inhibited cell migration and invasion, downregulated the expression of mesenchymal markers (e.g., β-catenin and N-cadherin), and upregulated the expression of epithelial marker E-cadherin in GBM cell lines. Overexpression of BYSL promoted GBM cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, the role of BYSL in promoting EMT was further confirmed in a glioma stem cell line derived from a GBM patient. Mechanistically, overexpression of BYSL increased the phosphorylation of GSK-3β and the nuclear distribution of β-catenin. Inhibition of GSK-3β by 1-Azakenpaullone could partially reverse the effects of BYSL downregulation on the transcriptional activity of β-catenin, the expression of EMT markers, and GBM cell migration/invasion. Moreover, immunohistochemical analysis showed strong expression of BYSL in GBM tissues, which was positively correlated with markers of mesenchymal GBM. These results suggest that BYSL promotes GBM cell migration, invasion, and EMT through the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhuang Sha
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junbo Zhou
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yihao Wu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tong Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Li
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingming Meng
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Preethi Priyanka Musunuru
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fangting You
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yue Wu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
1545
|
Lin Z, Fan Z, Zhang X, Wan J, Liu T. Cellular plasticity and drug resistance in sarcoma. Life Sci 2020; 263:118589. [PMID: 33069737 DOI: 10.1016/j.lfs.2020.118589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
Sarcomas, originating from mesenchymal progenitor stem cells, are a group of rare malignant tumors with poor prognosis. Wide surgical resection, chemotherapy, and radiotherapy are the most common sarcoma treatments. However, sarcomas' response rates to chemotherapy are quite low and sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multi-drug resistance (MDR). Cancer cellular plasticity plays pivotal roles in cancer initiation, progression, therapy resistance and cancer relapse. Moreover, cancer cellular plasticity can be regulated by a multitude of factors, such as genetic and epigenetic alterations, tumor microenvironment (TME) or selective pressure imposed by treatment. Recent studies have demonstrated that cellular plasticity is involved in sarcoma progression and chemoresistance. It's essential to understand the molecular mechanisms of cellular plasticity as well as its roles in sarcoma progression and drug resistance. Therefore, this review focuses on the regulatory mechanisms and pathological roles of these diverse cellular plasticity programs in sarcoma. Additionally, we propose cellular plasticity as novel therapeutic targets to reduce sarcoma drug resistance.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China.
| | - Zhihua Fan
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
1546
|
Huang FK, Zheng CY, Huang LK, Lin CQ, Zhou JF, Wang JX. Long non-coding RNA MCF2L-AS1 promotes the aggressiveness of colorectal cancer by sponging miR-874-3p and thereby up-regulating CCNE1. J Gene Med 2020; 23:e3285. [PMID: 33037865 DOI: 10.1002/jgm.3285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have drawn growing attention because of the role which they play in various diseases, including colorectal cancer (CRC). However, the potential functions of lncRNA MCF2L antisense RNA 1 (MCF2L-AS1) in tumors remained largely unclear. The present study aimed to explore the clinical significance and the biological effects of lncRNA MCF2L antisense RNA 1 (MCF2L-AS1) in CRC. METHODS Reverse transcriptase-polymerase chain reaction was performed to determine the expression of MCF2L-AS1 in CRC. The clinical significance of MCF2L-AS1 in CRC patients was analyzed statistically. In vitro experiments were performed to determine the effects of MCF2L-AS1 on the cellular progression of CRC cells. Bioinformatic assays, luciferase reporter assays and RNA-pulldown assays were performed to predict for potential microRNAs that can interact with MCF2L-AS1 and mRNAs that can interact with miR-874-3p. RESULTS We identified a novel CRC-related lncRNA, MCF2L-AS1, which is distinctly highly expressed in CRC. Its diagnostic value for CRC patients was also demonstrated. Clinical assays revealed that high MCF2L-AS1 expression is associated with advanced stages, positive metastasis and the poor prognosis of CRC patients. Multivariate assays confirmed that MCF2L-AS1 expression is an independent poor prognostic factor for both 5-year overall survival and 5-year disease-free survival of CRC patients. Functionally, we confirmed that knockdown of MCF2L-AS1 distinctly suppresses the proliferation, migration and invasion of CRC cells and also promotes apoptosis. Mechanistic investigation showed that MCF2L-AS1 functions as an endogenous sponge for miR-874-3p to increase the expression of CCNE1. CONCLUSIONS Our findings identified a novel CRC-related lncRNA, MCF2L-AS1, which may be used as a potential diagnostic and prognostic biomarker for CRC patients. In addition, the newly identified MCF2L-AS1/miR-874-3p/CCNE1 axis can modulate the initiation and progression of CRC.
Collapse
Affiliation(s)
- Fa-Kun Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Cheng-Ying Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Long-Kai Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chang-Qing Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jun-Feng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jia-Xing Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
1547
|
Gundamaraju R, Lu W, Azimi I, Eri R, Sohal SS. Endogenous Anti-Cancer Candidates in GPCR, ER Stress, and EMT. Biomedicines 2020; 8:biomedicines8100402. [PMID: 33050301 PMCID: PMC7601667 DOI: 10.3390/biomedicines8100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of cellular responses to external stimuli are mediated by receptors such as G protein-coupled receptors (GPCRs) and systems including endoplasmic reticulum stress (ER stress). Since GPCR signalling is pivotal in numerous malignancies, they are widely targeted by a number of clinical drugs. Cancer cells often negatively modulate GPCRs in order to survive, proliferate and to disseminate. Similarly, numerous branches of the unfolded protein response (UPR) act as pro-survival mediators and are involved in promoting cancer progression via mechanisms such as epithelial to mesenchymal transition (EMT). However, there are a few proteins among these groups which impede deleterious effects by orchestrating the pro-apoptotic phenomenon and paving a therapeutic pathway. The present review exposes and discusses such critical mechanisms and some of the key processes involved in carcinogenesis.
Collapse
Affiliation(s)
- Rohit Gundamaraju
- ER Stress & Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Correspondence:
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (S.S.S.)
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Rajaraman Eri
- ER Stress & Mucosal Immunology Group, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia; (W.L.); (S.S.S.)
| |
Collapse
|
1548
|
Zheng P, Li W. Crosstalk Between Mesenchymal Stromal Cells and Tumor-Associated Macrophages in Gastric Cancer. Front Oncol 2020; 10:571516. [PMID: 33163402 PMCID: PMC7581781 DOI: 10.3389/fonc.2020.571516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) consisting of distinct cell types including stromal cells and immune cells has recently emerged as a pivotal player in tumor development and progression. Mesenchymal stromal cells (MSCs) and tumor-associated macrophages (TAMs) are two representative cells in the TME with plastic properties. This review will focus on the evolution of phenotypes and functions of either MSCs or TAMs, which is “educated” by the TME, as well as interactions between MSCs and TAMs contributing to the distinct stages of tumor biology in gastric cancer. MSCs exert immunoregulatory effects on macrophages and polarize them toward M2-like TAMs, via cell–cell contact and paracrine or extracellular vesicle (EV) transfer mechanism. In turn, M2-TAMs modulate the transition of “naive” MSCs into tumor-derived MSCs, which possess a more potent pro-tumor role than the parent. Moreover, the cross talk between MSCs and TAMs could contribute to cancer biology by inducing the EMT process, metastasis, immune invasion, and immunotherapy resistance in cancer cells. However, molecular mechanisms underlying interactions between MSCs and TAMs in gastric cancer progression need to be thoroughly elucidated, which may provide attractive targets for making promising novel strategies for gastric cancer therapy.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
1549
|
Kyriakopoulou K, Riti E, Piperigkou Z, Koutroumanou Sarri K, Bassiony H, Franchi M, Karamanos NK. ΕGFR/ERβ-Mediated Cell Morphology and Invasion Capacity Are Associated with Matrix Culture Substrates in Breast Cancer. Cells 2020; 9:E2256. [PMID: 33050027 PMCID: PMC7601637 DOI: 10.3390/cells9102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases' (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell-cell and cell-matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Eirini Riti
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Konstantina Koutroumanou Sarri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Heba Bassiony
- Department of Zoology, Faculty of Science, Cairo University, Cairo 11865, Egypt;
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, 47921 Rimini, Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| |
Collapse
|
1550
|
Mitchel JA, Das A, O'Sullivan MJ, Stancil IT, DeCamp SJ, Koehler S, Ocaña OH, Butler JP, Fredberg JJ, Nieto MA, Bi D, Park JA. In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nat Commun 2020; 11:5053. [PMID: 33028821 PMCID: PMC7542457 DOI: 10.1038/s41467-020-18841-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.
Collapse
Affiliation(s)
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Ian T Stancil
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - James P Butler
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|